distributed_strategy.py 50.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle.distributed.fleet.proto import distributed_strategy_pb2
17
from paddle.fluid.framework import Variable, set_flags, core
18
from paddle.fluid.wrapped_decorator import wrap_decorator
19
import google.protobuf.text_format
20
import google.protobuf
21

22 23
__all__ = ["DistributedStrategy"]

24 25 26 27 28 29 30 31 32 33 34 35 36 37
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

38

39 40 41 42 43 44 45 46 47 48 49 50 51
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
52 53 54
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
55 56 57 58 59 60 61 62 63 64 65 66
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


class DistributedStrategy(object):
105 106
    __lock_attr = False

107
    def __init__(self):
108 109 110 111 112
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
113

114 115 116 117 118 119
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
120
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
121 122 123 124 125 126 127
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
128

129
    def save_to_prototxt(self, output):
130 131 132 133
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
134

135
          .. code-block:: python
1
123malin 已提交
136

137
            import paddle.distributed.fleet as fleet
138 139 140
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
141
            strategy.recompute_configs = {"checkpoints": ["x"]}
142 143
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
144 145 146 147
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
148 149 150 151
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
152

153 154
          .. code-block:: python

155
            import paddle.distributed.fleet as fleet
156
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
157
            strategy.load_from_prototxt("dist_strategy.prototxt")
158 159 160 161 162 163 164 165 166 167 168
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
169

170 171
          .. code-block:: python

M
mapingshuo 已提交
172
            import paddle
1
123malin 已提交
173
            exe_strategy = paddle.static.ExecutionStrategy()
174 175 176 177
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

178
            strategy = paddle.distributed.fleet.DistributedStrategy()
179 180 181 182 183 184 185 186 187 188
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
189
    @is_strict_auto
190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
204

205 206
          .. code-block:: python

M
mapingshuo 已提交
207
            import paddle
1
123malin 已提交
208
            build_strategy = paddle.static.BuildStrategy()
209 210 211 212 213 214 215 216
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
217

218
            strategy = paddle.distributed.fleet.DistributedStrategy()
219 220 221 222 223 224 225 226 227 228 229
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(build_strategy, f.name,
                    getattr(self.strategy.build_strategy, f.name))
        return build_strategy

    @build_strategy.setter
230
    @is_strict_auto
231 232 233 234 235 236 237 238 239 240 241
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
                setattr(self.strategy.build_strategy, f.name,
                        getattr(strategy, f.name))
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
D
Dong Daxiang 已提交
242
    def a_sync(self):
243 244 245 246 247 248 249
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
250

251 252
          .. code-block:: python

253
            import paddle.distributed.fleet as fleet
254 255 256 257
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
258
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
259

260 261 262
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
263
        return self.strategy.a_sync
264

D
Dong Daxiang 已提交
265
    @a_sync.setter
266
    @is_strict_auto
D
Dong Daxiang 已提交
267
    def a_sync(self, flag):
268
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
269
            self.strategy.a_sync = flag
270
            self.a_sync_configs = {"k_steps": 0}
271
        else:
272 273 274
            raise ValueError(
                "The type of `flag` is invalid, expected type is bool, but received %s".
                format(type(flag)))
275 276

    @property
D
Dong Daxiang 已提交
277
    def a_sync_configs(self):
278
        """
D
Dong Daxiang 已提交
279
        Set a_sync update configurations. In general, asynchronous parameter server
280 281
        training has serveral configurable settings that can be configured through
        a dict.
282

283
        **Notes**:
M
mapingshuo 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
297

298
        Examples:
1
123malin 已提交
299

300
          .. code-block:: python
301

302
            import paddle.distributed.fleet as fleet
303 304
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
305

306
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
307
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
308
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
309
            strategy.a_sync_configs = configs
310

311 312
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
313

314
        """
D
Dong Daxiang 已提交
315
        return get_msg_dict(self.strategy.a_sync_configs)
316

D
Dong Daxiang 已提交
317
    @a_sync_configs.setter
318
    @is_strict_auto
D
Dong Daxiang 已提交
319 320 321 322
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
323

324
    @property
325 326 327 328
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
329

330
        Examples:
1
123malin 已提交
331

332
          .. code-block:: python
333

334
            import paddle.distributed.fleet as fleet
335 336
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
337

338 339
        """
        return self.strategy.amp
340

341
    @amp.setter
342
    @is_strict_auto
343
    def amp(self, flag):
344
        if isinstance(flag, bool):
345
            self.strategy.amp = flag
346
        else:
347
            print("WARNING: amp should have value of bool type")
348 349

