Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
003b4616
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
003b4616
编写于
6月 10, 2021
作者:
B
Baibaifan
提交者:
GitHub
6月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dp c_allreduce_sum_fusion op (#33169)
上级
1410d722
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
447 addition
and
9 deletion
+447
-9
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
paddle/fluid/operators/coalesce_tensor_op.cc
paddle/fluid/operators/coalesce_tensor_op.cc
+26
-1
paddle/fluid/platform/device_memory_aligment.cc
paddle/fluid/platform/device_memory_aligment.cc
+3
-1
paddle/fluid/platform/device_memory_aligment.h
paddle/fluid/platform/device_memory_aligment.h
+2
-0
python/paddle/distributed/fleet/ascend_utils.py
python/paddle/distributed/fleet/ascend_utils.py
+3
-2
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+21
-0
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
...istributed/fleet/meta_optimizers/raw_program_optimizer.py
+269
-2
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+12
-3
python/paddle/fluid/tests/unittests/npu/test_coalesce_tensor_op_npu.py
.../fluid/tests/unittests/npu/test_coalesce_tensor_op_npu.py
+110
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
003b4616
...
...
@@ -176,6 +176,7 @@ message DistributedStrategy {
optional
bool
find_unused_parameters
=
28
[
default
=
false
];
optional
bool
tensor_parallel
=
29
[
default
=
false
];
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
1
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
paddle/fluid/operators/coalesce_tensor_op.cc
浏览文件 @
003b4616
...
...
@@ -120,6 +120,7 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
:
len
;
}
}
else
if
(
context
.
Attr
<
bool
>
(
"set_constant"
))
{
// TODO(Liu yuang) ADD NPU SET_CONSTANT FUNCTION.
math
::
SetConstant
<
DeviceContext
,
T
>
set_constant
;
set_constant
(
dev_ctx
,
fused_tensor
,
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"constant"
)));
...
...
@@ -145,6 +146,14 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
offset
=
0
;
std
::
stringstream
ss
;
ss
<<
"alloc_space_for_vars: "
;
#if defined(PADDLE_WITH_ASCEND_CL)
auto
stream
=
context
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
platform
::
NPUMemsetAsync
(
static_cast
<
void
*>
(
fused_tensor
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
())),
0.0
,
fused_tensor
->
numel
()
*
sizeof
(
T
),
stream
);
#endif
for
(
size_t
i
=
0
;
i
<
out_tensors
.
size
();
++
i
)
{
size_t
len
=
static_cast
<
size_t
>
(
out_tensors
[
i
]
->
numel
());
auto
dim
=
out_tensors
[
i
]
->
dims
();
...
...
@@ -160,6 +169,12 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
ss
<<
"output("
<<
out_var_names
[
i
]
<<
") dim:("
<<
dim
<<
")"
<<
" address: "
<<
out_tensors
[
i
]
->
data
<
void
>
()
<<
", "
;
}
PADDLE_ENFORCE_EQ
(
(
int64_t
)
offset
,
fused_tensor
->
numel
(),
platform
::
errors
::
InvalidArgument
(
"The alloc_space_for_vars's offset: %s is unequal with "
"fused_tensor's numel: %s."
,
offset
,
fused_tensor
->
numel
()));
VLOG
(
10
)
<<
ss
.
str
();
}
...
...
@@ -191,13 +206,13 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
ss
<<
"input("
<<
var_names
[
i
]
<<
") dim:("
<<
lod_tensors
[
i
]
->
dims
()
<<
") "
<<
" addres:"
<<
lod_tensors
[
i
]
->
data
<
void
>
()
<<
", "
;
*
numel
+=
use_align
?
platform
::
Alignment
(
static_cast
<
size_t
>
(
size
)
*
size_of_dtype
,
place
)
/
size_of_dtype
:
static_cast
<
size_t
>
(
size
);
}
VLOG
(
10
)
<<
ss
.
str
();
}
};
...
...
@@ -309,6 +324,16 @@ REGISTER_OP_XPU_KERNEL(
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
XPUDeviceContext
,
double
>
);
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_NPU_KERNEL
(
coalesce_tensor
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
plat
::
float16
>
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
#endif
REGISTER_OP_VERSION
(
coalesce_tensor
)
.
