distributed_strategy.py 85.4 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28
non_auto_func_called = True


def __non_auto_func_called__(func):
29

30 31 32 33 34 35 36 37 38 39
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

40

41 42 43 44 45 46 47 48 49 50 51 52 53
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
54 55 56
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
57 58 59 60 61 62 63 64 65 66 67 68
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


106 107 108 109
ReduceStrategyFluid = paddle.fluid.BuildStrategy.ReduceStrategy
ReduceStrategyFleet = int


110
class DistributedStrategy(object):
111 112
    __lock_attr = False

113
    def __init__(self):
114 115 116 117 118
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
119

120 121 122 123 124 125
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
126
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
127 128 129

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
130
        if _global_flags().is_public(key):
131
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
132
                _global_flags()[key])
133
        key = 'FLAGS_conv_workspace_size_limit'
134 135
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
136
        key = 'FLAGS_cudnn_exhaustive_search'
137 138
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
139
        key = 'FLAGS_sync_nccl_allreduce'
140 141
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
142

143 144 145 146 147 148 149
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
150

151
    def save_to_prototxt(self, output):
152 153 154 155
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
156

157
          .. code-block:: python
1
123malin 已提交
158

159
            import paddle.distributed.fleet as fleet
160 161 162
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
163
            strategy.recompute_configs = {"checkpoints": ["x"]}
164 165
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
166 167 168 169
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
170 171 172 173
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
174

175 176
          .. code-block:: python

177
            import paddle.distributed.fleet as fleet
178
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
179
            strategy.load_from_prototxt("dist_strategy.prototxt")
180 181 182 183 184 185 186 187 188 189 190
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
191

192 193
          .. code-block:: python

M
mapingshuo 已提交
194
            import paddle
1
123malin 已提交
195
            exe_strategy = paddle.static.ExecutionStrategy()
196 197 198 199
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

200
            strategy = paddle.distributed.fleet.DistributedStrategy()
201 202 203 204 205 206 207 208 209 210
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
211
    @is_strict_auto
212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
226

227 228
          .. code-block:: python

M
mapingshuo 已提交
229
            import paddle
1
123malin 已提交
230
            build_strategy = paddle.static.BuildStrategy()
231 232 233 234 235 236 237 238
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
239

240
            strategy = paddle.distributed.fleet.DistributedStrategy()
241 242 243 244 245 246
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
247 248 249 250
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
                value = ReduceStrategyFluid(value)
            setattr(build_strategy, f.name, value)
251 252 253
        return build_strategy

    @build_strategy.setter
254
    @is_strict_auto
255 256 257 258
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
259 260 261 262
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
263 264 265 266 267
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
290
    def a_sync(self):
291 292 293 294 295 296 297
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
298

299 300
          .. code-block:: python

301
            import paddle.distributed.fleet as fleet
302 303 304 305
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
306
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
307

308 309 310
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
311
        return self.strategy.a_sync
312

D
Dong Daxiang 已提交
313
    @a_sync.setter
314
    @is_strict_auto
D
Dong Daxiang 已提交
315
    def a_sync(self, flag):
316
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
317
            self.strategy.a_sync = flag
318
            self.a_sync_configs = {"k_steps": 0}
319
        else:
320
            raise ValueError(
321 322
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
323 324

    @property
D
Dong Daxiang 已提交
325
    def a_sync_configs(self):
326
        """
D
Dong Daxiang 已提交
327
        Set a_sync update configurations. In general, asynchronous parameter server
328 329
        training has serveral configurable settings that can be configured through
        a dict.
330

331
        **Notes**:
M
mapingshuo 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
345

346
        Examples:
1
123malin 已提交
347

348
          .. code-block:: python
349

350
            import paddle.distributed.fleet as fleet
351 352
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
353

354
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
355
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
356
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
357
            strategy.a_sync_configs = configs
358

359 360
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
361

362
        """
D
Dong Daxiang 已提交
363
        return get_msg_dict(self.strategy.a_sync_configs)
364

D
Dong Daxiang 已提交
365
    @a_sync_configs.setter
366
    @is_strict_auto
D
Dong Daxiang 已提交
367 368 369 370
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    @property
    def trainer_desc_configs(self):
        """
        Set trainer desc configurations. 