    @property
350
    def amp_configs(self):
351 352 353 354 355
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
371

372 373 374 375 376 377 378 379
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
380

381 382 383 384 385 386 387 388
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
389 390 391 392 393 394 395 396 397 398 399 400 401

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
402
        """
403
        return get_msg_dict(self.strategy.amp_configs)
404

405
    @amp_configs.setter
406
    @is_strict_auto
407 408 409
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
410 411

    @property
412 413 414 415 416 417
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
418

419 420
          .. code-block:: python

421
            import paddle.distributed.fleet as fleet
422 423 424 425 426 427
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
428

429 430
    @property
    def sync_nccl_allreduce(self):
431 432 433 434 435
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
436

437 438 439 440 441 442
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
443 444 445
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
446
    @is_strict_auto
447 448 449 450
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
451
            print("WARNING: sync_nccl_allreduce should have value of bool type")
452

453
    @property
454
    def use_hierarchical_allreduce(self):
455 456 457 458 459 460
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
461

462 463 464 465 466 467
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
468
        return self.strategy.use_hierarchical_allreduce
469

470
    @use_hierarchical_allreduce.setter
471
    @is_strict_auto
472
    def use_hierarchical_allreduce(self, flag):
473
        if isinstance(flag, bool):
474
            self.strategy.use_hierarchical_allreduce = flag
475 476
        else:
            print(
477
                "WARNING: use_hierarchical_allreduce should have value of bool type"
478 479 480
            )

    @property
481
    def hierarchical_allreduce_inter_nranks(self):
482 483 484 485 486
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
487

488 489 490 491 492 493
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
494
        return self.strategy.hierarchical_allreduce_inter_nranks
495

496
    @hierarchical_allreduce_inter_nranks.setter
497
    @is_strict_auto
498 499 500
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
501 502
        else:
            print(
503
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
504 505
            )

506
    @property
507
    def sync_batch_norm(self):
508 509
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
510

511 512 513
        Default value: False

        Examples:
1
123malin 已提交
514

515 516 517 518 519 520 521
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

522
        return self.strategy.sync_batch_norm
523

524
    @sync_batch_norm.setter
525
    @is_strict_auto
526
    def sync_batch_norm(self, flag):
527
        if isinstance(flag, bool):
528
            self.strategy.sync_batch_norm = flag
529
        else:
530
            print("WARNING: sync_batch_norm should have value of bool type")
531 532 533

    @property
    def fuse_all_reduce_ops(self):
534 535 536 537 538
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
539

540 541 542 543 544 545
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
546 547 548
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
549
    @is_strict_auto
550 551 552 553 554 555
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

556 557
    @property
    def fuse_grad_size_in_MB(self):
558 559 560 561 562 563
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
564

565
          .. code-block:: python
1
123malin 已提交
566

567 568 569 570
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
571 572 573
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
574
    @is_strict_auto
575 576 577 578 579 580
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

607 608 609 610 611
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
612
    @is_strict_auto
613 614 615 616 617 618 619 620
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

621
    @property
622
    def nccl_comm_num(self):
623 624 625 626 627 628
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
629

630
          .. code-block:: python
1
123malin 已提交
631

632 633 634 635 636
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

637
        return self.strategy.nccl_comm_num
638

639
    @nccl_comm_num.setter
640
    @is_strict_auto
641
    def nccl_comm_num(self, value):
642
        if isinstance(value, int):
643
            self.strategy.nccl_comm_num = value
644
        else:
645
            print("WARNING: nccl_comm_num should have value of int type")
646

647
    @recompute.setter
648
    @is_strict_auto
649
    def recompute(self, flag):
650
        if isinstance(flag, bool):
651
            self.strategy.recompute = flag
652
        else:
653
            print("WARNING: recompute should have value of bool type")
654 655

    @property
656 657
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
672

673
        Examples:
1
123malin 已提交
674

675
          .. code-block:: python
1
123malin 已提交
676

677
            import paddle.distributed.fleet as fleet
678 679
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
680 681 682 683
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
684 685 686 687 688

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
689
    @is_strict_auto
690 691 692 693
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
694

695 696 697 698
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
699 700 701
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
702 703 704 705

        Default value: False

        Examples:
1
123malin 已提交
706

707
          .. code-block:: python
1
123malin 已提交
708

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
726
        Set sharding configurations. 
727 728