AddCheckpoint
(
R"ROC(
...
...
paddle/fluid/platform/device_memory_aligment.cc
浏览文件 @
003b4616
...
...
@@ -26,9 +26,11 @@ size_t Alignment(size_t size, const platform::Place &place) {
#elif defined(PADDLE_WITH_XPU)
// TODO(wangxi): add XpuMinChunkSize
alignment
=
alignment
;
#elif defined(PADDLE_WITH_ASCEND_CL)
alignment
=
NPUMinChunkSize
();
#else
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Fluid is not compiled with CUDA."
));
"Fluid is not compiled with CUDA
or NPU
."
));
#endif
}
size_t
remaining
=
size
%
alignment
;
...
...
paddle/fluid/platform/device_memory_aligment.h
浏览文件 @
003b4616
...
...
@@ -19,6 +19,8 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/gpu_info.h"
#elif defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/npu_info.h"
#endif
namespace
paddle
{
...
...
python/paddle/distributed/fleet/ascend_utils.py
浏览文件 @
003b4616
...
...
@@ -80,8 +80,9 @@ def _get_ascend_rankfile(rank_table_file_path):
nodes
=
os
.
getenv
(
"DLS_TASK_NUMBER"
,
None
)
assert
nodes
is
not
None
,
"DLS_TASK_NUMBER didn't set!"
for
node
in
range
(
int
(
nodes
)):
node_ip
=
os
.
getenv
(
f
"VC_CUSTOM
{
node
}
_HOSTS"
,
None
)
assert
node_ip
is
not
None
,
f
"VC_CUSTOM
{
node
}
_HOSTS didn't set!"
node_ip
=
os
.
getenv
(
"VC_CUSTOM{}_HOSTS"
.
format
(
node
),
None
)
assert
node_ip
is
not
None
,
"VC_CUSTOM{}_HOSTS didn't set!"
.
format
(
node
)
node_ips
.
append
(
node_ip
)
return
node_ips
,
device_count
node_ips
.
append
(
server
[
'server_id'
])
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
003b4616
...
...
@@ -853,6 +853,27 @@ class DistributedStrategy(object):
"WARNING: without_graph_optimization should have value of bool type"
)
@
property
def
fuse_grad_size_in_num
(
self
):
"""
This based on raw_program_optimizer program and allreduce the num of the fused op
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.fuse_grad_size_in_num = 2
"""
return
self
.
strategy
.
fuse_grad_size_in_num
@
fuse_grad_size_in_num
.
setter
@
is_strict_auto
def
fuse_grad_size_in_num
(
self
,
num
):
if
isinstance
(
num
,
int
):
self
.
strategy
.
fuse_grad_size_in_num
=
num
else
:
print
(
"WARNING: fuse_grad_size_in_num should have value of int32 type"
)
@
property
def
pipeline
(
self
):
"""
...
...
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
浏览文件 @
003b4616
# Copyright (c) 20
19
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
21
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -14,9 +14,12 @@
from
__future__
import
print_function
from
__future__
import
division
import
os
import
collections
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
from
paddle.fluid.dygraph
import
Layer
,
LayerList
from
..base.private_helper_function
import
wait_server_ready
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
...
...
@@ -38,6 +41,9 @@ class RawProgramOptimizer(MetaOptimizerBase):
super
(
RawProgramOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
self
.
without_graph_optimization
=
user_defined_strategy
.
without_graph_optimization
self
.
fuse_all_reduce_ops
=
user_defined_strategy
.
fuse_all_reduce_ops
if
self
.
fuse_all_reduce_ops
:
self
.
fuse_grad_size_in_num
=
user_defined_strategy
.
fuse_grad_size_in_num
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
...
...
@@ -124,7 +130,11 @@ class RawProgramOptimizer(MetaOptimizerBase):
def
_transpile_main_program
(
self
,
loss
):
self
.
_insert_loss_grad_ops
(
loss
)
self
.
_insert_allreduce_ops
()
if
self
.
fuse_all_reduce_ops
and
core
.
is_compiled_with_npu
():
self
.
_calc_stream
=
True
self
.
_allreduce_fusion_program
()
else
:
self
.