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

            stat_var_names(list(str)): 

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

404 405 406 407
    @property
    def adam_d2sum(self):
        """
        set adam_d2sum
W
wangguanqun 已提交
408
        Default value: False
409 410 411 412 413 414 415 416 417 418

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
W
wangguanqun 已提交
419
            strategy.adam_d2sum = True  # by default this is False
420 421 422 423 424 425 426 427 428 429 430 431 432

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
433 434
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
435

436 437 438 439 440 441 442
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
        check_configs_key(self.strategy.trainer_desc_configs, configs,
                          "trainer_desc_configs")
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    @property
    def fs_client_param(self):
        """
        Set fs client configurations. 
        **Notes**:
            uri(str): the uri of fs client
            user(str): the user_name of fs client
            passwd(str): the passwd of fs client
            hadoop_bin(str): 
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
            strategy = fleet.DistributedStrategy()
            configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
            strategy.fs_client_param = configs
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
        check_configs_key(self.strategy.fs_client_param, configs,
                          "fs_client_param")
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

482
        def set_table_config(msg, config_name, configs, index=0):
483 484 485
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
486
                    # print("message:", name)
487 488 489 490
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
491
                        # print("message num:", name, num)
492 493 494 495
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
496 497
                        set_table_config(getattr(msg, field.name), name,
                                         configs)
498
                else:
499
                    # print("not message:", name)
500 501 502 503 504
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
505 506 507 508
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
509

510 511 512
        if not configs:
            print("table configs is empty")
        else:
513 514 515 516 517
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
                set_table_config(table_data, "table_parameters." + table_name,
                                 configs[table_name])
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                                   'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                                   'sparse_weight_bounds', 'sparse_fea_dim', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                                   'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
                                   'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                                   'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
                                   'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                                   'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold',
                                   'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', \
                                   'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', \
                                   'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', \
                                   'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', \
D
danleifeng 已提交
533
                                   'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate', 'feature_learning_rate', 'nodeid_slot']
534 535 536 537
        support_sparse_table_class = ['DownpourSparseTable']
        support_sparse_accessor_class = [
            'DownpourSparseValueAccessor', 'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor',
538
            'DownpourDoubleUnitAccessor', 'DownpourCtrDymfAccessor'
539 540 541 542
        ]
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

D
danleifeng 已提交
543 544 545 546 547
        def add_graph_config(graph, strategy):
            graph.feature_learning_rate = strategy.get('feature_learning_rate',
                                                       0.05)
            graph.nodeid_slot = strategy.get('nodeid_slot', 9008)

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        def sparse_optimizer_config(sgd, strategy, prefix):
            optimizer_name = strategy.get(prefix + "sparse_optimizer",
                                          "adagrad")
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.naive.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
            table_class = config.get("sparse_table_class",
                                     "DownpourSparseTable")
            if table_class not in support_sparse_table_class:
                raise ValueError(
                    "support sparse_table_class: ['DownpourSparseTable'], but actual %s"
                    % (table_class))
            table_data.table_class = 'MemorySparseTable'
            table_data.shard_num = config.get('sparse_shard_num', 1000)
630 631 632 633 634 635
            table_data.enable_sparse_table_cache = config.get(
                'sparse_enable_cache', True)
            table_data.sparse_table_cache_rate = config.get(
                'sparse_cache_rate', 0.00055)
            table_data.sparse_table_cache_file_num = config.get(
                'sparse_cache_file_num', 16)
636 637 638 639 640

            accessor_class = config.get("sparse_accessor_class",
                                        "DownpourCtrAccessor")
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
641
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
642 643
                    % (accessor_class))

644 645
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
646 647
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
648
            else:
649 650 651
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
652 653 654 655 656 657 658
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
                'sparse_embedx_threshold', 10)

659 660 661 662 663
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
                'sparse_nonclk_coeff', 0.1)
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
                'sparse_click_coeff', 1)
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
                'sparse_base_threshold', 1.5)
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
                'sparse_delta_threshold', 0.25)
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
                'sparse_delta_keep_days', 16)
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = config.get(
                'sparse_show_click_decay_rate', 0.98)
            table_data.accessor.ctr_accessor_param.delete_threshold = config.get(
                'sparse_delete_threshold', 0.8)
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = config.get(
                'sparse_delete_after_unseen_days', 30)
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = config.get(
                'sparse_ssd_unseenday_threshold', 1)
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

            if accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDoubleAccessor':
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, '')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, '')
            else:
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, 'embed_')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, 'embedx_')
D
danleifeng 已提交
705
            add_graph_config(table_data.accessor.graph_sgd_param, config)
706 707 708 709 710 711 712 713 714 715 716 717 718

        if not configs:
            print("fleet desc config is empty")
        else:
            for table_name in configs:
                if table_name == 'dense_table' or table_name == 'datanorm_table':
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

