Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1bdb8578
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1bdb8578
编写于
12月 06, 2021
作者:
K
kuizhiqing
提交者:
GitHub
12月 06, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
heter for collective (#37613)
上级
21b307ca
变更
30
隐藏空白更改
内联
并排
Showing
30 changed file
with
859 addition
and
79 deletion
+859
-79
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
paddle/fluid/imperative/CMakeLists.txt
paddle/fluid/imperative/CMakeLists.txt
+3
-0
paddle/fluid/imperative/bkcl_context.cc
paddle/fluid/imperative/bkcl_context.cc
+17
-0
paddle/fluid/imperative/bkcl_context.h
paddle/fluid/imperative/bkcl_context.h
+2
-0
paddle/fluid/imperative/gloo_context.cc
paddle/fluid/imperative/gloo_context.cc
+6
-1
paddle/fluid/imperative/gloo_context.h
paddle/fluid/imperative/gloo_context.h
+2
-0
paddle/fluid/imperative/hccl_context.cc
paddle/fluid/imperative/hccl_context.cc
+23
-0
paddle/fluid/imperative/hccl_context.h
paddle/fluid/imperative/hccl_context.h
+2
-0
paddle/fluid/imperative/heter_ccl_context.cc
paddle/fluid/imperative/heter_ccl_context.cc
+203
-0
paddle/fluid/imperative/heter_ccl_context.h
paddle/fluid/imperative/heter_ccl_context.h
+78
-0
paddle/fluid/imperative/nccl_context.cc
paddle/fluid/imperative/nccl_context.cc
+22
-0
paddle/fluid/imperative/nccl_context.h
paddle/fluid/imperative/nccl_context.h
+2
-0
paddle/fluid/imperative/parallel_context.h
paddle/fluid/imperative/parallel_context.h
+2
-0
paddle/fluid/imperative/reducer.cc
paddle/fluid/imperative/reducer.cc
+72
-4
paddle/fluid/imperative/reducer.h
paddle/fluid/imperative/reducer.h
+3
-2
paddle/fluid/imperative/tests/CMakeLists.txt
paddle/fluid/imperative/tests/CMakeLists.txt
+2
-0
paddle/fluid/imperative/tests/heter_ccl_context_test.cc
paddle/fluid/imperative/tests/heter_ccl_context_test.cc
+89
-0
paddle/fluid/imperative/tests/nccl_context_test.cc
paddle/fluid/imperative/tests/nccl_context_test.cc
+50
-0
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+8
-3
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+10
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+31
-0
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+31
-14
python/paddle/distributed/fleet/base/meta_optimizer_factory.py
...n/paddle/distributed/fleet/base/meta_optimizer_factory.py
+2
-1
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+32
-24
python/paddle/distributed/fleet/launch_utils.py
python/paddle/distributed/fleet/launch_utils.py
+70
-12
python/paddle/distributed/fleet/meta_optimizers/__init__.py
python/paddle/distributed/fleet/meta_optimizers/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/__init__.py
...buted/fleet/meta_optimizers/dygraph_optimizer/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/heter_parallel_optimizer.py
..._optimizers/dygraph_optimizer/heter_parallel_optimizer.py
+66
-0
python/paddle/distributed/parallel.py
python/paddle/distributed/parallel.py
+26
-16
python/paddle/fluid/dygraph/parallel_helper.py
python/paddle/fluid/dygraph/parallel_helper.py
+2
-2
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
1bdb8578
...
...
@@ -305,6 +305,7 @@ message DistributedStrategy {
optional
bool
semi_auto
=
35
[
default
=
false
];
optional
bool
adam_d2sum
=
36
[
default
=
true
];
optional
bool
auto_search
=
37
[
default
=
false
];
optional
bool
heter_ccl_mode
=
38
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
paddle/fluid/imperative/CMakeLists.txt
浏览文件 @
1bdb8578
...
...
@@ -30,6 +30,9 @@ if(NOT WIN32)
cc_library
(
hccl_context SRCS hccl_context.cc DEPS collective_helper device_context tensor var_type_traits
)
cc_library
(
reducer SRCS reducer.cc DEPS layer
)
endif
()
if
(
WITH_NCCL OR WITH_RCCL OR WITH_XPU_BKCL OR WITH_ASCEND_CL
)
cc_library
(
heter_ccl_context SRCS heter_ccl_context.cc DEPS collective_helper device_context tensor var_type_traits
)
endif
()
cc_library
(
data_loader SRCS data_loader.cc DEPS enforce
)
endif
(
NOT WIN32
)
if
(
WITH_GLOO
)
...
...
paddle/fluid/imperative/bkcl_context.cc
浏览文件 @
1bdb8578
...
...
@@ -150,6 +150,23 @@ void BKCLParallelContext::AllReduceByStream(const framework::Variable &src,
}
}
void
BKCLParallelContext
::
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
{
VLOG
(
3
)
<<
"/// DEBUG /// start inter broadcast with ring_id: "
<<
ring_id
;
framework
::
Tensor
*
src_tensor
=
src
->
GetMutable
<
framework
::
LoDTensor
>
();
const
auto
&
place
=
src_tensor
->
place
();
platform
::
BKCLComm
*
comm
=
platform
::
BKCLCommContext
::
Instance
().
Get
(
ring_id
,
place
);
XPUStream
stream
=
comm
->
stream
();
void
*
src_ptr
=
src_tensor
->
data
<
void
>
();
auto
data_type
=
platform
::
ToBKCLDataType
(
src_tensor
->
type
());
PADDLE_ENFORCE_EQ
(
bkcl_broadcast
(
comm
->
comm
(),
src_ptr
,
src_ptr
,
src_tensor
->
numel
(),
data_type
,
0
,
stream
),
BKCL_SUCCESS
,
platform
::
errors
::
Unavailable
(
"bkcl_broadcast failed"
));
}
paddle
::
platform
::
DeviceContext
*
BKCLParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
return
static_cast
<
platform
::
DeviceContext
*>
(
...
...
paddle/fluid/imperative/bkcl_context.h
浏览文件 @
1bdb8578
...
...
@@ -42,6 +42,8 @@ class BKCLParallelContext : public ParallelContext {
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
override
;
void
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
override
;
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
void
WaitCompute
(
int
ring_id
)
override
;
...
...
paddle/fluid/imperative/gloo_context.cc
浏览文件 @
1bdb8578
...
...
@@ -37,7 +37,7 @@ void GLOOParallelContext::Init() {
gloo_wrapper
->
SetSize
(
strategy_
.
nranks_
);
gloo_wrapper
->
SetRank
(
strategy_
.
local_rank_
);
gloo_wrapper
->
SetPrefix
(
""
);
gloo_wrapper
->
SetIface
(
"
lo
"
);
gloo_wrapper
->
SetIface
(
""
);
auto
addr
=
paddle
::
string
::
Split
(
strategy_
.
trainer_endpoints_
[
0
],
':'
);
VLOG
(
4
)
<<
"Server is"
<<
strategy_
.
trainer_endpoints_
[
0
];
std
::
string
host
=
addr
[
0
];
...
...
@@ -176,6 +176,11 @@ void GLOOParallelContext::AllReduce(const framework::SelectedRows &src,
}
}
void
GLOOParallelContext
::
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unimplemented inter-broadcast for CPU now."
));
}
paddle
::
platform
::
DeviceContext
*
GLOOParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
// return the CPUDeviceContext
...