_insert_allreduce_ops
()
def
_insert_loss_grad_ops
(
self
,
loss
):
"""
...
...
@@ -195,3 +205,260 @@ class RawProgramOptimizer(MetaOptimizerBase):
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
# TODO(Liu yuang): ADD CUDA allreduce_fusion fuction.
# This function helps reduce the input of allreduce by integrating can save communication time.
def
_allreduce_fusion_program
(
self
):
block
=
self
.
main_program
.
global_block
()
ring_id
=
self
.
global_ring_id
record_idx
,
allreduce_input_vars
,
allreduce_output_vars
=
[],
[],
[]
block_ops
=
len
(
list
(
enumerate
(
block
.
ops
)))
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param_name
=
op_role_var
[
i
]
param
=
block
.
var
(
param_name
)
grad_name
=
op_role_var
[
i
+
1
]
grad
=
block
.
var
(
grad_name
)
if
param
.
is_distributed
:
continue
if
".cast_fp16@GRAD"
in
grad_name
:
param_name
=
param_name
+
".cast_fp16"
if
not
block
.
has_var
(
param_name
):
raise
ValueError
(
"op cast name error {}"
.
format
(
op
.
type
))
else
:
param
=
block
.
var
(
param_name
)
if
len
(
allreduce_output_vars
)
==
0
:
allreduce_output_vars
.
append
([
grad
])
allreduce_input_vars
.
append
([
param
])
if
self
.
fuse_grad_size_in_num
==
1
:
record_idx
.
append
([
idx
,
idx
])
continue
record_idx
.
append
([
-
2
,
idx
])
elif
len
(
allreduce_output_vars
[
-
1
])
==
self
.
fuse_grad_size_in_num
:
allreduce_output_vars
.
append
([
grad
])
allreduce_input_vars
.
append
([
param
])
if
self
.
fuse_grad_size_in_num
==
1
:
record_idx
.
append
([
idx
,
idx
])
continue
if
idx
!=
block_ops
-
1
:
record_idx
.
append
([
-
2
,
idx
])
else
:
allreduce_output_vars
[
-
1
].
append
(
grad
)
allreduce_input_vars
[
-
1
].
append
(
param
)
record_idx
[
-
1
][
0
]
=
idx
if
record_idx
[
-
1
][
0
]
==
-
2
:
record_idx
[
-
1
][
0
]
=
record_idx
[
-
1
][
1
]
assert
len
(
allreduce_output_vars
)
==
len
(
record_idx
),
"It has different lens between the allreduce_output_vars and record_idx."
if
not
allreduce_output_vars
or
not
allreduce_input_vars
:
return
self
.
vars
=
collections
.
OrderedDict
()
index
,
offset_pos
,
pos
,
offset
=
0
,
0
,
0
,
0
start
,
end
=
record_idx
[
index
]
men_list
=
[
end
,
start
]
# Here we need to explain the flag. When integrating OP, we will encounter different groups of the same Op.
# Because we insert coalesce tensor in reverse ops,
# we need to use flag to record whether the current OP has been inserted into coalesce tensor。
# For example:
# [(3, 2), (2, 2), (1, 0)], (3, 2), (2, 2) using same op, but in different groups.
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
idx
==
start
:
pos
=
0
flag
=
True
if
end
==
men_list
[
-
1
]
else
False
offset
=
offset_pos
if
flag
else
0
done_output_vars
,
done_input_vars
=
self
.
_split_fuction
(
allreduce_output_vars
[
index
],
allreduce_input_vars
[
index
])
for
id_
,
done_output_var
in
enumerate
(
done_output_vars
):
if
flag
:
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)),
dtype
=
done_output_var
[
0
].
dtype
,
persistable
=
False
,
stop_gradient
=
True
)
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)]
=
tmp_var
block
.
_insert_op
(
idx
+
id_
+
offset
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
done_input_vars
[
id_
]},
outputs
=
{
"Output"
:
done_output_var
,
"FusedOutput"
:
tmp_var
},
attrs
=
{
"copy_data"
:
False
,
"use_align"
:
True
,
"dtype"
:
done_output_var
[
0
].
dtype
})
pos
+=
1
else
:
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)),
dtype
=
done_output_var
[
0
].
dtype
,
persistable
=
False
,
stop_gradient
=
True
)
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)]
=
tmp_var
block
.