719
    @property
720 721 722 723
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
724

725
        Examples:
1
123malin 已提交
726

727
          .. code-block:: python
728

729
            import paddle.distributed.fleet as fleet
730 731
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
732

733 734
        """
        return self.strategy.amp
735

736
    @amp.setter
737
    @is_strict_auto
738
    def amp(self, flag):
739
        if isinstance(flag, bool):
740
            self.strategy.amp = flag
741
        else:
742
            print("WARNING: amp should have value of bool type")
743 744

    @property
745
    def amp_configs(self):
746 747 748 749 750
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
766

767 768 769 770 771 772 773 774
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
775

776 777 778 779 780 781 782 783
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
784 785 786 787 788 789 790 791 792 793 794 795 796

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
797
        """
798
        return get_msg_dict(self.strategy.amp_configs)
799

800
    @amp_configs.setter
801
    @is_strict_auto
802 803 804
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
805

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

831
    @property
832 833 834 835 836 837
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
838

839 840
          .. code-block:: python

841
            import paddle.distributed.fleet as fleet
842 843 844 845 846 847
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
848

849 850
    @property
    def sync_nccl_allreduce(self):
851 852 853 854 855
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
856

857 858 859 860 861 862
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
863 864 865
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
866
    @is_strict_auto
867 868 869 870
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
871
            print("WARNING: sync_nccl_allreduce should have value of bool type")
872

873
    @property
874
    def use_hierarchical_allreduce(self):
875 876 877 878 879 880
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
881

882 883 884 885 886 887
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
888
        return self.strategy.use_hierarchical_allreduce
889

890
    @use_hierarchical_allreduce.setter
891
    @is_strict_auto
892
    def use_hierarchical_allreduce(self, flag):
893
        if isinstance(flag, bool):
894
            self.strategy.use_hierarchical_allreduce = flag
895 896
        else:
            print(
897
                "WARNING: use_hierarchical_allreduce should have value of bool type"
898 899 900
            )

    @property
901
    def hierarchical_allreduce_inter_nranks(self):
902 903 904 905 906
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
907

908 909 910 911 912 913
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
914
        return self.strategy.hierarchical_allreduce_inter_nranks
915

916
    @hierarchical_allreduce_inter_nranks.setter
917
    @is_strict_auto
918 919 920
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
921 922
        else:
            print(
923
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
924 925
            )

926
    @property
927
    def sync_batch_norm(self):
928 929
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
930

931 932 933
        Default value: False

        Examples:
1
123malin 已提交
934

935 936 937 938 939 940 941
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

942
        return self.strategy.sync_batch_norm
943

944
    @sync_batch_norm.setter
945
    @is_strict_auto
946
    def sync_batch_norm(self, flag):
947
        if isinstance(flag, bool):
948
            self.strategy.sync_batch_norm = flag
949
        else:
950
            print("WARNING: sync_batch_norm should have value of bool type")
951 952 953

    @property
    def fuse_all_reduce_ops(self):
954 955 956 957 958
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
959

960 961 962 963 964 965
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
966 967 968
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
969
    @is_strict_auto
970 971 972 973 974 975
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

976 977
    @property
    def fuse_grad_size_in_MB(self):
978 979 980 981 982 983
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
984

985
          .. code-block:: python
1
123malin 已提交
986

987 988 989 990
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
991 992 993
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
994
    @is_strict_auto
995 996 997 998 999 1000
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1027 1028 1029 1030 1031 1032
    @property
    def find_unused_parameters(self):
        """
        Indicating whether we are using find_unused_parameters to 
        find unused parameters in DataParallel.

