distributed_strategy.py 47.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle.distributed.fleet.proto import distributed_strategy_pb2
17
from paddle.fluid.framework import Variable, set_flags, core
18
from paddle.fluid.wrapped_decorator import wrap_decorator
19
import google.protobuf.text_format
20
import google.protobuf
21

22 23
__all__ = ["DistributedStrategy"]

24 25 26 27 28 29 30 31 32 33 34 35 36 37
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


class DistributedStrategy(object):
102 103
    __lock_attr = False

104
    def __init__(self):
105 106 107 108 109
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
110

111 112 113 114 115 116
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
117
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
118 119 120 121 122 123 124
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
125

126
    def save_to_prototxt(self, output):
127 128 129 130
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
131

132
          .. code-block:: python
1
123malin 已提交
133

134
            import paddle.distributed.fleet as fleet
135 136 137
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
138
            strategy.recompute_configs = {"checkpoints": ["x"]}
139 140
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
141 142 143 144
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
145 146 147 148
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
149

150 151
          .. code-block:: python

152
            import paddle.distributed.fleet as fleet
153
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
154
            strategy.load_from_prototxt("dist_strategy.prototxt")
155 156 157 158 159 160 161 162 163 164 165
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
166

167 168
          .. code-block:: python

M
mapingshuo 已提交
169
            import paddle
1
123malin 已提交
170
            exe_strategy = paddle.static.ExecutionStrategy()
171 172 173 174
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

175
            strategy = paddle.distributed.fleet.DistributedStrategy()
176 177 178 179 180 181 182 183 184 185
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
186
    @is_strict_auto
187 188 189 190 191 192 193 194 195 196 197 198 199 200
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
201

202 203
          .. code-block:: python

M
mapingshuo 已提交
204
            import paddle
1
123malin 已提交
205
            build_strategy = paddle.static.BuildStrategy()
206 207 208 209 210 211 212 213
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
214

215
            strategy = paddle.distributed.fleet.DistributedStrategy()
216 217 218 219 220 221 222 223 224 225 226
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(build_strategy, f.name,
                    getattr(self.strategy.build_strategy, f.name))
        return build_strategy

    @build_strategy.setter
227
    @is_strict_auto
228 229 230 231 232 233 234 235 236 237 238
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
                setattr(self.strategy.build_strategy, f.name,
                        getattr(strategy, f.name))
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
D
Dong Daxiang 已提交
239
    def a_sync(self):
240 241 242 243 244 245 246
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
247

248 249
          .. code-block:: python

250
            import paddle.distributed.fleet as fleet
251 252 253 254
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
255
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
256

257 258 259
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
260
        return self.strategy.a_sync
261

D
Dong Daxiang 已提交
262
    @a_sync.setter
263
    @is_strict_auto
D
Dong Daxiang 已提交
264
    def a_sync(self, flag):
265
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
266
            self.strategy.a_sync = flag
267
            self.a_sync_configs = {"k_steps": 0}
268
        else:
269 270 271
            raise ValueError(
                "The type of `flag` is invalid, expected type is bool, but received %s".
                format(type(flag)))
272 273

    @property
D
Dong Daxiang 已提交
274
    def a_sync_configs(self):
275
        """
D
Dong Daxiang 已提交
276
        Set a_sync update configurations. In general, asynchronous parameter server
277 278
        training has serveral configurable settings that can be configured through
        a dict.
279

280
        **Notes**:
M
mapingshuo 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
294

295
        Examples:
1
123malin 已提交
296

297
          .. code-block:: python
298

299
            import paddle.distributed.fleet as fleet
300 301
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
302

303
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
304
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
305
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
306
            strategy.a_sync_configs = configs
307

308 309
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
310

311
        """
D
Dong Daxiang 已提交
312
        return get_msg_dict(self.strategy.a_sync_configs)
313

D
Dong Daxiang 已提交
314
    @a_sync_configs.setter
315
    @is_strict_auto
D
Dong Daxiang 已提交
316 317 318 319
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
320

321
    @property
322 323 324 325
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
326

327
        Examples:
1
123malin 已提交
328

329
          .. code-block:: python
330

331
            import paddle.distributed.fleet as fleet
332 333
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
334