_insert_op
(
idx
+
id_
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
done_input_vars
[
id_
]},
outputs
=
{
"Output"
:
done_output_var
,
"FusedOutput"
:
tmp_var
},
attrs
=
{
"copy_data"
:
False
,
"use_align"
:
True
,
"dtype"
:
done_output_var
[
0
].
dtype
})
pos
+=
1
offset_pos
=
pos
# TODO(Liu yuang): ADD CUDA and NPU's EVENT and c_allreduce_sum.
for
id_
in
range
(
len
(
done_output_vars
)):
if
flag
:
block
.
_insert_op
(
end
+
id_
+
pos
+
1
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)]
},
outputs
=
{
'Out'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)]
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
if
self
.
_calc_stream
else
False
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
else
:
block
.
_insert_op
(
end
+
id_
+
pos
+
1
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)]
},
outputs
=
{
'Out'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)]
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
if
self
.
_calc_stream
else
False
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
index
+=
1
men_list
.
append
(
end
)
men_list
.
append
(
start
)
if
len
(
record_idx
)
==
index
:
start
=
end
=
-
1
continue
start
,
end
=
record_idx
[
index
]
if
not
self
.
_calc_stream
:
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
block
.
create_var
()},
outputs
=
{
'Out'
:
block
.
create_var
()},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
# Integrate grads of the same type to form a combination. If skip_comb is selected, will return grads of the same group.
# For example:[(fp16, fp16), (fp32), (fp16)] -> [(fp16, fp16, fp16), (fp32)]
def
_split_fuction
(
self
,
allreduce_output_vars
,
allreduce_input_vars
,
skip_comb
=
True
):
input_vars
,
final_input_vars
,
output_vars
,
final_output_vars
=
[],
[],
[],
[]
if
len
(
allreduce_output_vars
)
-
1
==
0
:
final_output_vars
.
append
(
allreduce_output_vars
)
final_input_vars
.
append
(
allreduce_input_vars
)
return
final_output_vars
,
final_input_vars
for
idx
in
range
(
len
(
allreduce_input_vars
)
-
1
):
if
allreduce_input_vars
[
idx
].
dtype
==
allreduce_input_vars
[
idx
+
1
].
dtype
:
input_vars
.
append
(
allreduce_input_vars
[
idx
])
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
else
:
input_vars
.
append
(
allreduce_input_vars
[
idx
])
final_input_vars
.
append
(
input_vars
)
input_vars
=
[]
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
for
idx
in
range
(
len
(
allreduce_output_vars
)
-
1
):
if
allreduce_output_vars
[
idx
].
dtype
==
allreduce_output_vars
[
idx
+
1
].
dtype
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
else
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
final_output_vars
.
append
(
output_vars
)
output_vars
=
[]
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
if
skip_comb
:
input_fp16_vars
,
input_fp32_vars
,
output_fp16_vars
,
output_fp32_vars
=
[],
[],
[],
[]
for
final_input_var
in
final_input_vars
:
if
final_input_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
input_fp16_vars
.
extend
(
final_input_var
)
else
:
input_fp32_vars
.
extend
(
final_input_var
)
for
final_output_var
in
final_output_vars
:
if
final_output_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
output_fp16_vars
.
extend
(
final_output_var
)
else
:
output_fp32_vars
.
extend
(
final_output_var
)
final_output_vars
,
final_input_vars
=
[],
[]
if
output_fp16_vars
:
final_output_vars
.
append
(
output_fp16_vars
)
if
output_fp32_vars
:
final_output_vars
.
append
(
output_fp32_vars
)
if
input_fp16_vars
:
final_input_vars
.
append
(
input_fp16_vars
)
if
input_fp32_vars
:
final_input_vars
.
append
(
input_fp32_vars
)
return
final_output_vars
,
final_input_vars
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
003b4616
...
...
@@ -303,14 +303,23 @@ class OptimizerWithMixedPrecision(object):
if
self
.
_is_distributed
:
# if distributed, split check_finite_and_unscale to overlap
# unscale with communication
for
p
,
g
in
params_grads
:
with
self
.
