control_flow.py 121.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
20 21 22 23 24 25 26 27 28
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper, unique_name
30 31 32 33 34 35 36 37 38 39 40
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
41
import numpy
42
import warnings
L
liym27 已提交
43
from functools import reduce, partial
44 45 46 47 48 49
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
50
from ..backward import _infer_var_data_type_shape_
2
201716010711 已提交
51
import paddle
52
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
53

Q
QI JUN 已提交
54
__all__ = [
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    'While',
    'Switch',
    'increment',
    'array_write',
    'less_than',
    'array_read',
    'cond',
    'IfElse',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'Print',
    'Assert',
    'is_empty',
    'case',
    'switch_case',
    'while_loop',
D
dzhwinter 已提交
71 72
]

Y
Yu Yang 已提交
73

74 75
def select_output(input, outputs, mask):
    """
76
    **select_output**
77 78 79 80 81 82 83 84 85 86 87 88 89 90
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
91 92 93 94
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

95 96 97 98 99
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
100 101 102
    return outputs


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
118 119
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
120 121 122
    return out_shape


123 124 125
def select_input(inputs, mask):
    """
    **select_input**
126

127 128 129 130 131 132 133 134 135 136 137 138
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
139 140 141
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

142
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
143
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
144 145 146
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
147

148 149 150 151 152 153 154 155
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
156 157 158
    return out


159
def select_input_with_buildin_type(inputs, mask, name):
160
    from paddle.jit.dy2static.variable_trans_func import (
161 162
        to_static_variable,
    )
163
    from paddle.jit.dy2static.utils import UndefinedVar
164

165 166
    false_var, true_var = inputs

167
    if isinstance(false_var, UndefinedVar) and isinstance(
168 169 170
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
171 172
        return None

173
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
174 175 176 177
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
178 179
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
180

181 182 183
    elif isinstance(false_var, support_ret_buildin_type) and isinstance(
        false_var, type(true_var)
    ):
184 185 186 187
        if false_var == true_var:
            return false_var
        else:
            inputs = [
188
                to_static_variable(false_var),
189
                to_static_variable(true_var),
190 191
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
192 193 194 195 196 197 198
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
199 200 201
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
202
            "false_var returned by false_fn is '{}' and true_var of true_fn is "
203 204 205 206 207 208 209 210 211
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
212 213

        def create_var_if_not_undefined_var(a):
214 215
            if isinstance(a, UndefinedVar):
                return a
216 217
            return to_static_variable(a)

218
        true_var, false_var = to_static_variable(true_var), to_static_variable(
219 220
            false_var
        )
221
        inputs = [false_var, true_var]
222 223 224
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
225
            "returned by false_fn is '{}' and true_var of true_fn is '{}'".format(
226 227 228
                type(false_var), type(true_var)
            )
        )
229 230 231 232
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
233 234
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
235 236


237
def split_lod_tensor(input, mask, level=0):
238 239 240 241
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
242 243
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
244 245

    Args:
246
        input(Variable|tuple|list|None): The input tensor that contains complete
247
                                lod information needed to construct the output.
248
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
249
        level(int): The specific lod level to split.
250 251

    Returns:
Q
qiaolongfei 已提交
252 253 254 255
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
256 257 258 259

    Examples:
        .. code-block:: python

260
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
261
          x = fluid.layers.data(name='x', shape=[1])
262 263
          x.persistable = True

Q
qiaolongfei 已提交
264
          y = fluid.layers.data(name='y', shape=[1])
265 266
          y.persistable = True

Q
qiaolongfei 已提交
267
          out_true, out_false = fluid.layers.split_lod_tensor(
268
                input=x, mask=y, level=level)
269

270
    """
271 272 273 274 275 276
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
277 278
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
279
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
280 281
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
282 283 284 285 286 287 288 289 290
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
291 292 293
    return out_true, out_false


294
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
295 296 297 298 299
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
300 301 302
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
303 304

    Args:
305 306 307
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
308
                            lod information needed to construct the output.
309
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
310
        level(int): The specific lod level to merge.
311 312 313 314 315 316 317

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

318
          import paddle.fluid as fluid
319 320 321 322 323 324 325 326 327 328 329 330
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
331
    helper = LayerHelper('merge_lod_tensor', **locals())
332 333 334 335 336 337
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
338
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
339 340 341 342 343 344 345 346 347 348 349 350
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
351
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
352 353 354 355 356 357
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
358 359 360
    return out


361
@static_only
362 363 364 365 366 367 368 369 370 371 372 373
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
374
    '''
375 376
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
377 378 379 380 381 382 383 384 385
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
386
        input (Variable): A Tensor to print.
387
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
388
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
389 390
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
391 392 393
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
394
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
395
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
396
        print_phase (str): Which phase to displace, including 'forward',
397
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
398 399
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
400 401

    Returns:
402
        Variable: Output tensor.
Y
Yan Chunwei 已提交
403

404 405 406 407
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
408

Y
Yan Chunwei 已提交
409 410
    Examples:
        .. code-block:: python
411

412 413 414
           import paddle

           paddle.enable_static()
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
430
    '''
431 432 433 434 435 436
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
437