335 336
        """
        return self.strategy.amp
337

338
    @amp.setter
339
    @is_strict_auto
340
    def amp(self, flag):
341
        if isinstance(flag, bool):
342
            self.strategy.amp = flag
343
        else:
344
            print("WARNING: amp should have value of bool type")
345 346

    @property
347
    def amp_configs(self):
348 349 350 351 352
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
368 369

        Examples:
1
123malin 已提交
370

371 372 373 374 375 376 377 378 379
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
        """
380
        return get_msg_dict(self.strategy.amp_configs)
381

382
    @amp_configs.setter
383
    @is_strict_auto
384 385 386
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
387 388

    @property
389 390 391 392 393 394
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
395

396 397
          .. code-block:: python

398
            import paddle.distributed.fleet as fleet
399 400 401 402 403 404
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
405

406 407
    @property
    def sync_nccl_allreduce(self):
408 409 410 411 412
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
413

414 415 416 417 418 419
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
420 421 422
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
423
    @is_strict_auto
424 425 426 427
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
428
            print("WARNING: sync_nccl_allreduce should have value of bool type")
429

430
    @property
431
    def use_hierarchical_allreduce(self):
432 433 434 435 436 437
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
438

439 440 441 442 443 444
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
445
        return self.strategy.use_hierarchical_allreduce
446

447
    @use_hierarchical_allreduce.setter
448
    @is_strict_auto
449
    def use_hierarchical_allreduce(self, flag):
450
        if isinstance(flag, bool):
451
            self.strategy.use_hierarchical_allreduce = flag
452 453
        else:
            print(
454
                "WARNING: use_hierarchical_allreduce should have value of bool type"
455 456 457
            )

    @property
458
    def hierarchical_allreduce_inter_nranks(self):
459 460 461 462 463
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
464

465 466 467 468 469 470
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
471
        return self.strategy.hierarchical_allreduce_inter_nranks
472

473
    @hierarchical_allreduce_inter_nranks.setter
474
    @is_strict_auto
475 476 477
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
478 479
        else:
            print(
480
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
481 482
            )

483
    @property
484
    def sync_batch_norm(self):
485 486
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
487

488 489 490
        Default value: False

        Examples:
1
123malin 已提交
491

492 493 494 495 496 497 498
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

499
        return self.strategy.sync_batch_norm
500

501
    @sync_batch_norm.setter
502
    @is_strict_auto
503
    def sync_batch_norm(self, flag):
504
        if isinstance(flag, bool):
505
            self.strategy.sync_batch_norm = flag
506
        else:
507
            print("WARNING: sync_batch_norm should have value of bool type")
508 509 510

    @property
    def fuse_all_reduce_ops(self):
511 512 513 514 515
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
516

517 518 519 520 521 522
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
523 524 525
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
526
    @is_strict_auto
527 528 529 530 531 532
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

533 534
    @property
    def fuse_grad_size_in_MB(self):
535 536 537 538 539 540
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
541

542
          .. code-block:: python
1
123malin 已提交
543

544 545 546 547
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
548 549 550
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
551
    @is_strict_auto
552 553 554 555 556 557 558 559 560 561 562
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
563
    @is_strict_auto
564 565 566 567 568 569 570 571
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

572
    @property
573
    def nccl_comm_num(self):
574 575 576 577 578 579
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
580

581
          .. code-block:: python
1
123malin 已提交
582

583 584 585 586 587
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

588
        return self.strategy.nccl_comm_num
589

590
    @nccl_comm_num.setter
591
    @is_strict_auto
592
    def nccl_comm_num(self, value):
593
        if isinstance(value, int):
594
            self.strategy.nccl_comm_num = value
595
        else:
596
            print("WARNING: nccl_comm_num should have value of int type")
597

598
    @recompute.setter
599
    @is_strict_auto
600
    def recompute(self, flag):
601
        if isinstance(flag, bool):
602
            self.strategy.recompute = flag
603
        else:
604
            print("WARNING: recompute should have value of bool type")
605 606

    @property
607 608 609 610
    def recompute_configs(self):
        """
        Set recompute configurations. In general, the recompute strategy of current
        implementation should have some manually assign checkpoints
611

612
        Examples:
1
123malin 已提交
613

614
          .. code-block:: python
1
123malin 已提交
615

616
            import paddle.distributed.fleet as fleet
617 618
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
M
mapingshuo 已提交
619
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
620 621 622 623 624

