distributed_strategy.py 69.5 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

39

40 41 42 43 44 45 46 47 48 49 50 51 52
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
53 54 55
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
56 57 58 59 60 61 62 63 64 65 66 67
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


class DistributedStrategy(object):
106 107
    __lock_attr = False

108
    def __init__(self):
109 110 111 112 113
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
114

115 116 117 118 119 120
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
121
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
122 123 124

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
125
        if _global_flags().is_public(key):
126
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
127
                _global_flags()[key])
128
        key = 'FLAGS_conv_workspace_size_limit'
129 130
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
131
        key = 'FLAGS_cudnn_exhaustive_search'
132 133
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
134
        key = 'FLAGS_sync_nccl_allreduce'
135 136
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
137

138 139 140 141 142 143 144
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
145

146
    def save_to_prototxt(self, output):
147 148 149 150
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
151

152
          .. code-block:: python
1
123malin 已提交
153

154
            import paddle.distributed.fleet as fleet
155 156 157
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
158
            strategy.recompute_configs = {"checkpoints": ["x"]}
159 160
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
161 162 163 164
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
165 166 167 168
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
169

170 171
          .. code-block:: python

172
            import paddle.distributed.fleet as fleet
173
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
174
            strategy.load_from_prototxt("dist_strategy.prototxt")
175 176 177 178 179 180 181 182 183 184 185
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
186

187 188
          .. code-block:: python

M
mapingshuo 已提交
189
            import paddle
1
123malin 已提交
190
            exe_strategy = paddle.static.ExecutionStrategy()
191 192 193 194
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

195
            strategy = paddle.distributed.fleet.DistributedStrategy()
196 197 198 199 200 201 202 203 204 205
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
206
    @is_strict_auto
207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
221

222 223
          .. code-block:: python

M
mapingshuo 已提交
224
            import paddle
1
123malin 已提交
225
            build_strategy = paddle.static.BuildStrategy()
226 227 228 229 230 231 232 233
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
234

235
            strategy = paddle.distributed.fleet.DistributedStrategy()
236 237 238 239 240 241 242 243 244 245 246
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(build_strategy, f.name,
                    getattr(self.strategy.build_strategy, f.name))
        return build_strategy

    @build_strategy.setter
247
    @is_strict_auto
248 249 250 251 252 253 254 255 256 257 258
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
                setattr(self.strategy.build_strategy, f.name,
                        getattr(strategy, f.name))
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
281
    def a_sync(self):
282 283 284 285 286 287 288
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
289

290 291
          .. code-block:: python

292
            import paddle.distributed.fleet as fleet
293 294 295 296
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
297
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
298

299 300 301
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
302
        return self.strategy.a_sync
303

D
Dong Daxiang 已提交
304
    @a_sync.setter
305
    @is_strict_auto
D
Dong Daxiang 已提交
306
    def a_sync(self, flag):
307
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
308
            self.strategy.a_sync = flag
309
            self.a_sync_configs = {"k_steps": 0}
310
        else:
311
            raise ValueError(
Z
zhangchunle 已提交
312
                "The type of `flag` is invalid, expected type is bool, but received {}".
313
                format(type(flag)))
314 315

    @property
D
Dong Daxiang 已提交
316
    def a_sync_configs(self):
317
        """
D
Dong Daxiang 已提交
318
        Set a_sync update configurations. In general, asynchronous parameter server
319 320
        training has serveral configurable settings that can be configured through
        a dict.
321

322
        **Notes**:
M
mapingshuo 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
336

337
        Examples:
1
123malin 已提交
338

339
          .. code-block:: python
340

341
            import paddle.distributed.fleet as fleet
342 343
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
344

345
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
346
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
347
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
348
            strategy.a_sync_configs = configs
349

350 351
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
352

353
        """
D
Dong Daxiang 已提交
354
        return get_msg_dict(self.strategy.a_sync_configs)
355

D
Dong Daxiang 已提交
356
    @a_sync_configs.setter
357
    @is_strict_auto
D
Dong Daxiang 已提交
358 359 360 361
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    @property
    def trainer_desc_configs(self):
        """
        Set trainer desc configurations. 