        **Note**:
J
JZ-LIANG 已提交
729 730 731
            fuse_broadcast_MB(float): size of a fused group of broadcasted parameters. 
            This configuration will affect the communication speed in sharding training, 
            and should be an empirical value decided by your model size and network topology.
732

J
JZ-LIANG 已提交
733 734 735 736 737 738 739 740
            hybrid_dp(bool): enable hybrid data parallelism above the sharding parallelism. 
            you are supposed to have at least double the number of gpu you have in normal sharding 
            training to enable this feature.

            sharding_group_size(int): attribute of hybrid_dp. specific the the number of gpus within
            each sharding group; and therefore, the number of hybrid data parallelism ways will be equal
            to (global_size / sharding_group_size).

741
        Examples:
1
123malin 已提交
742

743
          .. code-block:: python
1
123malin 已提交
744

745 746 747
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
748 749 750 751
            strategy.sharding_configs = {
                "fuse_broadcast_MB": 32,
                "hybrid_dp": True,
                "sharding_group_size": 8}
752 753 754 755 756 757 758 759 760 761
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

762
    @property
763 764 765 766 767 768 769 770
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
771

772
          .. code-block:: python
1
123malin 已提交
773

774
            import paddle.distributed.fleet as fleet
775 776 777 778 779
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
780

781
    @pipeline.setter
782
    @is_strict_auto
783
    def pipeline(self, flag):
784
        if isinstance(flag, bool):
785
            self.strategy.pipeline = flag
786
        else:
787
            print("WARNING: pipeline should have value of bool type")
788 789

    @property
790 791 792 793 794 795 796 797 798 799
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
800

801 802
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
803

804
            **micro_batch**: the number of small batches in each user defined batch
805

806
        Examples:
1
123malin 已提交
807

808
          .. code-block:: python
1
123malin 已提交
809

810
            import paddle.distributed.fleet as fleet
811 812 813
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
            strategy.pipeline_configs = {"micro_batch": 12}
814

815
        """
816

817
        return get_msg_dict(self.strategy.pipeline_configs)
818

819
    @pipeline_configs.setter
820
    @is_strict_auto
821 822 823 824
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
825 826

    @property
827
    def localsgd(self):
828
        """
M
mapingshuo 已提交
829 830 831
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
832 833 834


        Examples:
1
123malin 已提交
835

836 837 838 839 840 841 842
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
843
        return self.strategy.localsgd
844

845
    @localsgd.setter
846
    @is_strict_auto
847 848 849
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
850
        else:
851
            print("WARNING: localsgd should have value of bool type")
852 853

    @property
854
    def localsgd_configs(self):
855 856 857 858 859
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
860
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
861
            begin_step(int) The step of begining training by localsgd. Default 1.
862 863

        Examples:
1
123malin 已提交
864

865 866 867 868 869
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
870 871
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
872 873
        """

874
        return get_msg_dict(self.strategy.localsgd_configs)
875

876
    @localsgd_configs.setter
877
    @is_strict_auto
878 879 880 881
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
882

883 884 885 886 887 888 889 890 891
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
892

893 894 895 896 897 898 899
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
900
        return self.strategy.adaptive_localsgd
901 902 903 904 905

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
906
            self.strategy.adaptive_localsgd = flag
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
            begin_step(int) The step of begining training by adaptive localsgd. Default 1.

        Examples:
1
123malin 已提交
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

942
    @property
943
    def dgc(self):
944 945 946 947 948 949 950
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
951

952 953 954 955 956 957 958
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
959
        return self.strategy.dgc
960

961
    @dgc.setter
962
    @is_strict_auto
963 964 965
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
966
        else:
967
            print("WARNING: dgc should have value of bool type")
968 969

    @property
970
    def dgc_configs(self):
971
        r"""
972 973 974 975
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
976 977 978 979 980 981 982 983 984 985
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
986 987

        Examples:
1
123malin 已提交
988

989 990 991 992 993 994 995
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
996
        return get_msg_dict(self.strategy.dgc_configs)
997

998
    @dgc_configs.setter
999
    @is_strict_auto
1000 1001 1002
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1003

1004 1005 1006 1007 1008 1009 1010
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1028
    @property
1029
    def gradient_merge(self):
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1041

M
mapingshuo 已提交
1042 1043
          .. code-block:: python

1044
            import paddle.distributed.fleet as fleet
1045 1046 1047 1048
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1049
        return self.strategy.gradient_merge
1050

