Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2b6a5793
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2b6a5793
编写于
9月 14, 2020
作者:
S
ShenLiang
提交者:
GitHub
9月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove auto mode from localsgd optimizer (#27237)
* rm auto from localsgd
上级
cc3f4b81
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
29 addition
and
53 deletion
+29
-53
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+4
-1
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+3
-6
python/paddle/distributed/fleet/meta_optimizers/localsgd_optimizer.py
...e/distributed/fleet/meta_optimizers/localsgd_optimizer.py
+18
-44
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
.../fluid/tests/unittests/test_fleet_distributed_strategy.py
+3
-2
python/paddle/fluid/tests/unittests/test_fleet_localsgd_meta_optimizer.py
...uid/tests/unittests/test_fleet_localsgd_meta_optimizer.py
+1
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
100755 → 100644
浏览文件 @
2b6a5793
...
...
@@ -36,7 +36,10 @@ message AMPConfig {
repeated
string
custom_black_varnames
=
9
;
}
message
LocalSGDConfig
{
optional
int32
k_steps
=
1
[
default
=
4
];
}
message
LocalSGDConfig
{
optional
int32
k_steps
=
1
[
default
=
1
];
optional
int32
begin_step
=
2
[
default
=
1
];
}
message
GradientMergeConfig
{
optional
int32
k_steps
=
1
[
default
=
1
];
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
2b6a5793
...
...
@@ -707,11 +707,7 @@ class DistributedStrategy(object):
**Notes**:
k_steps(int) The local steps for training before parameter synchronization. Default 1.
If strategy.auto is set True, the local steps will be calculated automatically during training.
The algorithm is referenced in this paper:
`Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.
In this case, k_steps indicates the first local steps which is suggested setting to 1.
begin_step(int) The step of begining training by localsgd. Default 1.
Examples:
.. code-block:: python
...
...
@@ -719,7 +715,8 @@ class DistributedStrategy(object):
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.localsgd = True
strategy.localsgd_configs = {"k_steps": 4}
strategy.localsgd_configs = {"k_steps": 4,
"begin_step": 30}
"""
return
get_msg_dict
(
self
.
strategy
.
localsgd_configs
)
...
...
python/paddle/distributed/fleet/meta_optimizers/localsgd_optimizer.py
浏览文件 @
2b6a5793
...
...
@@ -49,7 +49,7 @@ class LocalSGDOptimizer(MetaOptimizerBase):
def
_enable_strategy
(
self
,
dist_strategy
,
context
):
dist_strategy
.
localsgd
=
True
dist_strategy
.
localsgd_configs
=
{
"k_steps"
:
1
}
dist_strategy
.
localsgd_configs
=
{
"k_steps"
:
1
,
"begin_step"
:
1
}
def
snapshot_name
(
self
,
param_name
):
return
param_name
+
self
.
snapshot_key
...
...
@@ -86,8 +86,9 @@ class LocalSGDOptimizer(MetaOptimizerBase):
minimized
=
self
.
inner_opt
.
minimize
(
loss
,
startup_program
=
startup_program
)
init_k_steps
=
self
.
user_defined_strategy
.
localsgd_configs
[
'k_steps'
]
auto_steps
=
self
.
user_defined_strategy
.
auto
k_steps_value
=
self
.
user_defined_strategy
.
localsgd_configs
[
'k_steps'
]
begin_step_value
=
self
.
user_defined_strategy
.
localsgd_configs
[
'begin_step'
]
if
startup_program
is
None
:
startup_program
=
default_startup_program
()
...
...
@@ -101,45 +102,28 @@ class LocalSGDOptimizer(MetaOptimizerBase):
p2s
=
self
.
create_snapshot_vars
(
main_block
.
program
)
with
program_guard
(
main_block
.
program
,
startup_program
):
step
=
layers
.
autoincreased_step_counter
(
begin
=
0
)
step
=
layers
.
autoincreased_step_counter
(
begin
=
1
)
k_steps
=
layers
.
create_global_var
(
name
=
"k_steps"
,
shape
=
[
1
],
value
=
init_k_steps
,
value
=
k_steps_value
,
dtype
=
'int64'
,
persistable
=
True
)
begin_step
=
layers
.
create_global_var
(
name
=
"begin_step"
,
shape
=
[
1
],
value
=
begin_step_value
,
dtype
=
'int64'
,
persistable
=
True
)
last_step
=
layers
.
create_global_var
(
name
=
"last_step"
,
shape
=
[
1
],
value
=
int
(
0
)
,
value
=
begin_step_value
,
dtype
=
'int64'
,
persistable
=
True
)
if
auto_steps
:
avg_loss
=
layers
.
collective
.