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
625
    @is_strict_auto
626 627 628 629
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
630

631 632 633 634
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
635 636 637
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
638 639 640 641

        Default value: False

        Examples:
1
123malin 已提交
642

643
          .. code-block:: python
1
123malin 已提交
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
662
        Set sharding configurations. 
663 664

        **Note**:
J
JZ-LIANG 已提交
665 666 667
            fuse_broadcast_MB(float): size of a fused group of broadcasted parameters. 
            This configuration will affect the communication speed in sharding training, 
            and should be an empirical value decided by your model size and network topology.
668 669

        Examples:
1
123malin 已提交
670

671
          .. code-block:: python
1
123malin 已提交
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
            strategy.sharding_configs = {"fuse_broadcast_MB": 32}
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

687
    @property
688 689 690 691 692 693 694 695
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
696

697
          .. code-block:: python
1
123malin 已提交
698

699
            import paddle.distributed.fleet as fleet
700 701 702 703 704
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
705

706
    @pipeline.setter
707
    @is_strict_auto
708
    def pipeline(self, flag):
709
        if isinstance(flag, bool):
710
            self.strategy.pipeline = flag
711
        else:
712
            print("WARNING: pipeline should have value of bool type")
713 714

    @property
715 716 717 718 719 720 721 722 723 724
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
725

726 727
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
728

729
            **micro_batch**: the number of small batches in each user defined batch
730

731
        Examples:
1
123malin 已提交
732

733
          .. code-block:: python
1
123malin 已提交
734

735
            import paddle.distributed.fleet as fleet
736 737 738
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
            strategy.pipeline_configs = {"micro_batch": 12}
739

740
        """
741

742
        return get_msg_dict(self.strategy.pipeline_configs)
743

744
    @pipeline_configs.setter
745
    @is_strict_auto
746 747 748 749
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
750 751

    @property
752
    def localsgd(self):
753
        """
M
mapingshuo 已提交
754 755 756
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
757 758 759


        Examples:
1
123malin 已提交
760

761 762 763 764 765 766 767
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
768
        return self.strategy.localsgd
769

770
    @localsgd.setter
771
    @is_strict_auto
772 773 774
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
775
        else:
776
            print("WARNING: localsgd should have value of bool type")
777 778

    @property
779
    def localsgd_configs(self):
780 781 782 783 784
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
785
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
786
            begin_step(int) The step of begining training by localsgd. Default 1.
787 788

        Examples:
1
123malin 已提交
789

790 791 792 793 794
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
795 796
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
797 798
        """

799
        return get_msg_dict(self.strategy.localsgd_configs)
800

801
    @localsgd_configs.setter
802
    @is_strict_auto
803 804 805 806
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
807

808 809 810 811 812 813 814 815 816
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
817

818 819 820 821 822 823 824
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
825
        return self.strategy.adaptive_localsgd
826 827 828 829 830

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
831
            self.strategy.adaptive_localsgd = flag
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
            begin_step(int) The step of begining training by adaptive localsgd. Default 1.

        Examples:
1
123malin 已提交
848

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

867
    @property
868
    def dgc(self):
869 870 871 872 873 874 875
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
876

877 878 879 880 881 882 883
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
884
        return self.strategy.dgc
885

886
    @dgc.setter
887
    @is_strict_auto
888 889 890
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
891
        else:
892
            print("WARNING: dgc should have value of bool type")
893 894

    @property
895
    def dgc_configs(self):
896
        r"""
897 898 899 900
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
901 902 903 904 905 906 907 908 909 910
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
911 912

        Examples:
1
123malin 已提交
913

914 915 916 917 918 919 920
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
921
        return get_msg_dict(self.strategy.dgc_configs)
922

923
    @dgc_configs.setter
924
    @is_strict_auto
925 926 927
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
928

929 930 931 932 933 934 935
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
936

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

953
    @property
954
    def gradient_merge(self):
955 956 957 958 959 960 961 962 963 964 965
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
966

M
mapingshuo 已提交
967 968
          .. code-block:: python

969
            import paddle.distributed.fleet as fleet
970 971 972 973
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
974
        return self.strategy.gradient_merge
975