438 439
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
456
    return output
Y
Yan Chunwei 已提交
457 458


H
Huihuang Zheng 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

522 523 524 525 526
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
527 528 529 530

    return op


531
class BlockGuard:
Y
Yu Yang 已提交
532
    """
533 534 535 536
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
537 538
    """

539 540
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
541
            raise TypeError("BlockGuard takes a program")
542
        self.main_program = main_program
Y
Yu Yang 已提交
543 544

    def __enter__(self):
W
Wu Yi 已提交
545
        self.main_program._create_block()
Y
Yu Yang 已提交
546 547

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
548
        self.main_program._rollback()
Y
Yu Yang 已提交
549 550 551 552 553
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
554 555 556 557 558
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
559 560
    """

Y
Yu Yang 已提交
561
    def __init__(self, rnn):
X
Xin Pan 已提交
562
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
563
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
564
        super().__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
565 566 567 568
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
569
        return super().__enter__()
Y
Yu Yang 已提交
570 571

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
572 573
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
574
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
575
        self.rnn._complete_op()
576
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
577 578


579
class StaticRNNMemoryLink:
Y
Yu Yang 已提交
580
    """
581 582 583 584
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
585 586 587 588 589 590 591 592 593


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
594 595 596 597 598 599 600 601
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


602
class StaticRNN:
603
    """
604 605
    :api_attr: Static Graph

606 607
    StaticRNN class.

608 609 610 611 612 613 614
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
615 616

    Examples:
617 618
        .. code-block:: python

619
            import paddle
620 621 622 623
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
624
            paddle.enable_static()
625 626
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
627 628 629 630 631
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
632
            # transform batch size to dim 1
633
            x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
634 635 636

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
637
                # mark created x_emb as input, each step process a word
638
                word = rnn.step_input(x_emb)
639
                # create prev memory parameter, batch size comes from word
640 641
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
642 643
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
644
                # mark hidden as output
645
                rnn.step_output(hidden)
646
            # get StaticrNN final output
647
            result = rnn()
C
chengduo 已提交
648

649
    """
650

Y
Yu Yang 已提交
651 652 653 654
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

655
    def __init__(self, name=None):
656
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
657
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
658 659 660 661 662 663 664 665
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
666
        """
667 668
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
669
        """
Y
Yang Yang 已提交
670
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
671 672 673 674 675

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

676 677 678 679 680 681 682 683 684
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
685
        """
C
chengduo 已提交
686 687 688
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
689 690
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
691

692
        Args:
693
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
694 695
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
696 697 698 699 700 701 702
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
703 704

        Returns:
705 706 707 708 709
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

710
                import paddle
711 712 713 714
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
715
                paddle.enable_static()
716 717 718 719 720 721 722 723
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
724
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
725 726 727 728 729 730 731 732 733 734

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
735 736 737


        Examples 2:
738 739
            .. code-block:: python

740
                import paddle
741 742 743
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
744
                paddle.enable_static()
745 746 747 748 749 750 751 752
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
753
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
754 755 756 757 758 759 760 761 762 763
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
764

765
        """
Y
Yu Yang 已提交
766
        self._assert_in_rnn_block_('memory')
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
785
        if init is None:
786
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
787
                raise ValueError(
788 789
                    "if init is None, memory at least need shape and batch_ref"
                )
790
            parent_block = self._parent_block()
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
813 814 815 816

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
817 818 819
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
820
                dtype=init.dtype,
821 822 823 824 825
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
826 827 828
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
829 830 831 832 833 834 835 836
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
837 838 839 840 841
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

842
                import paddle
843 844 845 846
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
847
                paddle.enable_static()
848 849 850 851 852 853 854 855
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
856
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
857 858 859 860 861 862 863 864 865 866

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
867

C
chengduo 已提交
868
        """
Y
Yu Yang 已提交
869
        self._assert_in_rnn_block_('step_input')
870
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
871
        if self.seq_len is None:
Y
Yu Yang 已提交
872
            self.seq_len = x.shape[0]
873
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
874 875
            raise ValueError("Static RNN only take fix seq_len input")

876 877 878
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
879 880 881 882
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
883 884 885 886 887 888 889 890
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
891 892 893 894

        Examples:
            .. code-block:: python

895
                import paddle
896 897 898 899
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
900
                paddle.enable_static()
901 902 903 904 905 906 907 908
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
909
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
910 911 912 913 914 915 916 917 918 919 920 921 922

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
923

C
chengduo 已提交
924
        """
Y
Yu Yang 已提交
925
        self._assert_in_rnn_block_('step_output')
926
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
927

X
Xin Pan 已提交
928
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
929 930 931 932 933 934
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
935

936 937 938 939 940
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
941 942 943 944

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
945 946 947 948
        """
        Mark the StaticRNN output variables.