...
paddle/fluid/imperative/gloo_context.h
浏览文件 @
1bdb8578
...
...
@@ -47,6 +47,8 @@ class GLOOParallelContext : public ParallelContext {
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
override
;
void
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
override
;
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
void
WaitCompute
(
int
ring_id
)
override
;
...
...
paddle/fluid/imperative/hccl_context.cc
浏览文件 @
1bdb8578
...
...
@@ -158,6 +158,29 @@ void HCCLParallelContext::AllReduceByStream(const framework::Variable &src,
}
}
void
HCCLParallelContext
::
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
{
VLOG
(
3
)
<<
"/// DEBUG /// start inter broadcast with ring_id: "
<<
ring_id
;
if
(
src
->
IsType
<
framework
::
LoDTensor
>
())
{
framework
::
Tensor
*
src_tensor
=
src
->
GetMutable
<
framework
::
LoDTensor
>
();
const
auto
&
place
=
src_tensor
->
place
();
platform
::
HCCLComm
*
comm
=
platform
::
HCCLCommContext
::
Instance
().
Get
(
ring_id
,
place
);
aclrtStream
stream
=
comm
->
stream
();
void
*
src_ptr
=
reinterpret_cast
<
void
*>
(
const_cast
<
void
*>
(
src_tensor
->
data
<
void
>
()));
auto
hccl_dtype
=
platform
::
ToHCCLDataType
(
src_tensor
->
type
());
PADDLE_ENFORCE_NPU_SUCCESS
(
platform
::
dynload
::
HcclBroadcast
(
src_ptr
,
src_tensor
->
numel
(),
hccl_dtype
,
0
,
comm
->
comm
(),
reinterpret_cast
<
void
*>
(
stream
)));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported variable type %s for imperative allreduce, only "
"LoDTensor is supported."
,
platform
::
demangle
(
framework
::
ToTypeName
(
src
->
Type
()))));
}
}
paddle
::
platform
::
DeviceContext
*
HCCLParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
return
static_cast
<
platform
::
DeviceContext
*>
(
...
...
paddle/fluid/imperative/hccl_context.h
浏览文件 @
1bdb8578
...
...
@@ -50,6 +50,8 @@ class HCCLParallelContext : public ParallelContext {
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
override
;
void
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
override
;
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
void
WaitCompute
(
int
ring_id
)
override
;
...
...
paddle/fluid/imperative/heter_ccl_context.cc
0 → 100644
浏览文件 @
1bdb8578
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/heter_ccl_context.h"
// NCCL first
#ifdef PADDLE_WITH_NCCL
#include "paddle/fluid/imperative/all_reduce.h"
#endif
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/string/string_helper.h"
namespace
paddle
{
namespace
framework
{
class
Variable
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
imperative
{
HeterParallelContext
::
HeterParallelContext
(
const
ParallelStrategy
&
strategy
,
const
int
&
device_id
)
#ifdef PADDLE_WITH_NCCL
:
ParallelContext
(
strategy
,
platform
::
CUDAPlace
(
device_id
))
#elif PADDLE_WITH_XPU_BKCL
:
ParallelContext
(
strategy
,
platform
::
XPUPlace
(
device_id
))
#elif PADDLE_WITH_ASCEND_CL
:
ParallelContext
(
strategy
,
platform
::
NPUPlace
(
device_id
))
#else
:
ParallelContext
(
strategy
,
platform
::
CPUPlace
())
#endif
{
// construct node_strategy_ from global strategy by selecting the
// endpoints with same ip address.
std
::
string
node_ip
=
strategy_
.
current_endpoint_
.
substr
(
0
,
strategy_
.
current_endpoint_
.
find
(
':'
));
int
node_nranks
=
0
;
int
inter_rank
=
-
1
;
std
::
vector
<
std
::
string
>
all_eps
=
strategy_
.
trainer_endpoints_
;
std
::
vector
<
std
::
string
>
inter_endpoints
;
std
::
set
<
std
::
string
>
nodes_ips
;
for
(
auto
ep
:
all_eps
)
{
std
::
string
ip
=
ep
.
substr
(
0
,
ep
.
find
(
':'
));
// record ip of different nodes
if
(
nodes_ips
.
find
(
ip
)
==
nodes_ips
.
end
())
{
if
(
ep
==
strategy_
.
current_endpoint_
)
{
inter_rank
=
nodes_ips
.
size
();
}
inter_endpoints
.
push_back
(
ep
);
nodes_ips
.
emplace
(
ip
);
}
if
(
ip
==
node_ip
)
{
if
(
ep
==
strategy_
.
current_endpoint_
)
{
node_strategy_
.
local_rank_
=
node_nranks
;
}
node_nranks
++
;
node_strategy_
.
trainer_endpoints_
.
push_back
(
ep
);
}
}
VLOG
(
0
)
<<
"init node size "
<<
node_nranks
<<
" rank "
<<
node_strategy_
.
local_rank_
;
PADDLE_ENFORCE_NE
(
node_nranks
,
0
,
platform
::
errors
::
InvalidArgument
(
"The number of local nranks should not be zero."
));
node_strategy_
.
nranks_
=
node_nranks
;
node_strategy_
.
current_endpoint_
=
strategy_
.
current_endpoint_
;
if
(
inter_rank
>=
0
&&
inter_endpoints
.
size
()
>
1
)
{
inter_strategy_
.
nranks_
=
inter_endpoints
.
size
();
inter_strategy_
.
local_rank_
=
inter_rank
;
inter_strategy_
.
current_endpoint_
=
strategy_
.
current_endpoint_
;
inter_strategy_
.
trainer_endpoints_
=
inter_endpoints
;
inter_parallel_ctx_
=
std
::
make_shared
<
GLOOParallelContext
>
(
inter_strategy_
,
platform
::
CPUPlace
());
}
VLOG
(
0
)
<<
"init inter size "
<<
inter_endpoints
.
size
()
<<
" rank "
<<
inter_rank
;
#ifdef PADDLE_WITH_NCCL
node_place_
=
platform
::
CUDAPlace
(
device_id
);
node_parallel_ctx_
=
std
::
make_shared
<
NCCLParallelContext
>
(
node_strategy_
,
node_place_
);
#endif
#ifdef PADDLE_WITH_XPU_BKCL
node_place_
=
platform
::
XPUPlace
(
device_id
);
node_parallel_ctx_
=
std
::
make_shared
<
BKCLParallelContext
>
(
node_strategy_
,
node_place_
);
#endif
#ifdef PADDLE_WITH_ASCEND_CL
node_place_
=
platform
::
NPUPlace
(
device_id
);
node_parallel_ctx_
=
std
::
make_shared
<
HCCLParallelContext
>
(
node_strategy_
,
node_place_
);
#endif
}
void
HeterParallelContext
::
Init
()
{
PADDLE_ENFORCE_NE
(
node_parallel_ctx_
,
nullptr
,
platform
::
errors
::
Unavailable
(
"The heter parallel context has not been initialized."
));
if
(
inter_parallel_ctx_
!=
nullptr
)
{
inter_parallel_ctx_
->
Init
();
}
node_parallel_ctx_
->
Init
();
VLOG
(
3
)
<<
"/// DEBUG /// heter parallel env init done..."
<<
std
::
endl
;
}
void
HeterParallelContext
::
InitWithRingID
(
int
ring_id
)
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unimplemented InitWithRingID from heter ctx."