1033
        Default value: False
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
1053 1054
                "WARNING: find_unused_parameters should have value of bool type"
            )
1055

1056 1057 1058 1059 1060
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1061
    @is_strict_auto
1062 1063 1064 1065 1066 1067 1068 1069
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

1070
    @property
1071
    def nccl_comm_num(self):
1072 1073 1074 1075 1076 1077
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
1078

1079
          .. code-block:: python
1
123malin 已提交
1080

1081 1082 1083 1084 1085
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

1086
        return self.strategy.nccl_comm_num
1087

1088
    @nccl_comm_num.setter
1089
    @is_strict_auto
1090
    def nccl_comm_num(self, value):
1091
        if isinstance(value, int):
1092
            self.strategy.nccl_comm_num = value
1093
        else:
1094
            print("WARNING: nccl_comm_num should have value of int type")
1095

1096
    @recompute.setter
1097
    @is_strict_auto
1098
    def recompute(self, flag):
1099
        if isinstance(flag, bool):
1100
            self.strategy.recompute = flag
1101
        else:
1102
            print("WARNING: recompute should have value of bool type")
1103 1104

    @property
1105 1106
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
1121

1122
        Examples:
1
123malin 已提交
1123

1124
          .. code-block:: python
1
123malin 已提交
1125

1126
            import paddle.distributed.fleet as fleet
1127 1128
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
1129 1130 1131 1132
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
1133 1134 1135 1136 1137

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1138
    @is_strict_auto
1139 1140 1141 1142
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
1143

1144 1145 1146 1147
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
1148 1149 1150
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1151

1152 1153
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1154 1155 1156
        Default value: False

        Examples:
1
123malin 已提交
1157

1158
          .. code-block:: python
1
123malin 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
1177
        Set sharding configurations. 
1178 1179

        **Note**:
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are 
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and 
            communication. Default is segment_broadcast_MB.

            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and 
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation. 
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model. 
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1202
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1203

1204
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1205

1206 1207
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on. 
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1208

1209 1210 1211
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1212

1213
        Examples:
1
123malin 已提交
1214

1215
          .. code-block:: python
1
123malin 已提交
1216

1217
            # sharding-DP, 2 nodes with 8 gpus per node
1218 1219 1220
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
1221
            strategy.sharding_configs = {
1222 1223 1224
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
1225
                "dp_degree": 2,
1226 1227
                "gradient_merge_acc_step": 4,
                }
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
1329 1330
                "WARNING: fuse_grad_size_in_num should have value of int32 type"
            )
1331

1332
    @property
1333 1334 1335 1336 1337 1338 1339 1340
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1341

1342
          .. code-block:: python
1
123malin 已提交
1343

1344
            import paddle.distributed.fleet as fleet
1345 1346 1347 1348 1349
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
            print("WARNING: is_fl_ps_mode should have value of bool type")

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    @property
    def is_with_coordinator(self):
        return self.strategy.with_coordinator

    @is_with_coordinator.setter
    @is_strict_auto
    def is_with_coordinator(self, flag):
        if isinstance(flag, bool):
            self.strategy.with_coordinator = flag
        else:
            print("WARNING: with_coordinator should have value of bool type")

1375
    @pipeline.setter
1376
    @is_strict_auto
1377
    def pipeline(self, flag):
1378
        if isinstance(flag, bool):
1379
            self.strategy.pipeline = flag
1380
        else:
1381
            print("WARNING: pipeline should have value of bool type")
1382 1383

    @property
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
1394

1395 1396
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1397

1398
            **micro_batch_size**: the number of small batches in each user defined batch
1399

1400
        Examples:
1
123malin 已提交
1401

1402
          .. code-block:: python
1
123malin 已提交
1403

1404
            import paddle.distributed.fleet as fleet
1405 1406
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1407
            strategy.pipeline_configs = {"micro_batch_size": 12}
1408

1409
        """
1410

1411
        return get_msg_dict(self.strategy.pipeline_configs)
1412

1413
    @pipeline_configs.setter
1414
    @is_strict_auto
1415 1416 1417 1418
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1419

L
lilong12 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1452 1453
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1454 1455 1456 1457 1458 1459 1460 1461

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1462 1463
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    @property
    def hybrid_configs(self):
        """
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism 
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
                                    If it is not set, or set to -1, its value will be inferred 
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1509
    @property
1510
    def localsgd(self):
1511
        """
M
mapingshuo 已提交
1512 1513 1514
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1515 1516 1517


        Examples:
1
123malin 已提交
1518

1519 1520 1521 1522 1523 1524 1525
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1526
        return self.strategy.localsgd
1527

1528
    @localsgd.setter
1529
    @is_strict_auto
1530 1531 1532
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1533
        else:
1534
            print("WARNING: localsgd should have value of bool type")
1535 1536

    @property
1537
    def localsgd_configs(self):
1538 1539 1540 1541 1542
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1543
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1544
            begin_step(int) The step of beginning training by localsgd. Default 1.
1545 1546