        Args:
949
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
950 951 952

        Returns:
            None
953 954 955 956

        Examples:
            .. code-block:: python

957
                import paddle
958 959 960 961
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
962
                paddle.enable_static()
963 964 965 966 967 968 969 970
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
971
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
972 973 974 975 976 977 978 979 980 981 982 983 984 985

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
986
        """
Y
Yu Yang 已提交
987 988 989 990
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
991
        """
992
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
993 994 995

        Args:
            mem(Variable): the memory variable.
996
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
997
                           var and mem should have same dims and data type.
C
chengduo 已提交
998 999 1000

        Returns:
            None
1001

C
chengduo 已提交
1002
        """
1003 1004
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1005 1006
        self.memories[mem.name].mem = var

1007
    def _parent_block(self):
1008
        prog = self.helper.main_program
Y
Yu Yang 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1024
    def _complete_op(self):
1025 1026
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1027
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1042 1043 1044
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1045 1046 1047 1048 1049 1050 1051 1052
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1053 1054 1055
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1056 1057

        step_scope = parent_block.create_var(
1058 1059
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1060 1061 1062 1063

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1064
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1065 1066 1067
        boot_memories = []
        pre_memories = []
        memories = []
1068
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
1069 1070
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1071 1072 1073
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1074 1075
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1076
            new_mem = self.helper.create_variable_for_type_inference(
1077 1078 1079 1080 1081 1082 1083 1084
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1085 1086 1087

            memories.append(new_mem.name)

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1103 1104


Y
Yang Yang(Tony) 已提交
1105 1106 1107 1108
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
1109
        super().__init__(while_op.helper.main_program)
Y
Yang Yang(Tony) 已提交
1110 1111 1112 1113
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
1114
        return super().__enter__()
Y
Yang Yang(Tony) 已提交
1115 1116 1117 1118 1119

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1120
        self.while_op._complete()
1121
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yang Yang(Tony) 已提交
1122 1123


1124 1125 1126
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1127 1128 1129 1130 1131 1132 1133 1134
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1148 1149 1150 1151 1152 1153 1154 1155
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1156
                if in_var_name not in inner_outputs and not is_ignore_vars(
1157 1158
                    op, in_var_name
                ):
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1174 1175 1176 1177 1178
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1179 1180 1181 1182 1183 1184 1185
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


1186
class While:
X
Xin Pan 已提交
1187
    """
1188
    :api_attr: Static Graph
1189

1190
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1191

1192 1193 1194 1195
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1196 1197 1198 1199 1200 1201
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1202
    Args:
1203
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1204
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1205
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1206

1207
    Examples 1:
X
Xin Pan 已提交
1208
          .. code-block:: python
1209

1210
            import paddle.fluid as fluid
1211 1212 1213 1214 1215
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1216

1217
            cond = fluid.layers.less_than(x=i, y=loop_len)
1218
            while_op = fluid.layers.While(cond=cond)
1219
            with while_op.block():
1220
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1221
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1222 1223 1224 1225 1226

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1256 1257
    """

Y
Yang Yang(Tony) 已提交
1258 1259 1260 1261
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1262
    def __init__(self, cond, is_test=False, name=None):
1263
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1264
        self.status = While.BEFORE_WHILE_BLOCK
1265
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1266
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1267
            raise TypeError(
1268 1269 1270 1271
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1272
        self.cond_var = cond
C
chengduo 已提交
1273
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1274 1275 1276 1277

    def block(self):
        return WhileGuard(self)

1278
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1279 1280
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1281
        parent_block = main_program.block(
1282 1283
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1284 1285 1286

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1287
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1288 1289
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1290 1291 1292

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1293 1294 1295
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1296

1297
        x_name_list |= set(map(lambda x: x.name, out_vars))
1298 1299 1300
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1301

Y
Yang Yang(Tony) 已提交
1302
        step_scope = parent_block.create_var(
1303 1304
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1305 1306 1307 1308

        parent_block.append_op(
            type='while',
            inputs={
1309 1310 1311 1312 1313
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
1314
            },
1315 1316 1317
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1318 1319


1320
support_ret_buildin_type = (bool, float, int)
1321 1322


1323
def assign_skip_lod_tensor_array(input, output):
1324
    """
1325
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1326
    """
1327 1328

    def has_shape_diff(x_var, y_var):
1329 1330
        if len(x_var.shape) != len(y_var.shape):
            return True
1331
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1332 1333
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1334 1335
        return False

1336
    if not isinstance(input, (Variable, core.VarBase)):
1337
        if isinstance(output, Variable) and isinstance(
1338 1339
            input, support_ret_buildin_type
        ):
1340 1341 1342
            assign(input, output)
        else:
            output = input
1343 1344
        return

1345 1346
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1347
        parent_block = main_program.block(
1348 1349
            main_program.current_block().parent_idx
        )
1350 1351 1352
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1353 1354 1355 1356 1357
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1358
            warnings.warn(
1359 1360 1361 1362
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1363
        assign(input, output)
1364 1365


G
guofei 已提交
1366
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1367
    """
1368 1369
    :api_attr: Static Graph