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

            stat_var_names(list(str)): 

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    @property
    def adam_d2sum(self):
        """
        set adam_d2sum
        Default value: True

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            strategy.adam_d2sum = True  # by default this is True

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
                "The type of `flag` is invalid, expected type is bool, but received {}".
                format(type(flag)))

427 428 429 430 431 432 433
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
        check_configs_key(self.strategy.trainer_desc_configs, configs,
                          "trainer_desc_configs")
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    @property
    def fs_client_param(self):
        """
        Set fs client configurations. 
        **Notes**:
            uri(str): the uri of fs client
            user(str): the user_name of fs client
            passwd(str): the passwd of fs client
            hadoop_bin(str): 
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
            strategy = fleet.DistributedStrategy()
            configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
            strategy.fs_client_param = configs
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
        check_configs_key(self.strategy.fs_client_param, configs,
                          "fs_client_param")
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

473
        def set_table_config(msg, config_name, configs, index=0):
474 475 476 477
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
                    print("message:", name)
478 479 480 481 482 483 484 485 486 487 488
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
                        print("message num:", name, num)
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
                        set_table_config(
                            getattr(msg, field.name), name, configs)
489 490 491 492 493 494 495
                else:
                    print("not message:", name)
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
496 497 498 499
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
500

501 502 503 504
        if not configs:
            print("table configs is empty")
        else:
            set_table_config(table_param, "table_parameters", configs)
505

506
    @property
507 508 509 510
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
511

512
        Examples:
1
123malin 已提交
513

514
          .. code-block:: python
515

516
            import paddle.distributed.fleet as fleet
517 518
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
519

520 521
        """
        return self.strategy.amp
522

523
    @amp.setter
524
    @is_strict_auto
525
    def amp(self, flag):
526
        if isinstance(flag, bool):
527
            self.strategy.amp = flag
528
        else:
529
            print("WARNING: amp should have value of bool type")
530 531

    @property
532
    def amp_configs(self):
533 534 535 536 537
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
553

554 555 556 557 558 559 560 561
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
562

563 564 565 566 567 568 569 570
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
571 572 573 574 575 576 577 578 579 580 581 582 583

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
584
        """
585
        return get_msg_dict(self.strategy.amp_configs)
586

587
    @amp_configs.setter
588
    @is_strict_auto
589 590 591
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
592

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

618
    @property
619 620 621 622 623 624
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
625

626 627
          .. code-block:: python

628
            import paddle.distributed.fleet as fleet
629 630 631 632 633 634
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
635

636 637
    @property
    def sync_nccl_allreduce(self):
638 639 640 641 642
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
643

644 645 646 647 648 649
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
650 651 652
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
653
    @is_strict_auto
654 655 656 657
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
658
            print("WARNING: sync_nccl_allreduce should have value of bool type")
659

660
    @property
661
    def use_hierarchical_allreduce(self):
662 663 664 665 666 667
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
668

669 670 671 672 673 674
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
675
        return self.strategy.use_hierarchical_allreduce
676

677
    @use_hierarchical_allreduce.setter
678
    @is_strict_auto
679
    def use_hierarchical_allreduce(self, flag):
680
        if isinstance(flag, bool):
681
            self.strategy.use_hierarchical_allreduce = flag
682 683
        else:
            print(
684
                "WARNING: use_hierarchical_allreduce should have value of bool type"
685 686 687
            )

    @property
688
    def hierarchical_allreduce_inter_nranks(self):
689 690 691 692 693
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
694

695 696 697 698 699 700
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
701
        return self.strategy.hierarchical_allreduce_inter_nranks
702

703
    @hierarchical_allreduce_inter_nranks.setter
704
    @is_strict_auto
705 706 707
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
708 709
        else:
            print(
710
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
711 712
            )

713
    @property
714
    def sync_batch_norm(self):
715 716
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
717