        Examples:
1
123malin 已提交
1547

1548 1549 1550 1551 1552
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1553 1554
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1555 1556
        """

1557
        return get_msg_dict(self.strategy.localsgd_configs)
1558

1559
    @localsgd_configs.setter
1560
    @is_strict_auto
1561 1562 1563 1564
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1575

1576 1577 1578 1579 1580 1581 1582
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1583
        return self.strategy.adaptive_localsgd
1584 1585 1586 1587 1588

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1589
            self.strategy.adaptive_localsgd = flag
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1603
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1604 1605

        Examples:
1
123malin 已提交
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1625
    @property
1626
    def dgc(self):
1627 1628 1629 1630 1631 1632 1633
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1634

1635 1636 1637 1638 1639 1640 1641
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1642
        return self.strategy.dgc
1643

1644
    @dgc.setter
1645
    @is_strict_auto
1646 1647 1648
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1649
        else:
1650
            print("WARNING: dgc should have value of bool type")
1651 1652

    @property
1653
    def dgc_configs(self):
1654
        r"""
1655 1656 1657 1658
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1669 1670

        Examples:
1
123malin 已提交
1671

1672 1673 1674 1675 1676 1677 1678
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1679
        return get_msg_dict(self.strategy.dgc_configs)
1680

1681
    @dgc_configs.setter
1682
    @is_strict_auto
1683 1684 1685
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1686

1687 1688 1689 1690 1691 1692 1693
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1711
    @property
1712
    def gradient_merge(self):
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1724

M
mapingshuo 已提交
1725 1726
          .. code-block:: python

1727
            import paddle.distributed.fleet as fleet
1728 1729 1730 1731
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1732
        return self.strategy.gradient_merge
1733

1734
    @gradient_merge.setter
1735
    @is_strict_auto
1736
    def gradient_merge(self, flag):
1737
        if isinstance(flag, bool):
1738
            self.strategy.gradient_merge = flag
1739
        else:
1740 1741 1742 1743
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1744 1745
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1746 1747 1748 1749 1750 1751 1752

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1753

M
mapingshuo 已提交
1754 1755
          .. code-block:: python

1756
            import paddle.distributed.fleet as fleet
1757 1758 1759 1760
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1761 1762 1763
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1764
    @is_strict_auto
1765 1766 1767 1768
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1769 1770

    @property
1771
    def lars(self):
1772 1773 1774 1775 1776 1777 1778 1779
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1780

1781 1782 1783 1784 1785 1786
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1787
        return self.strategy.lars
1788

1789
    @lars.setter
1790
    @is_strict_auto
1791
    def lars(self, flag):
1792
        if isinstance(flag, bool):
1793
            self.strategy.lars = flag
1794
        else:
1795
            print("WARNING: lars should have value of bool type")
1796

1797 1798
    @property
    def lars_configs(self):
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1811

1812
          .. code-block:: python
M
mapingshuo 已提交
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1824 1825 1826
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1827
    @is_strict_auto
1828 1829 1830 1831
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1832
    @property
1833
    def lamb(self):
1834 1835 1836 1837 1838 1839 1840
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1841

1842
        Examples:
1
123malin 已提交
1843

1844 1845 1846 1847 1848 1849 1850
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1851
        return self.strategy.lamb
1852

1853
    @lamb.setter
1854
    @is_strict_auto
1855
    def lamb(self, flag):
1856
        if isinstance(flag, bool):
1857
            self.strategy.lamb = flag
1858
        else:
1859
            print("WARNING: lamb should have value of bool type")
1860

1861 1862
    @property
    def lamb_configs(self):
1863 1864 1865 1866 1867 1868 1869 1870 1871
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1872

1873
          .. code-block:: python
M
mapingshuo 已提交
1874

1875 1876 1877 1878 1879 1880 1881 1882
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1883 1884 1885
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1886
    @is_strict_auto
1887 1888 1889 1890
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1891 1892
    @property
    def elastic(self):
1893 1894 1895 1896
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1897 1898 1899
        return self.strategy.elastic

    @elastic.setter
1900
    @is_strict_auto
1901 1902 1903 1904 1905 1906 1907 1908
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1909 1910 1911 1912 1913 1914 1915 1916 1917
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1918