G
guofei 已提交
1370 1371
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1372 1373 1374 1375
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1376
    Args:
1377
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1378
            as many arguments as ``loop_vars`` .
1379 1380 1381
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1382
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1383 1384
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1385

G
guofei 已提交
1386
    Returns:
C
Chen Long 已提交
1387
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1388 1389 1390 1391

    Examples:
        .. code-block:: python

1392 1393 1394
            import paddle
            paddle.enable_static()

1395 1396
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1397

1398 1399 1400
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1401

C
Chen Long 已提交
1402 1403 1404 1405 1406 1407
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1408

C
Chen Long 已提交
1409
                exe = paddle.static.Executor(paddle.CPUPlace())
1410
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1411 1412 1413 1414 1415 1416 1417 1418
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1419
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1420 1421 1422 1423
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1424 1425 1426
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1427 1428
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1429
            "the shape of the variable returned by cond should be [1],"
1430 1431
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1432

J
Jiabin Yang 已提交
1433
    if _non_static_mode():
1434
        now_cond = pre_cond.numpy()[0]
1435
        while now_cond:
1436 1437 1438 1439 1440 1441
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1442 1443
                    "(length and structure) and types as loop_vars"
                )
1444
            now_cond = cond(*output_vars).numpy()[0]
1445
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1446 1447
        return loop_vars

G
guofei 已提交
1448
    while_loop_block = While(pre_cond, is_test, name)
1449
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1450
    with while_loop_block.block():
1451 1452 1453 1454 1455 1456 1457 1458 1459
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1460 1461
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1462
        try:
1463
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1464 1465
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1466 1467
            raise ValueError(
                "body in while_loop should return the same arity "
1468 1469
                "(length and structure) as loop_vars: {0}".format(e)
            )
1470
        now_cond = cond(*output_vars)
1471
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1472 1473 1474 1475
        assign(now_cond, pre_cond)
    return loop_vars


1476
def _deal_with_undefined_var(output_vars, loop_vars):
1477 1478 1479 1480 1481 1482 1483
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1484
    """
1485
    from paddle.jit.dy2static.utils import (
1486 1487 1488
        UndefinedVar,
        create_undefined_variable,
    )
1489 1490

    def create_var_like(o_var):
1491 1492 1493 1494
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1495
            return create_undefined_variable()
1496
        if is_sequence(o_var):
1497
            """
1498 1499 1500
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1514
def lod_rank_table(x, level=0):
1515 1516
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1517 1518
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1519
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1520
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1521 1522
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1523 1524 1525 1526

        .. code-block:: text

            x is a LoDTensor:
1527 1528
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1529 1530
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1531 1532 1533
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1534

Y
yangyaming 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1544 1545 1546 1547

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1548 1549
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1550 1551 1552 1553 1554 1555 1556

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1557
            import paddle.fluid as fluid
Y
yangyaming 已提交
1558
            x = fluid.layers.data(name='x', shape=[10],
1559
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1560
            out = layers.lod_rank_table(x=x, level=0)
1561
    """
1562 1563 1564
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1565 1566 1567
            check_type(
                input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table'
            )
1568

Y
Yu Yang 已提交
1569
    helper = LayerHelper("lod_rank_table", **locals())
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name.generate("lod_rank_table"),
    )
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level},
    )
Y
Yu Yang 已提交
1580
    return table
Y
Yu Yang 已提交
1581 1582


Y
yuyang18 已提交
1583
@templatedoc()
1584
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1585 1586 1587 1588 1589 1590 1591 1592
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1593 1594

    Args:
Y
yuyang18 已提交
1595
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1596 1597

    Returns:
Y
yuyang18 已提交
1598
        ${out_comment}.
F
fengjiayi 已提交
1599 1600
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1601
    res = helper.create_variable_for_type_inference(dtype="int64")
1602 1603 1604 1605 1606
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res},
    )
F
fengjiayi 已提交
1607 1608 1609
    return res


1610
def increment(x, value=1.0, in_place=True):
1611
    """
1612 1613
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1614

1615
    Parameters:
T
tianshuo78520a 已提交
1616
        x (Variable): A tensor that must always contain only one element, its data type supports
1617 1618 1619
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1620 1621

    Returns:
1622
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1623 1624 1625 1626

    Examples:
        .. code-block:: python

1627
          import paddle.fluid as fluid
1628 1629
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1630
    """
H
hong 已提交
1631
    if in_dygraph_mode():
1632
        return _C_ops.increment_(x, value)
H
hong 已提交
1633

1634 1635 1636
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1637
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1638
    if not in_place:
X
Xin Pan 已提交
1639
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1640 1641
    else:
        out = x
1642 1643 1644 1645 1646 1647
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1648
    return out
Y
Yu Yang 已提交
1649 1650


1651
def array_write(x, i, array=None):
1652
    """
1653 1654 1655 1656
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1657 1658

    Args:
1659 1660 1661 1662
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1663 1664
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1665
            as a result.
1666

