distributed_strategy.py 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle.distributed.fleet.proto import distributed_strategy_pb2
17
from paddle.fluid.framework import Variable
18
import google.protobuf.text_format
19 20


21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


class DistributedStrategy(object):
84 85
    __lock_attr = False

86
    def __init__(self):
87 88 89 90 91 92 93 94 95 96 97 98
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
        
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
99
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
100 101 102 103 104 105 106
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
107

108
    def save_to_prototxt(self, output):
109 110 111 112 113 114
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
          .. code-block:: python
        
115
            import paddle.distributed.fleet as fleet
116 117 118 119 120 121
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
            strategy.recompute_configs = {"checkpoint": ["x"]}
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
122 123 124 125
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
126 127 128 129 130 131
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
          .. code-block:: python

132
            import paddle.distributed.fleet as fleet
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            strategy = fleet.DistributedStrategy()
            strategy.load_from_prototxt("dist_strategy.protoxt")
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
          .. code-block:: python

            exe_strategy = paddle.fluid.ExecutionStrategy()
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

153
            strategy = paddle.distributed.fleet.DistributedStrategy()
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
          .. code-block:: python

            build_strategy = paddle.fluid.BuildStrategy()
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
            
190
            strategy = paddle.distributed.fleet.DistributedStrategy()
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(build_strategy, f.name,
                    getattr(self.strategy.build_strategy, f.name))
        return build_strategy

    @build_strategy.setter
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
                setattr(self.strategy.build_strategy, f.name,
                        getattr(strategy, f.name))
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
D
Dong Daxiang 已提交
213
    def a_sync(self):
214 215 216 217 218 219 220 221 222
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
          .. code-block:: python

223
            import paddle.distributed.fleet as fleet
224 225 226 227
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
228
            strategy.a_sync = True  # by default this is True
229 230 231 232
            
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
233
        return self.strategy.a_sync
234

D
Dong Daxiang 已提交
235 236
    @a_sync.setter
    def a_sync(self, flag):
237
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
238
            self.strategy.a_sync = flag
239
            self.a_sync_configs = {"k_steps": 0}
240
        else:
241 242 243
            raise ValueError(
                "The type of `flag` is invalid, expected type is bool, but received %s".
                format(type(flag)))
244 245

    @property
D
Dong Daxiang 已提交
246
    def a_sync_configs(self):
247
        """
D
Dong Daxiang 已提交
248
        Set a_sync update configurations. In general, asynchronous parameter server
249 250
        training has serveral configurable settings that can be configured through
        a dict.
251

252
        **Notes**:
D
Dong Daxiang 已提交
253
            **Detailed arguments for a_sync_configs**
254 255 256 257 258 259 260
            **k_step**: number of local optimization updates before communication
            **max_merge_var_num**: maximum number of merged gradients before communication
            **send_queue_size**: a buffer size of worker communication
            **independent_recv_thread**: if we are using independent recv thread for communication
            **thread_pool_size**: number of thread pool
            **send_wait_times**: waiting time for sending gradients
            **runtime_split_send_recv**: if we are using Tensor split for send and recv during runtime
261

262 263
        Examples:
          .. code-block:: python
264

265
            import paddle.distributed.fleet as fleet
266 267
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
268

269
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
270
            strategy.a_sync = True  # by default this is True
271
            configs = {"k_step": 10000, "send_queue_size": 32}
D
Dong Daxiang 已提交
272
            strategy.a_sync_configs = configs
273

274 275 276
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
277
        return get_msg_dict(self.strategy.a_sync_configs)
278

D
Dong Daxiang 已提交
279 280 281 282 283
    @a_sync_configs.setter
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
284

285
    @property
286 287 288 289
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
290

291 292
        Examples:
          .. code-block:: python
293

294
            import paddle.distributed.fleet as fleet
295 296
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
297

298 299
        """
        return self.strategy.amp
300

301 302
    @amp.setter
    def amp(self, flag):
303
        if isinstance(flag, bool):
304
            self.strategy.amp = flag
305
        else:
306
            print("WARNING: amp should have value of bool type")
307 308

    @property
309 310
    def amp_configs(self):
        return get_msg_dict(self.strategy.amp_configs)
311

312 313 314 315
    @amp_configs.setter
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
316 317

    @property
318 319 320 321 322 323 324 325
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
          .. code-block:: python

326
            import paddle.distributed.fleet as fleet
327 328 329 330 331 332
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
333

334 335 336 337 338 339 340 341 342
    @property
    def sync_nccl_allreduce(self):
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
343
            print("WARNING: sync_nccl_allreduce should have value of bool type")
344

345
    @property
346 347
    def use_hierarchical_allreduce(self):
        return self.strategy.use_hierarchical_allreduce
348

349 350
    @use_hierarchical_allreduce.setter
    def use_hierarchical_allreduce(self, flag):
351
        if isinstance(flag, bool):
352
            self.strategy.use_hierarchical_allreduce = flag
353 354
        else:
            print(
355
                "WARNING: use_hierarchical_allreduce should have value of bool type"
356 357 358
            )

    @property
359 360
    def hierarchical_allreduce_inter_nranks(self):
        return self.strategy.hierarchical_allreduce_inter_nranks
361

362 363 364 365
    @hierarchical_allreduce_inter_nranks.setter
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
366 367
        else:
            print(
368
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
369 370
            )