976
    @gradient_merge.setter
977
    @is_strict_auto
978
    def gradient_merge(self, flag):
979
        if isinstance(flag, bool):
980
            self.strategy.gradient_merge = flag
981
        else:
982 983 984 985
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
986 987
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
988 989 990 991 992 993 994

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
995

M
mapingshuo 已提交
996 997
          .. code-block:: python

998
            import paddle.distributed.fleet as fleet
999 1000 1001 1002
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1003 1004 1005
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1006
    @is_strict_auto
1007 1008 1009 1010
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1011 1012

    @property
1013
    def lars(self):
1014 1015 1016 1017 1018 1019 1020 1021
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1022

1023 1024 1025 1026 1027 1028
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1029
        return self.strategy.lars
1030

1031
    @lars.setter
1032
    @is_strict_auto
1033
    def lars(self, flag):
1034
        if isinstance(flag, bool):
1035
            self.strategy.lars = flag
1036
        else:
1037
            print("WARNING: lars should have value of bool type")
1038

1039 1040
    @property
    def lars_configs(self):
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1053

1054
          .. code-block:: python
M
mapingshuo 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1066 1067 1068
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1069
    @is_strict_auto
1070 1071 1072 1073
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1074
    @property
1075
    def lamb(self):
1076 1077 1078 1079 1080 1081 1082
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1083

1084
        Examples:
1
123malin 已提交
1085

1086 1087 1088 1089 1090 1091 1092
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1093
        return self.strategy.lamb
1094

1095
    @lamb.setter
1096
    @is_strict_auto
1097
    def lamb(self, flag):
1098
        if isinstance(flag, bool):
1099
            self.strategy.lamb = flag
1100
        else:
1101
            print("WARNING: lamb should have value of bool type")
1102

1103 1104
    @property
    def lamb_configs(self):
1105 1106 1107 1108 1109 1110 1111 1112 1113
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1114

1115
          .. code-block:: python
M
mapingshuo 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1125 1126 1127
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1128
    @is_strict_auto
1129 1130 1131 1132
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1133 1134
    @property
    def elastic(self):
1135 1136 1137 1138
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1139 1140 1141
        return self.strategy.elastic

    @elastic.setter
1142
    @is_strict_auto
1143 1144 1145 1146 1147 1148 1149 1150
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1151 1152 1153 1154 1155 1156 1157 1158 1159
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1160

1161 1162 1163
          .. code-block:: python

            import paddle
1164
            paddle.enable_static()
1
123malin 已提交
1165
            import paddle.distributed.fleet as fleet
1166

1167 1168
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1169 1170
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1171 1172 1173 1174

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1175 1176 1177 1178 1179 1180 1181 1182 1183
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1184 1185
    @property
    def cudnn_exhaustive_search(self):
1186 1187 1188 1189 1190 1191 1192 1193
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
1194

1195 1196
          .. code-block:: python

1
123malin 已提交
1197 1198
            import paddle
            paddle.enable_static()
1199 1200 1201 1202 1203 1204 1205
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1206 1207 1208
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
1209
    @is_strict_auto
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
1220 1221 1222 1223 1224 1225 1226 1227
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
1228

1229 1230
          .. code-block:: python

1
123malin 已提交
1231 1232
            import paddle
            paddle.enable_static()
1233 1234 1235 1236 1237 1238
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
1239

1240
        """
1241 1242 1243
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
1244
    @is_strict_auto
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
1255 1256 1257 1258 1259 1260
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
1261

1262 1263
          .. code-block:: python

1
123malin 已提交
1264 1265
            import paddle
            paddle.enable_static()
1266 1267 1268 1269 1270 1271 1272 1273
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
1274 1275 1276
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
1277
    @is_strict_auto
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
            if core.globals().is_public(key):
                core.globals()[key] = values[i]

1309 1310 1311 1312 1313 1314
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

1315
    def __repr__(self):
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                               spacing, max_v)

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
1334
        fields = self.strategy.DESCRIPTOR.fields
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
1349
                                "{}=True <-> {}_configs".format(f.name, f.name))
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
                                        getattr(my_configs, ff.name),
                                        google.protobuf.pyext._message.
                                        RepeatedScalarContainer):
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
                                            draws += h2_format.format(ff.name,
                                                                      str(v))
                                        else:
                                            draws += h2_format.format("",
                                                                      str(v))
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
1387
        for f in fields:
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res