1667
    Returns:
1668
        Variable: The input ``array`` after ``x`` is written into.
1669 1670

    Examples:
D
dzhwinter 已提交
1671
        .. code-block:: python
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1696 1697
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1698 1699
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1700
    """
J
Jiabin Yang 已提交
1701
    if _non_static_mode():
1702 1703 1704 1705 1706 1707 1708 1709 1710
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1711
        i = i.numpy().item(0)
1712
        if array is None:
1713
            array = paddle.tensor.create_array(x.dtype)
1714
        assert isinstance(
1715 1716
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1717 1718 1719 1720 1721 1722 1723 1724 1725
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1726 1727
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1728
    helper = LayerHelper('array_write', **locals())
1729
    if array is not None:
1730 1731 1732 1733
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1734
            raise TypeError(
1735 1736
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1737 1738 1739 1740
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1741 1742 1743 1744 1745 1746 1747
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1748 1749 1750
    return array


Y
yuyang18 已提交
1751
@templatedoc()
W
wawltor 已提交
1752
def less_than(x, y, force_cpu=None, cond=None, name=None):
1753
    """
1754

Y
yuyang18 已提交
1755
    ${comment}
1756 1757

    Args:
N
Noel 已提交
1758 1759
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1760
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1761
        cond(Tensor, optional): Optional output which can be any created Tensor
1762
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1763
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1764 1765
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1766
    Returns:
Y
yuyang18 已提交
1767
        ${out_comment}.
1768 1769 1770 1771

    Examples:
        .. code-block:: python

N
Noel 已提交
1772 1773 1774 1775 1776 1777 1778
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1779
    """
1780 1781 1782 1783 1784 1785
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_than"
    )
1786 1787
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
1788
    if force_cpu is not None:
1789 1790
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1791 1792
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1793
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1794 1795
        cond.stop_gradient = True

Y
yuyang18 已提交
1796 1797 1798 1799
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1800 1801 1802 1803 1804 1805
    helper.append_op(
        type='less_than',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Y
Yang Yang(Tony) 已提交
1806 1807 1808
    return cond


1809
def array_read(array, i):
1810
    """
1811
    This OP is used to read data at the specified position from the input array
1812
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
1813
    is the specified read position. This OP is often used together with
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1826

K
kavyasrinet 已提交
1827
    Args:
1828 1829 1830
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1831

K
kavyasrinet 已提交
1832
    Returns:
1833
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1834

K
kavyasrinet 已提交
1835
    Examples:
1836 1837
        .. code-block:: python

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
1866 1867
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1868
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1869
    """
J
Jiabin Yang 已提交
1870
    if _non_static_mode():
1871
        assert isinstance(
1872 1873
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
1874 1875 1876 1877 1878 1879
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1880
        i = i.numpy().item(0)
1881 1882
        return array[i]

1883
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
1884
    helper = LayerHelper('array_read', **locals())
1885 1886 1887 1888
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
1889
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1890
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
1891 1892 1893 1894 1895
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
1896
    return out
Y
Yang Yu 已提交
1897 1898


Y
Yu Yang 已提交
1899
class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1900
    """
1901 1902 1903
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1904 1905 1906
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1907
    def __init__(self, block):
1908
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
1909
        super().__init__(block.helper.main_program)
Y
Yu Yang 已提交
1910 1911 1912
        self.block = block

    def __enter__(self):
1913
        return super().__enter__()
Y
Yu Yang 已提交
1914 1915 1916

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
1917
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
1918 1919


1920
class ConditionalBlock:
Y
Yan Chunwei 已提交
1921 1922 1923 1924 1925 1926 1927 1928
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
1929
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
1930 1931 1932 1933 1934
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1935
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1947
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1948
        for each_input in inputs:
1949
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
1950
        self.inputs = inputs
1951
        self.is_scalar_condition = is_scalar_condition
1952
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
1963 1964 1965
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
1966

1967 1968 1969
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
1970
        param_list = [
W
Wu Yi 已提交
1971
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1972 1973
        ]

X
Xin Pan 已提交
1974 1975 1976 1977 1978
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1979 1980

        step_scope = parent_block.create_var(
1981 1982
            type=core.VarDesc.VarType.STEP_SCOPES
        )
1983
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
1984 1985
            type='conditional_block',
            inputs={
1986 1987
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1988
            },
1989
            outputs={'Out': out_list, 'Scope': [step_scope]},
1990 1991
            attrs={
                'sub_block': inside_block,
1992 1993 1994
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
1995

1996
        if self.need_append_conditional_block_grad(inside_block):
1997 1998 1999
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
2000 2001 2002

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2003
        inside_block_idx = inside_block.idx
2004

2005 2006
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
2007 2008 2009
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
2010

2011 2012 2013
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
2049
                param_list.append(inner_var.name)
2050 2051

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2052 2053
            conditional_block_op.desc, set(), [grad_sub_block.desc]
        )
2054 2055 2056 2057 2058 2059 2060 2061 2062

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
2063 2064 2065
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
2066 2067 2068

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2069 2070 2071 2072
            if (
                grad_sub_block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
2073
                continue
2074
            grad_sub_block.desc.var(grad_var_name.encode())
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2089