));
}
void
HeterParallelContext
::
AllReduceByStream
(
const
framework
::
Variable
&
src
,
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
{
// step 1: call reduce within node
VLOG
(
3
)
<<
"/// DEBUG /// step 1: reduce in node... "
;
node_parallel_ctx_
->
AllReduceByStream
(
src
,
dst
,
ring_id
,
false
);
node_parallel_ctx_
->
WaitComm
(
ring_id
);
// step 2: call allreduce between nodes with gloo
if
(
inter_parallel_ctx_
!=
nullptr
)
{
// copy src to cpu
// dst is now the src
auto
src_tensor
=
dst
->
Get
<
framework
::
LoDTensor
>
();
framework
::
Variable
src_cpu
;
auto
src_cpu_tensor
=
src_cpu
.
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorCopySync
(
src_tensor
,
platform
::
CPUPlace
(),
src_cpu_tensor
);
// allreduce src/cpu to dst/cpu
framework
::
Variable
dst_cpu
;
inter_parallel_ctx_
->
AllReduceByStream
(
src_cpu
,
&
dst_cpu
,
ring_id
,
false
);
inter_parallel_ctx_
->
WaitComm
(
ring_id
);
// copy dst/cpu to dst
auto
dst_cpu_tensor
=
dst_cpu
.
Get
<
framework
::
LoDTensor
>
();
auto
dst_tensor
=
dst
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorCopySync
(
dst_cpu_tensor
,
dst_tensor
->
place
(),
dst_tensor
);
inter_parallel_ctx_
->
WaitComm
(
ring_id
);
}
// step 3: call broadcast within node
VLOG
(
3
)
<<
"/// DEBUG /// step 3: broadcast within node... "
;
node_parallel_ctx_
->
WaitComm
(
ring_id
);
node_parallel_ctx_
->
Broadcast
(
dst
,
ring_id
);
node_parallel_ctx_
->
WaitComm
(
ring_id
);
}
void
HeterParallelContext
::
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unimplemented function."
));
}
paddle
::
platform
::
DeviceContext
*
HeterParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
// directly call the implementation of target parallel ctx.
return
node_parallel_ctx_
->
GetDeviceContext
(
ring_id
);
}
void
HeterParallelContext
::
WaitCompute
(
int
ring_id
)
{
// directly call the implementation of target parallel ctx.
node_parallel_ctx_
->
WaitCompute
(
ring_id
);
}
void
HeterParallelContext
::
WaitComm
(
int
ring_id
)
{
// directly call the implementation of target parallel ctx.
node_parallel_ctx_
->
WaitComm
(
ring_id
);
}
void
HeterParallelContext
::
SynchronizeCompute
()
{
// directly call the implementation of target parallel ctx.
node_parallel_ctx_
->
SynchronizeCompute
();
}
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/heter_ccl_context.h
0 → 100644
浏览文件 @
1bdb8578
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <vector>
#ifdef PADDLE_WITH_NCCL
#include "paddle/fluid/imperative/nccl_context.h"
#endif
#ifdef PADDLE_WITH_XPU_BKCL
#include "paddle/fluid/imperative/bkcl_context.h"
#endif
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/imperative/hccl_context.h"
#endif
#include "paddle/fluid/imperative/gloo_context.h"
#include "paddle/fluid/imperative/parallel_context.h"
namespace
paddle
{
namespace
framework
{
class
Variable
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
imperative
{
class
HeterParallelContext
:
public
ParallelContext
{
public:
explicit
HeterParallelContext
(
const
ParallelStrategy
&
strategy
,
const
int
&
device_id
);
~
HeterParallelContext
()
override
=
default
;
void
Init
()
override
;
void
InitWithRingID
(
int
ring_id
)
override
;
void
AllReduceByStream
(
const
framework
::
Variable
&
src
,
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
override
;
void
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
override
;
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
void
WaitCompute
(
int
ring_id
)
override
;
void
WaitComm
(
int
ring_id
)
override
;
void
SynchronizeCompute
()
override
;
private:
ParallelStrategy
inter_strategy_
;
ParallelStrategy
node_strategy_
;
platform
::
Place
node_place_
;
std
::
shared_ptr
<
imperative
::
ParallelContext
>
node_parallel_ctx_
{
nullptr
};
std
::
shared_ptr
<
imperative
::
ParallelContext
>
inter_parallel_ctx_
{
nullptr
};
};
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/nccl_context.cc
浏览文件 @
1bdb8578
...
...
@@ -20,7 +20,15 @@
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#endif
#ifdef PADDLE_WITH_NCCL
#include <nccl.h>
#include "paddle/fluid/platform/dynload/nccl.h"
#endif
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
...
...
@@ -127,6 +135,20 @@ void NCCLParallelContext::AllReduceByStream(const framework::Variable &src,
AllReduce
(
src
,
dst
,
strategy_
,
ring_id
,
use_calc_stream
);
}
void
NCCLParallelContext
::
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
{
VLOG
(
3
)
<<
"/// DEBUG /// start inter broadcast with ring_id: "
<<
ring_id
;
framework
::
Tensor
*
src_tensor
=
src
->
GetMutable
<
framework
::
LoDTensor
>
();
const
auto
&
place
=
src_tensor
->
place
();
platform
::
NCCLComm
*
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
ring_id
,
place
);
gpuStream_t
stream
=
comm
->
stream
();
void
*
src_ptr
=
src_tensor
->
data
<
void
>
();
auto
nccl_dtype
=
platform
::
ToNCCLDataType
(
src_tensor
->
type
());
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
ncclBcast
(
src_ptr
,
src_tensor
->
numel
(),
nccl_dtype
,
0
,
comm
->
comm
(),
stream
));
}
paddle
::
platform
::
DeviceContext
*
NCCLParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
return
static_cast
<
platform
::
DeviceContext
*>
(
...
...
paddle/fluid/imperative/nccl_context.h
浏览文件 @
1bdb8578
...
...
@@ -60,6 +60,8 @@ class NCCLParallelContext : public ParallelContext {
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
override
;
void
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
override
;
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
void
WaitCompute
(
int
ring_id
)
override
;
...
...
paddle/fluid/imperative/parallel_context.h
浏览文件 @
1bdb8578
...
...
@@ -56,6 +56,8 @@ class ParallelContext {
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
=
0
;
virtual
void
Broadcast
(
framework
::
Variable
*
src
,
int
ring_id
)
=
0
;
virtual
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
=
0
;
// comm_stream[ring_id] wait compute_stream.
...
...
paddle/fluid/imperative/reducer.cc
浏览文件 @
1bdb8578
...
...
@@ -27,8 +27,9 @@
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
defined(PADDLE_WITH_ASCEND_CL)
// div the nranks
void
Group
::
DivNRanks
(
const
platform
::
DeviceContext
&
context
,
int64_t
nranks
)
{
framework
::
Tensor
*
tensor
=
...
...
@@ -41,6 +42,9 @@ void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
DivNRanks
(
tensor
,
nranks
,
context
);
#endif
}
else
if
(
platform
::
is_npu_place
(
tensor
->
place
()))
{
// TODO(kuizhiqing)
VLOG
(
4
)
<<
"divnrank for npu not support yet"
;
}
else
if
(
platform
::
is_cpu_place
(
tensor
->
place
()))
{
VLOG
(
4
)
<<
"before div 2"
<<
*
tensor
;
VLOG
(
4
)
<<
"NDiv for cpu devices : rank = "
<<
nranks
;
...