1919 1920 1921
          .. code-block:: python

            import paddle
1922
            paddle.enable_static()
1
123malin 已提交
1923
            import paddle.distributed.fleet as fleet
1924

1925 1926
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1927 1928
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1929 1930 1931 1932

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1933 1934 1935 1936 1937 1938 1939 1940 1941
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
    @property
    def semi_auto(self):
        """
        Indicating whether we are using semi-auto parallel function
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.semi_auto = True
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
            print("WARNING: semi-auto should have value of bool type")

Z
zhaoyingli 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    @property
    def auto_search(self):
        """
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.auto_search = True
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
            print("WARNING: auto-search should have value of bool type")

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
    @property
    def split_data(self):
        """
        Indicating whether we split the data. If True, we split the data.
        Default Value: True
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.split_data = True
        """
        return self.strategy.split_data

    @split_data.setter
    def split_data(self, flag):
        if isinstance(flag, bool):
            self.strategy.split_data = flag
        else:
            print("WARNING: split_data should have value of bool type")

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
    @property
    def qat(self):
        """
        Indicating whether we are using quantization training
        Default Value: False
        """
        return self.strategy.qat

    @qat.setter
    def qat(self, flag):
        if isinstance(flag, bool):
            self.strategy.qat = flag
        else:
            print("WARNING: qat should have value of bool type")

    @property
    def qat_configs(self):
        """
        Set quantization training configurations. In general, qat has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
            channel_wise_abs_max(bool): Whether to use `per_channel` quantization training. Default is True.

            weight_bits(int): quantization bit number for weight. Default is 8.

            activation_bits(int): quantization bit number for activation. Default is 8.

            not_quant_pattern(list[str]): When the skip pattern is detected in an op's name scope, 
                the corresponding op will not be quantized.

            algo(str): Other quantization training algorithm.

        Exampless:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.qat = True
            strategy.qat_configs = {
                "channel_wise_abs_max": True,
                "weight_bits": 8,
                "activation_bits: 8,
                "not_quant_pattern": ['skip_quant']}

        """
        return get_msg_dict(self.strategy.qat_configs)

    @qat_configs.setter
    def qat_configs(self, configs):
        check_configs_key(self.strategy.qat_configs, configs, "qat_configs")
        assign_configs_value(self.strategy.qat_configs, configs)

K
kuizhiqing 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    @property
    def heter_ccl_mode(self):
        """
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.heter_ccl_mode = True

            # for initialize parallel env, only need to call
            paddle.distributed.init_parallel_env()
            # then the heterogenous context will be created.
        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
            print("WARNING: heter_ccl_mode should have value of bool type")

2107 2108
    @property
    def cudnn_exhaustive_search(self):
2109 2110 2111 2112 2113 2114 2115 2116
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
2117

2118 2119
          .. code-block:: python

1
123malin 已提交
2120 2121
            import paddle
            paddle.enable_static()
2122 2123 2124 2125 2126 2127 2128
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
2129 2130 2131
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2132
    @is_strict_auto
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
2143 2144 2145 2146 2147 2148 2149 2150
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
2151

2152 2153
          .. code-block:: python

1
123malin 已提交
2154 2155
            import paddle
            paddle.enable_static()
2156 2157 2158 2159 2160 2161
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2162

2163
        """
2164 2165 2166
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2167
    @is_strict_auto
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2178 2179 2180 2181 2182 2183
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
2184

2185 2186
          .. code-block:: python

1
123malin 已提交
2187 2188
            import paddle
            paddle.enable_static()
2189 2190 2191 2192 2193 2194 2195 2196
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
2197 2198 2199
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2200
    @is_strict_auto
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2229 2230
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2231

2232 2233 2234 2235 2236 2237
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2238
    def __repr__(self):
2239 2240 2241 2242 2243 2244 2245
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
2246 2247
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
2248 2249 2250 2251 2252 2253 2254 2255 2256

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2257
        fields = self.strategy.DESCRIPTOR.fields
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
2272
                                "{}=True <-> {}_configs".format(f.name, f.name))
2273 2274 2275 2276 2277 2278
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
2279 2280 2281
                                        getattr(my_configs,
                                                ff.name), google.protobuf.pyext.
                                        _message.RepeatedScalarContainer):
2282 2283 2284
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2285 2286
                                            draws += h2_format.format(
                                                ff.name, str(v))
2287
                                        else:
2288 2289
                                            draws += h2_format.format(
                                                "", str(v))
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2310
        for f in fields:
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res