2090
def copy_var_to_parent_block(var, layer_helper):
2091 2092
    if not isinstance(var, Variable):
        return var
2093 2094
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
2095 2096 2097
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
2098 2099
    parent_block = prog.block(parent_idx)

2100 2101 2102 2103
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
2104 2105
        parent_block_var = var
    else:
2106 2107 2108
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
2109
        assign(var, parent_block_var)
2110 2111 2112
    return parent_block_var


2113
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2114
    """
2115 2116 2117 2118 2119 2120 2121 2122 2123
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2124 2125

    Note:
2126 2127 2128 2129
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2130 2131 2132
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2133
        3. If it is in static mode, any tensors or operations created outside
2134 2135 2136
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2137 2138

        .. code-block:: python
2139 2140 2141 2142 2143

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2144
            c = a * b
2145
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2146

2147 2148 2149
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2150 2151

    Args:
2152
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2153
            value determines whether to return the result of ``true_fn`` or
2154 2155 2156 2157 2158 2159
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2160
             don't have to set this parameter. For more information, please
2161
             refer to :ref:`api_guide_Name` .
2162 2163 2164
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2165
             be same with return values of true_fn and false_fn.
2166 2167

    Returns:
2168
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2169
        predicate ``pred`` is true else ``false_fn()`` .
2170 2171 2172

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2173 2174
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2175 2176 2177 2178

    Examples:
        .. code-block:: python

2179
            import paddle
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2190 2191 2192 2193
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2194

2195 2196

            def false_func():
2197 2198 2199 2200 2201
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2202

2203 2204
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2205
            pred = paddle.less_than(x=x, y=y, name=None)
2206
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2207
            # ret is a tuple containing 2 tensors
2208 2209
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2210
            #           [ True  True  True]]
2211

2212
    """
J
Jiabin Yang 已提交
2213
    if _non_static_mode():
2214
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2215
        assert pred.size == 1, "condition input's numel should be 1"
2216 2217 2218 2219 2220
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2221 2222 2223 2224
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2225 2226 2227 2228 2229
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2230 2231 2232 2233
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2234 2235 2236
                return false_fn()
        return None

2237 2238
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2239 2240 2241
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2242
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2243 2244
    if true_fn is not None:
        if not callable(true_fn):
2245 2246
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2247 2248 2249
                    type(true_fn).__name__
                )
            )
2250 2251 2252 2253
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2254 2255 2256
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2257 2258
    if false_fn is not None:
        if not callable(false_fn):
2259 2260
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2261 2262 2263 2264
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
2
201716010711 已提交
2265
            [paddle.logical_not(pred)], is_scalar_condition=True
2266
        )
2267 2268 2269
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2270 2271 2272
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2273 2274 2275 2276 2277 2278 2279

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2280 2281
            "true_fn returns None while false_fn returns non-None"
        )
2282 2283 2284
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2285 2286
            "true_fn returns non-None while false_fn returns None"
        )
2287

2288
    # Merge true and false output if they are not None
2289
    if return_names is None:
2290
        is_dy2staic = False
2291
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2292
    else:
2293
        """
2294 2295
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2296 2297 2298 2299 2300 2301 2302
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2303
        true_output, false_output = expand_undefined_var(
2304 2305
            true_output, false_output, return_names
        )
2306

2307 2308 2309
    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2310
        raise ValueError(
2311
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
2312 2313
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
2314 2315 2316
            )
        )
    for true_out, false_out, return_name in zip(
2317 2318 2319
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2320
    ):
2321 2322 2323 2324
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2325 2326 2327 2328
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )
2329

2330
    def check_ret_none(seq_true, seq_false, seq_names):
2331 2332 2333
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
2334
            for idx in range(len(f_true)):
2335 2336 2337 2338 2339 2340
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
2341 2342 2343 2344
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2345
                            f_name,
2346 2347 2348 2349 2350 2351 2352 2353
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
2354 2355 2356
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2357
    )
2358 2359 2360

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
2361 2362
            true_output, false_output
        )
2363

2364
    mask = cast(pred, dtype='int32')
2365 2366 2367 2368 2369
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2370 2371 2372 2373 2374

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2375 2376
        map(
            merge_every_var_list,
2377 2378 2379
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
2380 2381
        )
    )
2382
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2383 2384 2385
    return merged_output


2386
def change_none_to_undefinedvar(nest1, nest2):
2387
    from paddle.jit.dy2static.utils import UndefinedVar
2388 2389

    def map_fn(x):
2390 2391
        if x is None:
            return UndefinedVar("padding")
2392 2393 2394 2395 2396 2397 2398
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2417
def expand_undefined_var(nest1, nest2, names):
2418 2419 2420 2421
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2422
    """
2423
    from paddle.jit.dy2static.utils import UndefinedVar
2424
    from paddle.jit.dy2static.return_transformer import (
2425 2426
        RETURN_VALUE_PREFIX,
    )
2427 2428

    def pack_undefined_var_as(seq):
2429 2430 2431
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2432