718 719 720
        Default value: False

        Examples:
1
123malin 已提交
721

722 723 724 725 726 727 728
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

729
        return self.strategy.sync_batch_norm
730

731
    @sync_batch_norm.setter
732
    @is_strict_auto
733
    def sync_batch_norm(self, flag):
734
        if isinstance(flag, bool):
735
            self.strategy.sync_batch_norm = flag
736
        else:
737
            print("WARNING: sync_batch_norm should have value of bool type")
738 739 740

    @property
    def fuse_all_reduce_ops(self):
741 742 743 744 745
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
746

747 748 749 750 751 752
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
753 754 755
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
756
    @is_strict_auto
757 758 759 760 761 762
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

763 764
    @property
    def fuse_grad_size_in_MB(self):
765 766 767 768 769 770
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
771

772
          .. code-block:: python
1
123malin 已提交
773

774 775 776 777
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
778 779 780
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
781
    @is_strict_auto
782 783 784 785 786 787
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

814 815 816 817 818 819
    @property
    def find_unused_parameters(self):
        """
        Indicating whether we are using find_unused_parameters to 
        find unused parameters in DataParallel.

820
        Default value: False
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
                "WARNING: find_unused_parameters should have value of bool type")

842 843 844 845 846
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
847
    @is_strict_auto
848 849 850 851 852 853 854 855
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

856
    @property
857
    def nccl_comm_num(self):
858 859 860 861 862 863
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
864

865
          .. code-block:: python
1
123malin 已提交
866

867 868 869 870 871
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

872
        return self.strategy.nccl_comm_num
873

874
    @nccl_comm_num.setter
875
    @is_strict_auto
876
    def nccl_comm_num(self, value):
877
        if isinstance(value, int):
878
            self.strategy.nccl_comm_num = value
879
        else:
880
            print("WARNING: nccl_comm_num should have value of int type")
881

882
    @recompute.setter
883
    @is_strict_auto
884
    def recompute(self, flag):
885
        if isinstance(flag, bool):
886
            self.strategy.recompute = flag
887
        else:
888
            print("WARNING: recompute should have value of bool type")
889 890

    @property
891 892
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
907

908
        Examples:
1
123malin 已提交
909

910
          .. code-block:: python
1
123malin 已提交
911

912
            import paddle.distributed.fleet as fleet
913 914
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
915 916 917 918
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
919 920 921 922 923

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
924
    @is_strict_auto
925 926 927 928
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
929

930 931 932 933
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
934 935 936
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
937

938 939
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

940 941 942
        Default value: False

        Examples:
1
123malin 已提交
943

944
          .. code-block:: python
1
123malin 已提交
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
963
        Set sharding configurations. 
964 965

        **Note**:
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are 
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and 
            communication. Default is segment_broadcast_MB.

            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and 
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation. 
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model. 
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.

            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
991

992 993
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on. 
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
994

995 996 997
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
998

999
        Examples:
1
123malin 已提交
1000

1001
          .. code-block:: python
1
123malin 已提交
1002

1003
            # sharding-DP, 2 nodes with 8 gpus per node
1004 1005 1006
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
1007
            strategy.sharding_configs = {
1008 1009 1010
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
1011
                "dp_degree": 2,
1012 1013
                "gradient_merge_acc_step": 4,
                }
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
                "WARNING: fuse_grad_size_in_num should have value of int32 type")

1117
    @property
1118 1119 1120 1121 1122 1123 1124 1125
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1126

1127
          .. code-block:: python
1
123malin 已提交
1128

1129
            import paddle.distributed.fleet as fleet
1130 1131 1132 1133 1134
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1135

1136
    @pipeline.setter
1137
    @is_strict_auto
1138
    def pipeline(self, flag):
1139
        if isinstance(flag, bool):
1140
            self.strategy.pipeline = flag
1141
        else:
1142
            print("WARNING: pipeline should have value of bool type")
1143 1144

    @property
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
1155

1156 1157
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1158

1159
            **micro_batch_size**: the number of small batches in each user defined batch
1160