371
    @property
372 373
    def sync_batch_norm(self):
        return self.strategy.sync_batch_norm
374

375 376
    @sync_batch_norm.setter
    def sync_batch_norm(self, flag):
377
        if isinstance(flag, bool):
378
            self.strategy.sync_batch_norm = flag
379
        else:
380
            print("WARNING: sync_batch_norm should have value of bool type")
381 382 383 384 385 386 387 388 389 390 391 392

    @property
    def fuse_all_reduce_ops(self):
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    @property
    def fuse_grad_size_in_MB(self):
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

417
    @property
418 419
    def nccl_comm_num(self):
        return self.strategy.nccl_comm_num
420

421 422
    @nccl_comm_num.setter
    def nccl_comm_num(self, value):
423
        if isinstance(value, int):
424
            self.strategy.nccl_comm_num = value
425
        else:
426
            print("WARNING: nccl_comm_num should have value of int type")
427

428 429
    @recompute.setter
    def recompute(self, flag):
430
        if isinstance(flag, bool):
431
            self.strategy.recompute = flag
432
        else:
433
            print("WARNING: recompute should have value of bool type")
434 435

    @property
436 437 438 439
    def recompute_configs(self):
        """
        Set recompute configurations. In general, the recompute strategy of current
        implementation should have some manually assign checkpoints
440

441 442 443
        Examples:
          .. code-block:: python
        
444
            import paddle.distributed.fleet as fleet
445 446 447 448 449 450 451 452 453 454 455 456
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            strategy.recompute_configs = {"checkpionts": ["x", "y"]}

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
457 458

    @property
459 460 461 462 463 464 465 466 467 468
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
          .. code-block:: python
        
469
            import paddle.distributed.fleet as fleet
470 471 472 473 474
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
475

476 477
    @pipeline.setter
    def pipeline(self, flag):
478
        if isinstance(flag, bool):
479
            self.strategy.pipeline = flag
480
        else:
481
            print("WARNING: pipeline should have value of bool type")
482 483

    @property
484 485 486 487 488 489 490 491 492 493
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
494

495 496 497
        **Notes**:
            **Detailed arguments for pipeline_configs**
            **micro_batch**: the number of small batches in each user defined batch
498

499 500 501
        Examples:
          .. code-block:: python
        
502
            import paddle.distributed.fleet as fleet
503 504 505
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
            strategy.pipeline_configs = {"micro_batch": 12}
506

507
        """
508

509
        return get_msg_dict(self.strategy.pipeline_configs)
510

511 512 513 514 515
    @pipeline_configs.setter
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
516 517

    @property
518 519
    def localsgd(self):
        return self.strategy.localsgd
520

521 522 523 524
    @localsgd.setter
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
525
        else:
526
            print("WARNING: localsgd should have value of bool type")
527 528

    @property
529 530
    def localsgd_configs(self):
        return get_msg_dict(self.strategy.localsgd_configs)
531

532 533 534 535 536
    @localsgd_configs.setter
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
537 538

    @property
539 540
    def dgc(self):
        return self.strategy.dgc
541

542 543 544 545
    @dgc.setter
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
546
        else:
547
            print("WARNING: dgc should have value of bool type")
548 549

    @property
550 551
    def dgc_configs(self):
        return get_msg_dict(self.strategy.dgc_configs)
552

553 554 555 556
    @dgc_configs.setter
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
557 558

    @property
559
    def gradient_merge(self):
560 561 562 563 564 565 566 567 568 569 570 571
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
        .. code-block:: python
572
            import paddle.distributed.fleet as fleet
573 574 575 576
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
577
        return self.strategy.gradient_merge
578

579 580
    @gradient_merge.setter
    def gradient_merge(self, flag):
581
        if isinstance(flag, bool):
582
            self.strategy.gradient_merge = flag
583
        else:
584 585 586 587
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
588 589 590 591 592 593 594
        """
        the key-value configs of distribute_strategy
        Keys: 
            k_steps (int): the update period of the parameters
            avg (bool): whether to average the gradients of each mini-batch,
                the default value is `True`
        Example:
595
            import paddle.distributed.fleet as fleet
596 597 598 599
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
600 601 602 603 604 605 606
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
607 608

    @property
609 610
    def lars(self):
        return self.strategy.lars
611

612 613
    @lars.setter
    def lars(self, flag):
614
        if isinstance(flag, bool):
615
            self.strategy.lars = flag
616
        else:
617
            print("WARNING: lars should have value of bool type")
618

619 620 621 622 623 624 625 626 627
    @property
    def lars_configs(self):
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

628
    @property
629 630
    def lamb(self):
        return self.strategy.lamb
631

632 633
    @lamb.setter
    def lamb(self, flag):
634
        if isinstance(flag, bool):
635
            self.strategy.lamb = flag
636
        else:
637
            print("WARNING: lamb should have value of bool type")
638

639 640 641 642 643 644 645 646 647
    @property
    def lamb_configs(self):
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    @property
    def elastic(self):
        return self.strategy.elastic

    @elastic.setter
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

    def __repr__(self):
D
Dong Daxiang 已提交
671 672 673
        fields = self.strategy.DESCRIPTOR.fields
        for f in fields:
            print("{}: {}".format(f.name, f.default_value))
674
        return str(self.strategy)