2433
    def map_fn(n1, n2, name, order):
2434 2435 2436
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
2437 2438 2439 2440 2441 2442
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2443 2444 2445
                            name, type(n1), n1, type(n2), n2
                        )
                    )
2446 2447 2448 2449 2450
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2451 2452 2453
                            name, type(n2), n2, type(n1), n1
                        )
                    )
2454 2455 2456 2457
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
2458 2459
        map(
            map_fn,
2460 2461 2462 2463
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
2464 2465
        )
    )
2466
    nest2_out = list(
2467 2468
        map(
            map_fn,
2469 2470 2471 2472
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
2473 2474
        )
    )
2475
    if not _is_sequence_except_dict(nest1):
2476
        nest1_out = nest1_out[0]
2477
    if not _is_sequence_except_dict(nest2):
2478
        nest2_out = nest2_out[0]
2479 2480 2481
    return nest1_out, nest2_out


L
liym27 已提交
2482
def _error_message(what, arg_name, op_name, right_value, error_value):
2483 2484
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
L
liym27 已提交
2485
        "{right_value}, but received: {error_value}.".format(
2486 2487 2488 2489 2490 2491 2492
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )
L
liym27 已提交
2493 2494 2495 2496 2497 2498

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2499 2500
    :api_attr: Static Graph

L
liym27 已提交
2501 2502 2503 2504 2505 2506 2507 2508
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2509
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2510 2511 2512 2513 2514 2515 2516
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2517
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2518 2519 2520 2521 2522 2523
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2524 2525 2526
            import paddle

            paddle.enable_static()
L
liym27 已提交
2527 2528

            def fn_1():
2529
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2530 2531

            def fn_2():
2532
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2533 2534

            def fn_3():
2535
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2536

2537 2538 2539 2540
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2541 2542 2543
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2544

2545 2546 2547
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2548 2549

                # Call fn_1 because pred_1 is True
2550
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2551 2552 2553 2554
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2555
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2556

2557
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2568
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2569 2570 2571 2572

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
2573 2574 2575 2576 2577 2578 2579 2580
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
L
liym27 已提交
2581 2582
            if len(pred_fn) != 2:
                raise TypeError(
2583 2584 2585 2586 2587 2588 2589 2590
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
L
liym27 已提交
2591 2592 2593 2594
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
2595 2596 2597 2598 2599 2600 2601 2602
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )
L
liym27 已提交
2603 2604 2605 2606

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
2607 2608
                    " be callable.".format(pred.name)
                )
L
liym27 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2630
class Switch:
Q
qiaolongfei 已提交
2631
    """
2632
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2633

2634 2635 2636 2637 2638
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
2639 2640
    only the statement following the default branch is executed.

2641 2642 2643 2644
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2645
    Member Functions:
2646
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2647

2648 2649 2650 2651 2652
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2663

2664 2665
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2666 2667 2668

    Examples:
        .. code-block:: python
2669

2670
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2671

2672
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2673 2674 2675 2676 2677
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2678
            zero_var = fluid.layers.fill_constant(
2679
                shape=[1], dtype='float32', value=0.0)
2680
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2681
                shape=[1], dtype='float32', value=1.0)
2682
            two_var = fluid.layers.fill_constant(
2683
                shape=[1], dtype='float32', value=2.0)
2684

2685
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2686 2687

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2688
                with switch.case(global_step == zero_var):
2689
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2690
                with switch.default():
2691
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2692

2693 2694 2695 2696 2697
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2698 2699
    """

2700 2701 2702 2703 2704 2705 2706 2707 2708
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2709
        check_variable_and_dtype(
2710 2711 2712 2713 2714
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
2715

2716 2717
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
2
201716010711 已提交
2718
            not_cond = paddle.logical_not(x=condition)
2719 2720 2721 2722
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2723
            new_not_cond = paddle.logical_and(
2
201716010711 已提交
2724
                x=pre_not_cond, y=paddle.logical_not(x=condition)
2725
            )
2726 2727
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2728
                [paddle.logical_and(x=pre_not_cond, y=condition)],
2729 2730
                is_scalar_condition=True,
            )
2731 2732 2733 2734 2735 2736 2737 2738 2739

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
2740 2741
            is_scalar_condition=True,
        )
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2758 2759


2760
class IfElseBlockGuard:
Y
Yu Yang 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
2781 2782 2783 2784 2785
        self.ie.status = (
            IfElse.IN_IF_ELSE_TRUE_BLOCKS
            if self.is_true
            else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        )
Y
Yu Yang 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


2797
class IfElse:
X
Xin Pan 已提交
2798
    """
2799 2800
    :api_attr: Static Graph

2801 2802 2803 2804
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2805 2806 2807 2808
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2809 2810 2811
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
2841
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
2842 2843

        # Get the first Variable in the output List and add all elements.
2844
        out = paddle.sum(output[0])
2845 2846 2847 2848 2849

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
2850
        print(res)
2851
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
2852 2853

    Args:
2854 2855
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2856

2857 2858
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2859

2860 2861
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
2862

2863 2864 2865 2866 2867 2868 2869
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2870