1051
    @gradient_merge.setter
1052
    @is_strict_auto
1053
    def gradient_merge(self, flag):
1054
        if isinstance(flag, bool):
1055
            self.strategy.gradient_merge = flag
1056
        else:
1057 1058 1059 1060
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1061 1062
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1063 1064 1065 1066 1067 1068 1069

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1070

M
mapingshuo 已提交
1071 1072
          .. code-block:: python

1073
            import paddle.distributed.fleet as fleet
1074 1075 1076 1077
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1078 1079 1080
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1081
    @is_strict_auto
1082 1083 1084 1085
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1086 1087

    @property
1088
    def lars(self):
1089 1090 1091 1092 1093 1094 1095 1096
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1097

1098 1099 1100 1101 1102 1103
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1104
        return self.strategy.lars
1105

1106
    @lars.setter
1107
    @is_strict_auto
1108
    def lars(self, flag):
1109
        if isinstance(flag, bool):
1110
            self.strategy.lars = flag
1111
        else:
1112
            print("WARNING: lars should have value of bool type")
1113

1114 1115
    @property
    def lars_configs(self):
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1128

1129
          .. code-block:: python
M
mapingshuo 已提交
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1141 1142 1143
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1144
    @is_strict_auto
1145 1146 1147 1148
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1149
    @property
1150
    def lamb(self):
1151 1152 1153 1154 1155 1156 1157
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1158

1159
        Examples:
1
123malin 已提交
1160

1161 1162 1163 1164 1165 1166 1167
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1168
        return self.strategy.lamb
1169

1170
    @lamb.setter
1171
    @is_strict_auto
1172
    def lamb(self, flag):
1173
        if isinstance(flag, bool):
1174
            self.strategy.lamb = flag
1175
        else:
1176
            print("WARNING: lamb should have value of bool type")
1177

1178 1179
    @property
    def lamb_configs(self):
1180 1181 1182 1183 1184 1185 1186 1187 1188
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1189

1190
          .. code-block:: python
M
mapingshuo 已提交
1191

1192 1193 1194 1195 1196 1197 1198 1199
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1200 1201 1202
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1203
    @is_strict_auto
1204 1205 1206 1207
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1208 1209
    @property
    def elastic(self):
1210 1211 1212 1213
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1214 1215 1216
        return self.strategy.elastic

    @elastic.setter
1217
    @is_strict_auto
1218 1219 1220 1221 1222 1223 1224 1225
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1226 1227 1228 1229 1230 1231 1232 1233 1234
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1235

1236 1237 1238
          .. code-block:: python

            import paddle
1239
            paddle.enable_static()
1
123malin 已提交
1240
            import paddle.distributed.fleet as fleet
1241

1242 1243
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1244 1245
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1246 1247 1248 1249

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1250 1251 1252 1253 1254 1255 1256 1257 1258
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1259 1260
    @property
    def cudnn_exhaustive_search(self):
1261 1262 1263 1264 1265 1266 1267 1268
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
1269

1270 1271
          .. code-block:: python

1
123malin 已提交
1272 1273
            import paddle
            paddle.enable_static()
1274 1275 1276 1277 1278 1279 1280
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1281 1282 1283
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
1284
    @is_strict_auto
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
1295 1296 1297 1298 1299 1300 1301 1302
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
1303

1304 1305
          .. code-block:: python

1
123malin 已提交
1306 1307
            import paddle
            paddle.enable_static()
1308 1309 1310 1311 1312 1313
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
1314

1315
        """
1316 1317 1318
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
1319
    @is_strict_auto
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
1330 1331 1332 1333 1334 1335
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
1336

1337 1338
          .. code-block:: python

1
123malin 已提交
1339 1340
            import paddle
            paddle.enable_static()
1341 1342 1343 1344 1345 1346 1347 1348
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
1349 1350 1351
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
1352
    @is_strict_auto
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
            if core.globals().is_public(key):
                core.globals()[key] = values[i]

1384 1385 1386 1387 1388 1389
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

1390
    def __repr__(self):
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                               spacing, max_v)

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
1409
        fields = self.strategy.DESCRIPTOR.fields
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
1424
                                "{}=True <-> {}_configs".format(f.name, f.name))
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
                                        getattr(my_configs, ff.name),
                                        google.protobuf.pyext._message.
                                        RepeatedScalarContainer):
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
                                            draws += h2_format.format(ff.name,
                                                                      str(v))
                                        else:
                                            draws += h2_format.format("",
                                                                      str(v))
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
1462
        for f in fields:
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res