1161
        Examples:
1
123malin 已提交
1162

1163
          .. code-block:: python
1
123malin 已提交
1164

1165
            import paddle.distributed.fleet as fleet
1166 1167
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1168
            strategy.pipeline_configs = {"micro_batch_size": 12}
1169

1170
        """
1171

1172
        return get_msg_dict(self.strategy.pipeline_configs)
1173

1174
    @pipeline_configs.setter
1175
    @is_strict_auto
1176 1177 1178 1179
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1180

L
lilong12 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1213 1214
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1215 1216 1217 1218 1219 1220 1221 1222

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1223 1224
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    @property
    def hybrid_configs(self):
        """
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism 
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
                                    If it is not set, or set to -1, its value will be inferred 
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1270
    @property
1271
    def localsgd(self):
1272
        """
M
mapingshuo 已提交
1273 1274 1275
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1276 1277 1278


        Examples:
1
123malin 已提交
1279

1280 1281 1282 1283 1284 1285 1286
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1287
        return self.strategy.localsgd
1288

1289
    @localsgd.setter
1290
    @is_strict_auto
1291 1292 1293
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1294
        else:
1295
            print("WARNING: localsgd should have value of bool type")
1296 1297

    @property
1298
    def localsgd_configs(self):
1299 1300 1301 1302 1303
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1304
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1305
            begin_step(int) The step of begining training by localsgd. Default 1.
1306 1307

        Examples:
1
123malin 已提交
1308

1309 1310 1311 1312 1313
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1314 1315
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1316 1317
        """

1318
        return get_msg_dict(self.strategy.localsgd_configs)
1319

1320
    @localsgd_configs.setter
1321
    @is_strict_auto
1322 1323 1324 1325
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1336

1337 1338 1339 1340 1341 1342 1343
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1344
        return self.strategy.adaptive_localsgd
1345 1346 1347 1348 1349

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1350
            self.strategy.adaptive_localsgd = flag
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
            begin_step(int) The step of begining training by adaptive localsgd. Default 1.

        Examples:
1
123malin 已提交
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1386
    @property
1387
    def dgc(self):
1388 1389 1390 1391 1392 1393 1394
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1395

1396 1397 1398 1399 1400 1401 1402
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1403
        return self.strategy.dgc
1404

1405
    @dgc.setter
1406
    @is_strict_auto
1407 1408 1409
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1410
        else:
1411
            print("WARNING: dgc should have value of bool type")
1412 1413

    @property
1414
    def dgc_configs(self):
1415
        r"""
1416 1417 1418 1419
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1430 1431

        Examples:
1
123malin 已提交
1432

1433 1434 1435 1436 1437 1438 1439
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1440
        return get_msg_dict(self.strategy.dgc_configs)
1441

1442
    @dgc_configs.setter
1443
    @is_strict_auto
1444 1445 1446
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1447

1448 1449 1450 1451 1452 1453 1454
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1472
    @property
1473
    def gradient_merge(self):
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1485

M
mapingshuo 已提交
1486 1487
          .. code-block:: python

1488
            import paddle.distributed.fleet as fleet
1489 1490 1491 1492
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1493
        return self.strategy.gradient_merge
1494

1495
    @gradient_merge.setter
1496
    @is_strict_auto
1497
    def gradient_merge(self, flag):
1498
        if isinstance(flag, bool):
1499
            self.strategy.gradient_merge = flag
1500
        else:
1501 1502 1503 1504
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1505 1506
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1507 1508 1509 1510 1511 1512 1513

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1514

M
mapingshuo 已提交
1515 1516
          .. code-block:: python

1517
            import paddle.distributed.fleet as fleet
1518 1519 1520 1521
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1522 1523 1524
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1525
    @is_strict_auto
1526 1527 1528 1529
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1530 1531

    @property
1532
    def lars(self):
1533 1534 1535 1536 1537 1538 1539 1540
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1541

1542 1543 1544 1545 1546 1547
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1548
        return self.strategy.lars
1549