...
@@ -207,6 +211,70 @@ void SplitTensorsWithType<platform::XPUDeviceContext>(
}
#endif
// NOTE(liubo48): Only implement operators::math::SplitFunctor for npu now.
// If later the operators::StridedMemcpyWithAxis0 is supported,
// then this specific SplitTensorsForAllReduce can be removed.
#ifdef PADDLE_WITH_ASCEND_CL
template
<
>
void
SplitTensorsForAllReduce
<
platform
::
NPUDeviceContext
,
float
>
(
const
platform
::
NPUDeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>
*
p_dense_tensors
)
{
auto
*
in
=
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
();
std
::
vector
<
framework
::
Tensor
*>
outs
;
std
::
vector
<
const
framework
::
Tensor
*>
shape_refer
;
outs
.
reserve
(
p_dense_tensors
->
size
());
shape_refer
.
reserve
(
p_dense_tensors
->
size
());
for
(
auto
&
tensor
:
*
p_dense_tensors
)
{
outs
.
emplace_back
(
&
tensor
);
shape_refer
.
emplace_back
(
&
tensor
);
}
operators
::
math
::
SplitFunctor
<
platform
::
NPUDeviceContext
,
float
>
split_functor_
;
split_functor_
(
context
,
*
in
,
shape_refer
,
0
,
&
outs
);
}
template
<
>
void
ConcatTensorsWithType
<
platform
::
NPUDeviceContext
>
(
const
platform
::
NPUDeviceContext
&
context
,
const
std
::
vector
<
framework
::
Tensor
>
&
dense_tensors_
,
framework
::
Variable
*
p_dense_contents
,
framework
::
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
framework
::
proto
::
VarType
::
FP32
:
ConcatTensorsForAllReduce
<
platform
::
NPUDeviceContext
,
float
>
(
context
,
dense_tensors_
,
p_dense_contents
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it concats tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
type
)));
}
}
template
<
>
void
SplitTensorsWithType
<
platform
::
NPUDeviceContext
>
(
const
platform
::
NPUDeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>
*
p_dense_tensors
,
framework
::
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
framework
::
proto
::
VarType
::
FP32
:
SplitTensorsForAllReduce
<
platform
::
NPUDeviceContext
,
float
>
(
context
,
p_dense_contents
,
p_dense_tensors
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it splits tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
type
)));
}
}
#endif
void
Group
::
ConcatTensors
(
const
platform
::
DeviceContext
&
context
)
{
auto
place
=
context
.
GetPlace
();
if
(
platform
::
is_gpu_place
(
place
))
{
...
...
@@ -831,7 +899,7 @@ void Reducer::MarkGroupReady(size_t group_index) {
}
});
#elif defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL) || \
defined(PADDLE_WITH_GLOO)
defined(PADDLE_WITH_GLOO)
|| defined(PADDLE_WITH_ASCEND_CL)
FusedAllReduceSchedule
(
run_order
,
group
,
next_group_
);
#else
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
...
...
@@ -1014,7 +1082,7 @@ void Reducer::FinalizeBackward() {
if
(
find_unused_vars_each_step_
)
{
// TODO(liuyuhui) support xpu about Tensorcopy/TensorFromVector/TensorToVector
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_GLOO)
defined(PADDLE_WITH_GLOO)
|| defined(PADDLE_WITH_ASCEND_CL)
ProcessUnusedDenseVars
();
#endif
// Initialize local used vars
...
...
paddle/fluid/imperative/reducer.h
浏览文件 @
1bdb8578
...
...
@@ -48,8 +48,9 @@ class VariableWrapper;
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
defined(PADDLE_WITH_ASCEND_CL)
template
<
typename
T
>
struct
DivNRanksFunctor
{
...
...
paddle/fluid/imperative/tests/CMakeLists.txt
浏览文件 @
1bdb8578
...
...
@@ -3,6 +3,8 @@ if(WIN32)
else
()
if
(
WITH_NCCL OR WITH_RCCL
)
cc_test
(
nccl_context_test SRCS nccl_context_test.cc DEPS nccl_context
)
cc_test
(
heter_ccl_context_test SRCS heter_ccl_context_test.cc DEPS heter_ccl_context nccl_context imperative_gloo_context gloo_context gloo_wrapper gloo fs shell
)
#set_tests_properties(heter_ccl_context_test PROPERTIES LABELS "RUN_TYPE=DIST")
endif
()
if
(
WITH_XPU_BKCL
)
cc_test
(
bkcl_context_test SRCS bkcl_context_test.cc DEPS bkcl_context
)
...
...
paddle/fluid/imperative/tests/heter_ccl_context_test.cc
0 → 100644
浏览文件 @
1bdb8578
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <chrono>
#include <thread> // NOLINT
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/heter_ccl_context.h"
#include "gtest/gtest.h"
namespace
imperative
=
paddle
::
imperative
;
namespace
platform
=
paddle
::
platform
;
namespace
framework
=
paddle
::
framework
;
imperative
::
ParallelStrategy
GetStrategy
(
int
local_rank
)
{
std
::
vector
<
std
::
string
>
eps
=
{
"127.0.0.1:37580"
,
"127.0.0.1:37581"
};
imperative
::
ParallelStrategy
strategy
;
strategy
.
trainer_endpoints_
=
eps
;
strategy
.
current_endpoint_
=
eps
[
local_rank
];
strategy
.
nranks_
=
eps
.
size
();
strategy
.
local_rank_
=
local_rank
;
return
strategy
;
}
#ifdef PADDLE_WITH_NCCL
void
AllReduceByStream
(
int
local_rank
,
int
device_id
)
{
int
data_size
=
32
;
const
auto
&
place
=
platform
::
CUDAPlace
(
device_id
);
platform
::
CUDADeviceContext
ctx
(
place
);
// heter_parallel_ctx
imperative
::
HeterParallelContext
hpc
(
GetStrategy
(
local_rank
),
device_id
);
// init
hpc
.
Init
();
// input and output data
framework
::
Variable
*
src_dev_var
(
new
framework
::
Variable
());
auto
*
src_dev_tensor
=
src_dev_var
->
GetMutable
<
framework
::
LoDTensor
>
();
src_dev_tensor
->
mutable_data
<
float
>
(
framework
::
make_ddim
({
data_size
}),
place
);
std
::
vector
<
float
>
src_vec
;
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
src_vec
.
push_back
(
1.0
+
local_rank
);
}
framework
::
TensorFromVector
(
src_vec
,
ctx
,
src_dev_tensor
);
ctx
.
Wait
();
framework
::
Variable
*
dst_dev_var
(
new
framework
::
Variable
());
auto
*
dst_dev_tensor
=
dst_dev_var
->
GetMutable
<
framework
::
LoDTensor
>
();
dst_dev_tensor
->
mutable_data
<
float
>
(
framework
::
make_ddim
({
data_size
}),
place
);
// call allreduce
hpc
.
AllReduceByStream
(
*
src_dev_var
,
dst_dev_var
,
0
,
false
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
1000
));
// check result
std
::
vector
<
float
>
dst_vec
;
framework
::
TensorToVector
(
*
dst_dev_tensor
,
ctx
,
&
dst_vec
);
ctx
.