X
Xin Pan 已提交
2871
    """
2872

Y
Yu Yang 已提交
2873 2874 2875 2876
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

2877
    def __init__(self, cond, name=None):
2878 2879
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
2880
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
2892
            parent_block = self._parent_block()
Y
Yu Yang 已提交
2893
            out_true = parent_block.create_var(
2894 2895 2896 2897 2898
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
Y
Yu Yang 已提交
2899 2900

            out_false = parent_block.create_var(
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true, 'OutFalse': out_false},
                attrs={'level': 0},
            )
Y
Yu Yang 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

2924
    def _parent_block(self):
Y
Yu Yang 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

2938 2939 2940
        out_table = self.output_table[
            1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0
        ]
2941
        parent_block = self._parent_block()
Y
Yu Yang 已提交
2942
        for each_out in outs:
2943 2944 2945
            check_type(
                each_out, "each output", Variable, "fluid.layers.IfElse.output"
            )
Y
Yu Yang 已提交
2946 2947
            # create outside tensor
            outside_out = parent_block.create_var(
2948 2949 2950 2951 2952
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, 'output'])
                ),
                dtype=each_out.dtype,
            )
Y
Yu Yang 已提交
2953 2954 2955
            out_table.append(outside_out)

            # assign local var to outside
2956
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
2957 2958 2959 2960

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
2961
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
2962
        if false_len == 0 and true_len == 0:
2963 2964 2965
            raise ValueError(
                "Must invoke true_block/false_block before " "__call__"
            )
Y
Yu Yang 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
2976 2977 2978 2979 2980 2981 2982 2983
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                )
            )
Y
Yu Yang 已提交
2984
        return rlist
2985 2986


L
liym27 已提交
2987 2988
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
2989 2990
    :api_attr: Static Graph

L
liym27 已提交
2991 2992 2993
    This operator is like a C++ switch/case statement.

    Args:
2994
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
2995 2996 2997 2998 2999
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3000
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3001 3002 3003 3004
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3005
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3017 3018 3019
            import paddle

            paddle.enable_static()
3020

L
liym27 已提交
3021
            def fn_1():
3022
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3023 3024

            def fn_2():
3025
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3026 3027

            def fn_3():
3028
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3029

3030 3031 3032
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3033 3034
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3035

3036
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3037 3038 3039 3040
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3041
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3042 3043 3044 3045 3046
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3047
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3048 3049 3050
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3051
                exe = paddle.static.Executor(paddle.CPUPlace())
3052
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3053 3054 3055 3056 3057 3058 3059 3060
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3061 3062 3063 3064 3065 3066
        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'switch_case',
        )
L
liym27 已提交
3067 3068 3069 3070

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3071
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3072

3073 3074 3075
        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )
L
liym27 已提交
3076

3077 3078 3079 3080 3081
        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )
L
liym27 已提交
3082 3083 3084 3085 3086

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
3087 3088 3089 3090 3091 3092 3093 3094
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )
L
liym27 已提交
3095 3096 3097

            if len(index_fn_pair) != 2:
                raise TypeError(
3098 3099 3100 3101 3102 3103 3104 3105
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )
L
liym27 已提交
3106 3107 3108 3109 3110

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
3111 3112 3113 3114 3115 3116 3117 3118
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )
L
liym27 已提交
3119 3120 3121

            if key in keys_of_fns:
                raise ValueError(
3122 3123 3124 3125
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
L
liym27 已提交
3126 3127 3128 3129 3130
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
3131 3132
                    _error_message(
                        "The type of function for key {}".format(key),
3133 3134 3135 3136 3137 3138
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )
L
liym27 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
3149
            pred = paddle.equal(branch_index, new_index)
L
liym27 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3163
@templatedoc()
Y
Yang Yu 已提交
3164
def reorder_lod_tensor_by_rank(x, rank_table):
3165 3166 3167 3168
    """
    ${comment}

    Args:
3169 3170
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3171

3172
    Returns:
3173
        out(${out_type}): ${out_comment}.
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3187 3188

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
3189 3190 3191
    check_type(
        rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank'
    )
3192 3193 3194
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3195 3196
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3197
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3198 3199 3200 3201 3202
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x], 'RankTable': [rank_table]},
        outputs={'Out': [out]},
    )
Y
Yang Yu 已提交
3203
    return out
3204 3205


3206
def is_empty(x, name=None):
3207
    """
3208

3209
    Test whether a Tensor is empty.
3210 3211

    Args:
3212 3213 3214 3215
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
3216 3217

    Returns:
3218
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
3219 3220 3221 3222

    Examples:
        .. code-block:: python

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
3234

3235
    """
H
hong 已提交
3236
    if in_dygraph_mode():
W
wanghuancoder 已提交
3237
        return _C_ops.is_empty(x)
3238 3239
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
3240

3241 3242 3243
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
3244 3245
    check_type(name, "name", (str, type(None)), "is_empty")

3246
    helper = LayerHelper("is_empty", **locals())
3247 3248
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
3249 3250 3251
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
3252
    return cond