1550
    @lars.setter
1551
    @is_strict_auto
1552
    def lars(self, flag):
1553
        if isinstance(flag, bool):
1554
            self.strategy.lars = flag
1555
        else:
1556
            print("WARNING: lars should have value of bool type")
1557

1558 1559
    @property
    def lars_configs(self):
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1572

1573
          .. code-block:: python
M
mapingshuo 已提交
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1585 1586 1587
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1588
    @is_strict_auto
1589 1590 1591 1592
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1593
    @property
1594
    def lamb(self):
1595 1596 1597 1598 1599 1600 1601
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1602

1603
        Examples:
1
123malin 已提交
1604

1605 1606 1607 1608 1609 1610 1611
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1612
        return self.strategy.lamb
1613

1614
    @lamb.setter
1615
    @is_strict_auto
1616
    def lamb(self, flag):
1617
        if isinstance(flag, bool):
1618
            self.strategy.lamb = flag
1619
        else:
1620
            print("WARNING: lamb should have value of bool type")
1621

1622 1623
    @property
    def lamb_configs(self):
1624 1625 1626 1627 1628 1629 1630 1631 1632
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1633

1634
          .. code-block:: python
M
mapingshuo 已提交
1635

1636 1637 1638 1639 1640 1641 1642 1643
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1644 1645 1646
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1647
    @is_strict_auto
1648 1649 1650 1651
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1652 1653
    @property
    def elastic(self):
1654 1655 1656 1657
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1658 1659 1660
        return self.strategy.elastic

    @elastic.setter
1661
    @is_strict_auto
1662 1663 1664 1665 1666 1667 1668 1669
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1670 1671 1672 1673 1674 1675 1676 1677 1678
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1679

1680 1681 1682
          .. code-block:: python

            import paddle
1683
            paddle.enable_static()
1
123malin 已提交
1684
            import paddle.distributed.fleet as fleet
1685

1686 1687
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1688 1689
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1690 1691 1692 1693

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1694 1695 1696 1697 1698 1699 1700 1701 1702
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    @property
    def semi_auto(self):
        """
        Indicating whether we are using semi-auto parallel function
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.semi_auto = True
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
            print("WARNING: semi-auto should have value of bool type")

Z
zhaoyingli 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    @property
    def auto_search(self):
        """
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.auto_search = True
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
            print("WARNING: auto-search should have value of bool type")

1761 1762
    @property
    def cudnn_exhaustive_search(self):
1763 1764 1765 1766 1767 1768 1769 1770
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
1771

1772 1773
          .. code-block:: python

1
123malin 已提交
1774 1775
            import paddle
            paddle.enable_static()
1776 1777 1778 1779 1780 1781 1782
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1783 1784 1785
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
1786
    @is_strict_auto
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
1797 1798 1799 1800 1801 1802 1803 1804
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
1805

1806 1807
          .. code-block:: python

1
123malin 已提交
1808 1809
            import paddle
            paddle.enable_static()
1810 1811 1812 1813 1814 1815
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
1816

1817
        """
1818 1819 1820
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
1821
    @is_strict_auto
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
1832 1833 1834 1835 1836 1837
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
1838

1839 1840
          .. code-block:: python

1
123malin 已提交
1841 1842
            import paddle
            paddle.enable_static()
1843 1844 1845 1846 1847 1848 1849 1850
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
1851 1852 1853
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
1854
    @is_strict_auto
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
1883 1884
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
1885

1886 1887 1888 1889 1890 1891
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

1892
    def __repr__(self):
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                               spacing, max_v)

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
1911
        fields = self.strategy.DESCRIPTOR.fields
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
1926
                                "{}=True <-> {}_configs".format(f.name, f.name))
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
                                        getattr(my_configs, ff.name),
                                        google.protobuf.pyext._message.
                                        RepeatedScalarContainer):
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
                                            draws += h2_format.format(ff.name,
                                                                      str(v))
                                        else:
                                            draws += h2_format.format("",
                                                                      str(v))
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
1964
        for f in fields:
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res