Wait
();
EXPECT_EQ
(
dst_vec
.
size
(),
src_vec
.
size
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
EXPECT_EQ
(
dst_vec
[
i
],
3.0
);
}
}
TEST
(
AllReduceByStream
,
Run
)
{
if
(
platform
::
GetCUDADeviceCount
()
>=
2
)
{
std
::
thread
t0
(
AllReduceByStream
,
0
,
0
);
std
::
thread
t1
(
AllReduceByStream
,
1
,
1
);
t0
.
join
();
t1
.
join
();
}
}
#endif
paddle/fluid/imperative/tests/nccl_context_test.cc
浏览文件 @
1bdb8578
...
...
@@ -14,6 +14,8 @@
#include <thread> // NOLINT
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/nccl_context.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
...
...
@@ -21,6 +23,7 @@
namespace
imperative
=
paddle
::
imperative
;
namespace
platform
=
paddle
::
platform
;
namespace
framework
=
paddle
::
framework
;
int
nrings
=
2
;
imperative
::
ParallelStrategy
GetStrategy
(
int
local_rank
)
{
...
...
@@ -68,4 +71,51 @@ TEST(BcastNCCLId, Run) {
NCCL_UNIQUE_ID_BYTES
));
}
}
void
Broadcast
(
int
local_rank
,
int
device_id
)
{
int
data_size
=
4
;
float
test_data
=
7
;
const
auto
&
place
=
platform
::
CUDAPlace
(
device_id
);
platform
::
CUDADeviceContext
ctx
(
place
);
imperative
::
NCCLParallelContext
npc
(
GetStrategy
(
local_rank
),
place
);
// init
npc
.
Init
();
framework
::
Variable
*
src_dev_var
(
new
framework
::
Variable
());
auto
*
src_dev_tensor
=
src_dev_var
->
GetMutable
<
framework
::
LoDTensor
>
();
src_dev_tensor
->
mutable_data
<
float
>
(
framework
::
make_ddim
({
data_size
}),
place
);
// fill data for rank 0 only
std
::
vector
<
float
>
src_vec
;
if
(
local_rank
==
0
)
{
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
src_vec
.
push_back
(
test_data
);
}
framework
::
TensorFromVector
(
src_vec
,
ctx
,
src_dev_tensor
);
}
ctx
.
Wait
();
npc
.
Broadcast
(
src_dev_var
,
0
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
1000
));
// check result
std
::
vector
<
float
>
dst_vec
;
framework
::
TensorToVector
(
*
src_dev_tensor
,
ctx
,
&
dst_vec
);
ctx
.
Wait
();
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
EXPECT_EQ
(
dst_vec
[
i
],
test_data
);
}
}
TEST
(
Broadcast
,
Run
)
{
if
(
platform
::
GetCUDADeviceCount
()
>=
2
)
{
std
::
thread
t0
(
Broadcast
,
0
,
0
);
std
::
thread
t1
(
Broadcast
,
1
,
1
);
t0
.
join
();
t1
.
join
();
}
}
#endif
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
1bdb8578
...
...
@@ -25,6 +25,13 @@ endif()
if
(
WITH_XPU_BKCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
reducer
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
bkcl_context
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
heter_ccl_context
)
endif
()
if
(
WITH_ASCEND_CL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
reducer
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
hccl_context
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
heter_ccl_context
)
endif
()
if
(
NOT WIN32
)
...
...
@@ -32,9 +39,7 @@ if(NOT WIN32)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
mmap_allocator
)
if
(
WITH_NCCL OR WITH_RCCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
nccl_context
)
endif
()
if
(
WITH_ASCEND_CL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
hccl_context
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
heter_ccl_context
)
endif
()
endif
(
NOT WIN32
)
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
1bdb8578
...
...
@@ -37,6 +37,7 @@ limitations under the License. */
#include "paddle/fluid/imperative/data_loader.h"
#include "paddle/fluid/imperative/gloo_context.h"
#include "paddle/fluid/imperative/hccl_context.h"
#include "paddle/fluid/imperative/heter_ccl_context.h"
#include "paddle/fluid/imperative/hooks.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/nccl_context.h"
...
...
@@ -2332,6 +2333,15 @@ void BindImperative(py::module *m_ptr) {
py
::
arg
(
"ring_id"
));
#endif
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
py
::
class_
<
imperative
::
HeterParallelContext
,
imperative
::
ParallelContext
,
std
::
shared_ptr
<
imperative
::
HeterParallelContext
>>
(
m
,
"HeterParallelContext"
)
.
def
(
py
::
init
<
const
imperative
::
ParallelStrategy
&
,
const
int
&>
())
.
def
(
"init"
,
[](
imperative
::
HeterParallelContext
&
self
)
{
self
.
Init
();
});
#endif
m
.
def
(
"pylayer_apply"
,
[](
const
platform
::
CPUPlace
&
place
,
const
py
::
object
&
cls
,
const
py
::
args
args
,
const
py
::
kwargs
kwargs
)
{
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
1bdb8578
...
...
@@ -1758,6 +1758,37 @@ class DistributedStrategy(object):
else
:
print
(
"WARNING: auto-search should have value of bool type"
)
@
property
def
heter_ccl_mode
(
self
):
"""
Indicating whether we are using heter_ccl_mode for model training.
This feature is currently an experimental feature. Currently,
heter_ccl_mode can be used only for dataparallel with dygraph mode.
Default Value: False
Examples:
.. code-block:: python
import paddle
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.heter_ccl_mode = True
# for initialize parallel env, only need to call
paddle.distributed.init_parallel_env()
# then the heterogenous context will be created.
"""
return
self
.
strategy
.
heter_ccl_mode
@
heter_ccl_mode
.
setter
def
heter_ccl_mode
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
heter_ccl_mode
=
flag
else
:
print
(
"WARNING: heter_ccl_mode should have value of bool type"
)
@
property
def
cudnn_exhaustive_search
(
self
):
"""
...
...
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
1bdb8578
...
...
@@ -33,7 +33,7 @@ from . import topology as tp
from
.topology
import
ParallelMode
from
..meta_parallel
import
TensorParallel
,
model_parallel_random_seed
from
..meta_parallel
import
PipelineParallel
,
ShardingParallel
from
..meta_optimizers
import
HybridParallelOptimizer
from
..meta_optimizers
import
HybridParallelOptimizer
,
HeterParallelOptimizer
from
paddle
import
_C_ops
from
paddle.fluid
import
core
from
paddle.fluid.dygraph
import
to_variable
...
...
@@ -277,13 +277,15 @@ class Fleet(object):
self
.
_user_defined_strategy
.
nccl_comm_num
)
paddle
.
distributed
.
init_parallel_env
()
# init hybrid parallel environment in dygraph
if
tp
.
_HYBRID_PARALLEL_GROUP
is
None
:
self
.
_init_hybrid_parallel_env
()
else
:
warnings
.
warn
(
"The dygraph hybrid parallel environment has been initialized."
)
# hybrid parallel not support for npu/xpu
if
self
.
_user_defined_strategy
.
heter_ccl_mode
==
False
:
# init hybrid parallel environment in dygraph
if
tp
.
_HYBRID_PARALLEL_GROUP
is
None
:
self
.
_init_hybrid_parallel_env
()
else
:
warnings
.
warn
(
"The dygraph hybrid parallel environment has been initialized."