_c_allreduce
(
loss
)
/
self
.
role_maker
.
worker_num
()
lr_0
=
layers
.
create_global_var
(
name
=
"lr_0"
,
shape
=
[
1
],
value
=
float
(
0
),
dtype
=
'float32'
,
persistable
=
True
)
loss_0
=
layers
.
create_global_var
(
name
=
"loss_0"
,
shape
=
[
1
],
value
=
float
(
0
),
dtype
=
'float32'
,
persistable
=
True
)
global_lr
=
self
.
inner_opt
.
_global_learning_rate
()
def
initialize
():
layers
.
assign
(
loss
,
loss_0
)
layers
.
assign
(
global_lr
,
lr_0
)
layers
.
cond
(
step
==
0
,
initialize
)
def
communicate
():
sub_block
=
default_main_program
().
current_block
()
ring_id
=
-
1
...
...
@@ -195,20 +179,10 @@ class LocalSGDOptimizer(MetaOptimizerBase):
inputs
=
{
'X'
:
[
param
]},
outputs
=
{
'Out'
:
[
snapshot
]},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Optimize
})
if
auto_steps
:
next_local_steps
=
layers
.
cast
(
layers
.
ceil
(
layers
.
sqrt
(
lr_0
*
loss
/
(
global_lr
*
loss_0
)
*
float
(
init_k_steps
))),
dtype
=
'int64'
)
max_local_steps
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
16
)
next_local_steps
=
layers
.
elementwise_min
(
next_local_steps
,
max_local_steps
)
layers
.
assign
(
next_local_steps
,
k_steps
)
layers
.
assign
(
step
,
last_step
)
layers
.
cond
(
step
-
last_step
==
k_steps
,
communicate
)
def
begin_localsgd
():
layers
.
cond
(
step
-
last_step
==
k_steps
,
communicate
)
layers
.
cond
(
step
>
begin_step
,
begin_localsgd
,
communicate
)
return
minimized
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
浏览文件 @
2b6a5793
...
...
@@ -81,9 +81,10 @@ class TestStrategyConfig(unittest.TestCase):
def
test_localsgd_configs
(
self
):
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
configs
=
{
"k_steps"
:
4
}
configs
=
{
"k_steps"
:
4
,
"begin_step"
:
120
}
strategy
.
localsgd_configs
=
configs
self
.
assertEqual
(
strategy
.
localsgd_configs
[
"k_steps"
],
4
)
self
.
assertEqual
(
strategy
.
localsgd_configs
[
"begin_step"
],
120
)
def
test_dgc
(
self
):
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
...
...
@@ -230,7 +231,7 @@ class TestStrategyConfig(unittest.TestCase):
strategy
.
a_sync
=
True
strategy
.
localsgd
=
True
strategy
.
dgc
=
True
localsgd_configs
=
{
"k_steps"
:
5
}
localsgd_configs
=
{
"k_steps"
:
5
,
"begin_step"
:
1
}
strategy
.
localsgd_configs
=
localsgd_configs
build_strategy
=
paddle
.
fluid
.
BuildStrategy
()
build_strategy
.
enable_sequential_execution
=
True
...
...
python/paddle/fluid/tests/unittests/test_fleet_localsgd_meta_optimizer.py
浏览文件 @
2b6a5793
...
...
@@ -44,6 +44,7 @@ class TestFleetLocalSGDMetaOptimizer(unittest.TestCase):
strategy
.
auto
=
True
config
=
strategy
.
localsgd_configs
config
[
'k_steps'
]
=
1
config
[
'begin_step'
]
=
1
strategy
.
localsgd_configs
=
config
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录