_train_program
.
_optimized_guard
(
[
p
,
g
]
):
if
core
.
is_compiled_with_npu
()
:
with
self
.
_train_program
.
_optimized_guard
(
grads
):
_
,
found_inf
=
check_finite_and_unscale
(
[
g
,
]
,
grads
,
self
.
_loss_scaling
,
name
=
"find_infinite_scale"
,
float_status
=
self
.
_float_status
)
found_infs
.
append
(
found_inf
)
else
:
for
p
,
g
in
params_grads
:
with
self
.
_train_program
.
_optimized_guard
([
p
,
g
]):
_
,
found_inf
=
check_finite_and_unscale
(
[
g
,
],
self
.
_loss_scaling
,
name
=
"find_infinite_scale"
,
float_status
=
self
.
_float_status
)
found_infs
.
append
(
found_inf
)
elif
self
.
_use_pure_fp16
:
if
fp32_grads
:
with
self
.
_train_program
.
_optimized_guard
(
fp32_grads
):
...
...
python/paddle/fluid/tests/unittests/npu/test_coalesce_tensor_op_npu.py
0 → 100644
浏览文件 @
003b4616
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
paddle
.
enable_static
()
SEED
=
2021
alignment
=
512
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestAllocContinuousSpace
(
OpTest
):
def
setUp
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
op_type
=
"coalesce_tensor"
self
.
dtype
,
self
.
fluid_dtype
=
self
.
init_dtype
()
attrs
=
self
.
init_attr
()
self
.
copy_data
=
attrs
[
"copy_data"
]
self
.
constant
=
attrs
[
"constant"
]
self
.
set_constant
=
attrs
[
"set_constant"
]
self
.
Inputs
=
self
.
init_input
()
self
.
Outputs
,
self
.
FusedOutput
=
self
.
init_output
(
self
.
Inputs
,
self
.
set_constant
,
self
.
constant
)
self
.
inputs
=
{
'Input'
:
self
.
Inputs
}
self
.
attrs
=
attrs
self
.
outputs
=
{
'Output'
:
self
.
Outputs
,
'FusedOutput'
:
self
.
FusedOutput
}
def
init_dtype
(
self
):
return
np
.
float32
,
int
(
core
.
VarDesc
.
VarType
.
FP32
)
def
init_input
(
self
):
inputs
=
[]
inputs
.
append
((
"x1"
,
np
.
zeros
([
20
,
3
]).
astype
(
self
.
dtype
)))
inputs
.
append
((
"x2"
,
np
.
zeros
([
20
,
3
]).
astype
(
self
.
dtype
)))
return
inputs
def
init_attr
(
self
):
return
{
"copy_data"
:
False
,
"set_constant"
:
False
,
"constant"
:
0.0
,
"use_align"
:
True
,
"dtype"
:
self
.
fluid_dtype
}
def
init_output
(
self
,
input_list
,
set_constant
,
constant
):
inputs
=
[]
outputs
=
input_list
for
input
in
input_list
:
length
=
len
(
input
[
1
].
flatten
())
aligned_len
=
(
length
+
alignment
)
/
alignment
*
alignment
out
=
np
.
zeros
(
int
(
aligned_len
),
dtype
=
self
.
dtype
)
out
[
0
:
length
]
=
input
[
1
].
flatten
()
inputs
.
append
(
out
)
coalesce_tensor_var
=
np
.
concatenate
([
input
for
input
in
inputs
])
return
outputs
,
coalesce_tensor_var
def
test_check_output
(
self
):
self
.
check_output_with_place
(
place
=
paddle
.
NPUPlace
(
0
),
no_check_set
=
[
"FusedOutput"
],
atol
=
1e-5
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestAllocContinuousSpace2
(
TestAllocContinuousSpace
):
def
init_attr
(
self
):
return
{
"copy_data"
:
True
,
"set_constant"
:
False
,
"constant"
:
0.5
,
"use_align"
:
True
,
"dtype"
:
self
.
fluid_dtype
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
place
=
paddle
.
NPUPlace
(
0
),
no_check_set
=
[
"FusedOutput"
],
atol
=
1e-5
,
check_dygraph
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录