)
elif
self
.
_is_collective
:
use_sharding
=
self
.
_user_defined_strategy
.
sharding
...
...
@@ -872,8 +874,12 @@ class Fleet(object):
if
paddle
.
fluid
.
framework
.
in_dygraph_mode
():
if
self
.
worker_num
()
>
1
:
return
HybridParallelOptimizer
(
optimizer
,
self
.
_hcg
,
self
.
_user_defined_strategy
)
if
self
.
_user_defined_strategy
.
heter_ccl_mode
==
False
:
return
HybridParallelOptimizer
(
optimizer
,
self
.
_hcg
,
self
.
_user_defined_strategy
)
else
:
return
HeterParallelOptimizer
(
optimizer
,
self
.
_user_defined_strategy
)
else
:
return
optimizer
return
self
...
...
@@ -938,6 +944,17 @@ class Fleet(object):
if
self
.
worker_num
()
<=
1
:
return
model
if
self
.
_user_defined_strategy
.
heter_ccl_mode
==
True
:
distributed_model
=
paddle
.
DataParallel
(
model
,
comm_buffer_size
=
self
.
_user_defined_strategy
.
fuse_grad_size_in_MB
,
last_comm_buffer_size
=
self
.
_user_defined_strategy
.
last_comm_group_size_MB
,
find_unused_parameters
=
self
.
_user_defined_strategy
.
find_unused_parameters
)
return
distributed_model
if
self
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
SHARDING_PARALLEL
:
distributed_model
=
ShardingParallel
(
model
,
self
.
_hcg
,
strategy
=
self
.
_user_defined_strategy
)
...
...
@@ -1569,13 +1586,13 @@ class Fleet(object):
]
param_grads_fp16
=
[
param
.
_grad_ivar
()
for
param
in
optimizer
.
_parameter_list
if
(
param
.
_grad_ivar
()
is
not
None
)
and
(
param
.
_grad_ivar
(
).
dtype
==
core
.
VarDesc
.
VarType
.
FP16
)
if
(
param
.
_grad_ivar
()
is
not
None
)
and
(
param
.
_grad_ivar
(
).
dtype
==
core
.
VarDesc
.
VarType
.
FP16
)
]
param_grads_fp32
=
[
param
.
_grad_ivar
()
for
param
in
optimizer
.
_parameter_list
if
(
param
.
_grad_ivar
()
is
not
None
)
and
(
param
.
_grad_ivar
(
).
dtype
==
core
.
VarDesc
.
VarType
.
FP32
)
if
(
param
.
_grad_ivar
()
is
not
None
)
and
(
param
.
_grad_ivar
(
).
dtype
==
core
.
VarDesc
.
VarType
.
FP32
)
]
temp_found_inf_fp16
=
to_variable
(
np
.
array
([
0
]).
astype
(
np
.
bool
))
temp_found_inf_fp32
=
to_variable
(
np
.
array
([
0
]).
astype
(
np
.
bool
))
...
...
python/paddle/distributed/fleet/base/meta_optimizer_factory.py
浏览文件 @
1bdb8578
...
...
@@ -19,9 +19,10 @@ __all__ = []
meta_optimizer_names
=
list
(
filter
(
lambda
name
:
name
.
endswith
(
"Optimizer"
),
dir
()))
# Because HybridParallelOptimizer is dygraph optimizer, it
# Because HybridParallelOptimizer is dygraph optimizer, it
# should be removed
meta_optimizer_names
.
remove
(
"HybridParallelOptimizer"
)
meta_optimizer_names
.
remove
(
"HeterParallelOptimizer"
)
class
MetaOptimizerFactory
(
object
):
...
...
python/paddle/distributed/fleet/launch.py
浏览文件 @
1bdb8578
...
...
@@ -108,9 +108,9 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
base_group
.
add_argument
(
"--backend"
,
type
=
str
,
default
=
"auto"
,
help
=
"Specifize the backend, can be gloo|nccl|bkcl|auto
. Default value is auto which perfers nccl or bkcl.
"
)
default
=
os
.
environ
.
get
(
'PADDLE_DISTRI_BACKEND'
,
'auto'
)
,
help
=
"Specifize the backend, can be gloo|nccl|bkcl|auto
|hccl|heter.
"
"Default value is auto which perfers nccl or bkcl."
)
base_group
.
add_argument
(
"--nproc_per_node"
,
type
=
int
,
...
...
@@ -146,6 +146,16 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
)
base_group
.
add_argument
(
"--selected_xpus"
,
dest
=
"xpus"
)
if
fluid
.
core
.
is_compiled_with_npu
():
base_group
.
add_argument
(
"--npus"
,
type
=
str
,
default
=
None
,
help
=
"It's for xpu training. For example: "
"--npus=
\"
0,1,2,3
\"
will launch four training processes each bound to one npu."
)
base_group
.
add_argument
(
"--selected_npus"
,
dest
=
"npus"
)
base_group
.
add_argument
(
"training_script"
,
type
=
str
,
...
...
@@ -301,25 +311,23 @@ def get_cluster_info(args):
# lazy launch for auto-parallel
if
args
.
enable_auto_mapping
==
True
:
cluster
,
pod
=
get_mapped_cluster_from_args
(
args
,
device_mode
)
else
:
elif
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
# for ascend
if
device_mode
==
DeviceMode
.
ASCEND_NPU
:
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
elif
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
start_port
=
start_port
)
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
return
cluster
,
pod
def
get_global_envs
(
args
,
tmp_dir
):
global_envs
=
copy
.
copy
(
os
.
environ
.
copy
())
# add gloo env
...
...
@@ -456,15 +464,15 @@ def which_distributed_mode(args):
)
and
not
fluid
.
core
.
is_compiled_with_xpu
():
if
args
.
servers
:
logger
.
warning
(
"Not found distinct arguments and not compiled with cuda or xpu
.
\
But found args.servers not empty, default use ps mode"
)
"Not found distinct arguments and not compiled with cuda or xpu
or npu. "
"
But found args.servers not empty, default use ps mode"
)
return
DistributeMode
.
PS
else
:
return
DistributeMode
.
COLLECTIVE
else
:
logger
.
warning
(
"Not found distinct arguments and compiled with cuda or xpu
. Default use collective mode
"
)
"Not found distinct arguments and compiled with cuda or xpu
or npu.
"
"Default use collective mode"
)
return
DistributeMode
.
COLLECTIVE
...
...
@@ -651,7 +659,7 @@ def launch():
check_backend
(
args
.
backend
)
distribute_mode
=
DistributeMode
.
COLLECTIVE
assert
args
.
backend
in
[
'gloo'
,
'nccl'
,
'bkcl
'
,
'unknown'
]
#assert args.backend in ['gloo', 'nccl', 'bkcl', 'heter
', 'unknown']
if
args
.
backend
==
'gloo'
:
logger
.
warning
(
"launch start with CPUONLY mode"
)
...
...
python/paddle/distributed/fleet/launch_utils.py
浏览文件 @
1bdb8578
...
...
@@ -690,9 +690,51 @@ def get_xpus(xpus):
return
res_xpus
def
get_npus
(
npus
):
if
npus
is
None
:
npus_num
=
fluid
.
core
.
get_npu_device_count
()
res_npus
=
[
str
(
x
)
for
x
in
range
(
0
,
npus_num
)]
else
:
npu_visible_devices
=
os
.
getenv
(
"ASCEND_VISIBLE_DEVICES"
)
if
npu_visible_devices
is
None
or
npu_visible_devices
==
""
:
res_npus
=
[
x
.
strip
()
for
x
in
npus
.
split
(
','
)]
else
:
# change npus into relative values
# e.g. ASCEND_VISIBLE_DEVICES=4,5,6,7; args.npus=4,5,6,7;
# therefore npus=0,1,2,3
npu_visible_devices_list
=
npu_visible_devices
.
split
(
','
)
for
x
in
npus
.
split
(
','
):
assert
x
in
npu_visible_devices_list
,
"Can't find "
\
"your npus %s in ASCEND_VISIBLE_DEVICES[%s]."
\
%
(
x
,
npu_visible_devices
)
res_npus
=
[
npu_visible_devices_list
.
index
(
x
.
strip
())
for
x
in
npus
.
split
(
','
)
]
logger
.
info
(
"Change selected_npus into reletive values. --ips:{} "
"will change into relative_ips:{} according to your "
"ASCEND_VISIBLE_DEVICES:{}"
.
format
(
npus
,
res_npus
,
npu_visible_devices_list
))
return
res_npus
def
get_device_mode
(
backend
):
if
fluid
.
core
.
is_compiled_with_npu
()
and
\
if
backend
==
'heter'
:
if
fluid
.
core
.
is_compiled_with_cuda
()
and
\
fluid
.
core
.
get_cuda_device_count
()
>
0
:
print
(
"launch train in heter mode with GPU device."
)
return
DeviceMode
.
GPU
if
fluid
.
core
.
is_compiled_with_xpu
()
and
\
fluid
.
core
.
get_xpu_device_count
()
>
0
:
print
(
"launch train in heter mode with XPU device."
)
return
DeviceMode
.
XPU
if
fluid
.
core
.
is_compiled_with_npu
()
and
\
fluid
.
core
.
get_npu_device_count
()
>
0
:
print
(
"launch train in heter mode with NPU device."
)
return
DeviceMode
.
ASCEND_NPU
if
backend
==
'hccl'
and
fluid
.
core
.
get_npu_device_count
()
>
0
:
print
(
"launch train in ascend npu mode!"
)
return
DeviceMode
.
ASCEND_NPU
...
...
@@ -731,7 +773,17 @@ def get_device_proc_info(args):
else
:
devices_per_proc
=
gpus
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
devices_per_proc
=
None
npus
=
get_npus
(
args
.
npus
)
if
args
.
nproc_per_node
is
not
None
:
assert
(
len
(
npus
)
%
int
(
args
.
nproc_per_node
))
==
0
,
\
"npus' number:{} mod args.nproc_per_node:{} must == 0"
.
format
(
len
(
npus
),
args
.
nproc_per_node
)
n
=
int
(
len
(
npus
)
/
int
(
args
.
nproc_per_node
))
devices_per_proc
=
[
npus
[
i
:
i
+
n
]
for
i
in
six
.
moves
.
range
(
0
,
len
(
npus
),
n
)
]
else
:
devices_per_proc
=
npus
elif
device_mode
==
DeviceMode
.
XPU
:
xpus
=
get_xpus
(
args
.
xpus
)
if
args
.
nproc_per_node
is
not
None
:
...
...
@@ -902,11 +954,8 @@ def get_mapped_cluster_from_args(args, device_mode):
node_rank
=
node_ips
.
index
(
ip
)
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
int
(
os
.
environ
.
get
(
'FLAGS_START_PORT'
))
free_ports
=
[
x
for
x
in
range
(
start_port
,
start_port
+
len
(
node_ranks_mapping
[
node_rank
]))
]
end_port
=
start_port
+
len
(
node_ranks_mapping
[
node_rank
])
free_ports
=
[
x
for
x
in
range
(
start_port
,
end_port
)]
else
:
free_ports
=
find_free_ports
(
len
(
node_ranks_mapping
[
node_rank
]))
trainer_endpoints
.
append
([
"%s:%d"
%
(
ip
,
port
)
for
port
in
free_ports
])
...
...
@@ -1527,11 +1576,11 @@ class ParameterServerLauncher(object):
def
check_backend
(
backend
):
if
backend
not
in
[
'nccl'
,
'gloo'
,
'bkcl'
,
'auto'
]:
raise
ValueError
(
"paddle.distributed initialize error,
"
"backend argument can only be one of 'nccl', 'gloo', 'bkcl', 'auto', but got %s
"
%
backend
)
if
backend
not
in
[
'nccl'
,
'gloo'
,
'bkcl'
,
'auto'
,
'hccl'
,
'heter'
]:
raise
ValueError
(
"paddle.distributed initialize error, "
"backend argument can only be one of
"
"'nccl', 'gloo', 'bkcl', 'auto', 'hccl', 'heter'
"
"but got %s"
%
backend
)
if
backend
==
'nccl'
and
not
fluid
.
core
.
is_compiled_with_cuda
():
raise
ValueError
(
...
...
@@ -1545,6 +1594,12 @@ def check_backend(backend):
"your paddle is not compiled with xpu but you assign 'bkcl' as backend."
)
if
backend
==
'hccl'
and
not
fluid
.
core
.
is_compiled_with_npu
():
raise
ValueError
(
"paddle.distributed initialize error, "
"your paddle is not compiled with npu but you assign 'hccl' as backend."
)
def
block_windows_and_macos
(
backend
):
if
backend
!=
'gloo'
:
return
...
...
@@ -1565,4 +1620,7 @@ def get_backend_by_compile_flag():
if
fluid
.
core
.
is_compiled_with_xpu
():
return
'bkcl'
if
fluid
.
core
.
is_compiled_with_npu
():
return
'hccl'
return
'gloo'
python/paddle/distributed/fleet/meta_optimizers/__init__.py
浏览文件 @
1bdb8578
...
...
@@ -28,6 +28,7 @@ from .lamb_optimizer import LambOptimizer
from
.fp16_allreduce_optimizer
import
FP16AllReduceOptimizer
from
.sharding_optimizer
import
ShardingOptimizer
from
.dygraph_optimizer
import
HybridParallelOptimizer
from
.dygraph_optimizer
import
HeterParallelOptimizer
from
.dygraph_optimizer
import
HybridParallelGradScaler
from
.tensor_parallel_optimizer
import
TensorParallelOptimizer
from
.raw_program_optimizer
import
RawProgramOptimizer
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/__init__.py
浏览文件 @
1bdb8578
...
...
@@ -13,5 +13,6 @@
from
.hybrid_parallel_optimizer
import
HybridParallelOptimizer
from
.hybrid_parallel_gradscaler
import
HybridParallelGradScaler
from
.dygraph_sharding_optimizer
import
DygraphShardingOptimizer
from
.heter_parallel_optimizer
import
HeterParallelOptimizer
__all__
=
[]
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/heter_parallel_optimizer.py
0 → 100755
浏览文件 @
1bdb8578
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle.fluid.dygraph
import
base
as
imperative_base
from
paddle.fluid
import
framework
__all__
=
[]
def
_obtain_optimizer_parameters_list
(
optimizer
):
if
getattr
(
optimizer
,
'_param_groups'
,
None
)
and
isinstance
(
optimizer
.
_param_groups
[
0
],
dict
):
parameters_list
=
[]
for
group
in
optimizer
.
_param_groups
:
for
param
in
group
[
'params'
]:
parameters_list
.
append
(
param
)
else
:
parameters_list
=
[
param
for
param
in
optimizer
.
_parameter_list
]
return
parameters_list
class
HeterParallelOptimizer
:
# adapter wrapper for optimizer
def
__init__
(
self
,
optimizer
,
strategy
):
self
.
_inner_opt
=
optimizer
self
.
_strategy
=
strategy
# NOTE(liubo48): In pure DataParallel mode,
# the gradient synchronization is achieved through reducer.
@
imperative_base
.
no_grad
@
framework
.
dygraph_only
def
step
(
self
):
parameters_list
=
_obtain_optimizer_parameters_list
(
self
.
_inner_opt
)
self
.
_inner_opt
.
step
()
@
imperative_base
.
no_grad
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameters
=
None
,
no_grad_set
=
None
):
# minimize does not support parameters in the form of param_group,
# so no need use _obtain_optimizer_parameters_list
parameter_list
=
parameters
if
parameters
\
else
self
.
_inner_opt
.
_parameter_list
return
self
.
_inner_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
def
__getattr__
(
self
,
item
):
return
getattr
(
self
.
_inner_opt
,
item
)
python/paddle/distributed/parallel.py
浏览文件 @
1bdb8578
...
...
@@ -58,7 +58,7 @@ def _start_kv_server(port, http_server_d, size):
def
_is_cpuonly
(
backend
):
check_backend
(
backend
)
if
backend
in
[
'auto'
,
'nccl'
,
'bkcl'
,
'hccl'
]
and
(
if
backend
in
[
'auto'
,
'nccl'
,
'bkcl'
,
'hccl'
,
'heter'
]
and
(
core
.
is_compiled_with_cuda
()
or
core
.
is_compiled_with_xpu
()
or
core
.
is_compiled_with_npu
()):
...
...
@@ -68,6 +68,14 @@ def _is_cpuonly(backend):
return
True
def
_check_var_exists
(
var_name
):
var
=
os
.
environ
.
get
(
var_name
,
None
)
if
var
is
None
:
raise
ValueError
(
"paddle.distributed initialize error, "
"environment variable %s is needed, but not set."
%
var_name
)
def
init_parallel_env
():
"""
Initialize parallel training environment in dynamic graph mode.
...
...
@@ -148,27 +156,22 @@ def init_parallel_env():
raise
NotImplementedError
(
"If you want to use CPU-only version, please use 'gloo' as backend"
)
# 2. check env
def
_check_var_exists
(
var_name
):
var
=
os
.
environ
.
get
(
var_name
,
None
)
if
var
is
None
:
raise
ValueError
(
"paddle.distributed initialize error, "
"environment variable %s is needed, but not set."
%
var_name
)
if
not
is_cpu_only
and
core
.
is_compiled_with_cuda
():
_check_var_exists
(
"FLAGS_selected_gpus"
)
elif
not
is_cpu_only
and
core
.
is_compiled_with_xpu
():
_check_var_exists
(
'FLAGS_selected_xpus'
)
elif
not
is_cpu_only
and
core
.
is_compiled_with_npu
():
_check_var_exists
(
'FLAGS_selected_npus'
)
_check_var_exists
(
"PADDLE_TRAINER_ID"
)
_check_var_exists
(
"PADDLE_CURRENT_ENDPOINT"
)
_check_var_exists
(
"PADDLE_TRAINERS_NUM"
)
_check_var_exists
(
"PADDLE_TRAINER_ENDPOINTS"
)
node_num
=
set
([
i
.
split
(
":"
)[
0
]
for
i
in
parallel_env
.
trainer_endpoints
])
# 3: init gloo context (step 1: httpsever start)
init_gloo
=
int
(
os
.
getenv
(
"PADDLE_WITH_GLOO"
,
"0"
))
if
is_cpu_only
or
init_gloo
:
if
is_cpu_only
or
init_gloo
or
backend
==
"heter"
:
ep_rank_0
=
parallel_env
.
trainer_endpoints
[
0
].
split
(
":"
)
manager
=
Manager
()
# glboal dict to store status
...
...
@@ -177,6 +180,8 @@ def init_parallel_env():
if
parallel_env
.
rank
==
0
:
# The scope for worker used by http server is '_worker'
size
=
{
'_worker'
:
parallel_env
.
world_size
}
if
backend
==
"heter"
:
size
=
{
'_worker'
:
len
(
node_num
)}
http_server
=
Process
(
target
=
_start_kv_server
,
args
=
(
int
(
ep_rank_0
[
1
]),
http_server_d
,
size
))
...
...
@@ -210,10 +215,13 @@ def init_parallel_env():
place
=
core
.
NPUPlace
(
parallel_env
.
device_id
)
_set_expected_place
(
place
)
# init nccl or
bkcl
context
# init nccl or
hccl or bkcl or heter
context
if
is_cpu_only
:
parallel_helper
.
_set_parallel_ctx
(
core
.
GLOOParallelContext
(
strategy
,
place
))
elif
(
backend
==
"heter"
):
parallel_helper
.
_set_parallel_ctx
(
core
.
HeterParallelContext
(
strategy
,
parallel_env
.
device_id
))
elif
core
.
is_compiled_with_cuda
():
parallel_helper
.
_set_parallel_ctx
(
core
.
NCCLParallelContext
(
strategy
,
place
))
...
...
@@ -224,17 +232,19 @@ def init_parallel_env():
parallel_helper
.
_set_parallel_ctx
(
core
.
HCCLParallelContext
(
strategy
,
place
))
other_endpoints
=
strategy
.
trainer_endpoints
[:]
other_endpoints
.
remove
(
strategy
.
current_endpoint
)
if
not
is_cpu_only
and
strategy
.
local_rank
==
0
:
wait_server_ready
(
other_endpoints
)
if
backend
!=
"heter"
:
other_endpoints
=
strategy
.
trainer_endpoints
[:]
other_endpoints
.
remove
(
strategy
.
current_endpoint
)
if
not
is_cpu_only
and
strategy
.
local_rank
==
0
:
wait_server_ready
(
other_endpoints
)
parallel_helper
.
_init_parallel_ctx
()
# 5: init gloo context (step 2: gloo init)
# dividing init_gloo into two part beacause nccl and gloo
# are separately looking for free ports which sometimes
# leads to port-conflict.
if
is_cpu_only
and
parallel_env
.
rank
==
0
:
if
(
is_cpu_only
or
backend
==
"heter"
)
and
parallel_env
.
rank
==
0
:
# compare to init_gloo, we don't need to
# init gloo, because we do this in _init_parallel_ctx;
http_server_d
[
"running"
]
=
False
...
...
python/paddle/fluid/dygraph/parallel_helper.py
浏览文件 @
1bdb8578
...
...
@@ -28,11 +28,11 @@ def _is_parallel_ctx_initialized():
return
__parallel_ctx__clz__
is
not
None
def
_set_parallel_ctx
(
n
ccl_parallel_context
):
def
_set_parallel_ctx
(
ccl_parallel_context
):
global
__parallel_ctx__clz__
assert
__parallel_ctx__clz__
is
None
,
\
"ParallelContext can only be initialized once."
__parallel_ctx__clz__
=
n
ccl_parallel_context
__parallel_ctx__clz__
=
ccl_parallel_context
def
_init_parallel_ctx
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录