optimizer.py 212.5 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import logging
20
from collections import defaultdict
21

Q
Qiao Longfei 已提交
22
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
23
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
24

25 26
from . import framework
from . import layers
27
from . import unique_name
28
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
29
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
30 31 32
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
33
from .layers import ops
34
from .regularizer import append_regularization_ops
35
from .dygraph import base as imperative_base
36
from .dygraph import no_grad
37
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
38 39 40
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
41
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
42
from .. import compat as cpt
M
MRXLT 已提交
43
import paddle
44

45
__all__ = [
46 47 48 49
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
50
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
S
sandyhouse 已提交
51 52 53
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer',
    'ExponentialMovingAverage', 'PipelineOptimizer', 'LookaheadOptimizer',
    'RecomputeOptimizer'
54
]
Q
Qiao Longfei 已提交
55 56 57 58 59 60


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
61 62
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
63 64
    """

65
    @imperative_base.no_grad
66 67 68 69
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
70
                 grad_clip=None,
71
                 name=None):
72 73
        # Because of the loop import, so place it in the function body
        from paddle.optimizer.lr_scheduler import _LRScheduler
H
hong 已提交
74 75
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
76
        self._name = name
L
lujun 已提交
77
        if framework.in_dygraph_mode():
78 79
            if not isinstance(learning_rate,
                              (float, LearningRateDecay, _LRScheduler)):
M
minqiyang 已提交
80
                raise TypeError(
81
                    "learning rate should be float or _LRScheduler, got %s here"
M
minqiyang 已提交
82
                    % type(learning_rate))
83
            if self._parameter_list is None:
84 85 86
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
87 88 89 90 91 92 93 94
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
95
        else:
96 97
            if not isinstance(learning_rate,
                              (float, framework.Variable, _LRScheduler)):
M
minqiyang 已提交
98
                raise TypeError(
99 100
                    "learning rate should be float or _LRScheduler, got %s here"
                    % type(learning_rate))
M
minqiyang 已提交
101

102 103 104 105 106
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
107
        self.regularization = regularization
108
        self._grad_clip = grad_clip
109
        self._learning_rate = learning_rate
D
dzhwinter 已提交
110 111
        # the learning rate type should be inferenced from loss
        self._dtype = None
112
        # each program should have a independent learning rate
113
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
114
        self._learning_rate_map = dict()
115
        if isinstance(self._learning_rate, framework.Variable):
116 117
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
118 119 120 121 122
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
123
        self.helper = None
124
        self._opti_name_list = []
H
hong 已提交
125
        self._accumulators_holder = {}
126
        self._param_device_map = dict()
H
hong 已提交
127 128 129 130

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
131 132
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
133 134 135

        Args: None
        Return:
T
tianshuo78520a 已提交
136
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
137 138 139 140 141
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
142 143 144 145 146 147

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
148 149

        '''
150
        from paddle.optimizer.lr_scheduler import _LRScheduler
H
hong 已提交
151 152 153 154 155
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
156 157 158
        if isinstance(self._learning_rate, _LRScheduler):
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
159
        if isinstance(self._learning_rate, LearningRateDecay):
160 161 162 163
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
164 165 166
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

167 168
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
169

170
                state_dict['global_step'] = var_temp
H
hong 已提交
171 172 173 174 175
        return state_dict

    @framework.dygraph_only
    def set_dict(self, state_dict):
        '''
T
tianshuo78520a 已提交
176
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
177 178 179 180 181 182 183 184

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
185

H
hong 已提交
186
                with fluid.dygraph.guard():
187
                    emb = fluid.dygraph.Embedding([10, 10])
188

H
hong 已提交
189
                    state_dict = emb.state_dict()
190
                    fluid.save_dygraph(state_dict, "paddle_dy")
191

192 193
                    adam = fluid.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), 
                                                parameter_list=emb.parameters())
H
hong 已提交
194
                    state_dict = adam.state_dict()
195
                    fluid.save_dygraph(state_dict, "paddle_dy")
196

H
hong 已提交
197
                    para_state_dict, opti_state_dict = fluid.load_dygraph( "paddle_dy")
198

199
                    adam.set_dict(opti_state_dict)
H
hong 已提交
200 201

        '''
202 203 204
        from paddle.optimizer.lr_scheduler import _LRScheduler
        if isinstance(self._learning_rate, _LRScheduler):
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
205 206

        if isinstance(self._learning_rate, LearningRateDecay):
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
229 230 231 232 233 234

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
235
                var = var_tmp.value()
H
hong 已提交
236 237 238 239 240 241 242 243
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
244
                    load_para_np = load_para.numpy()
H
hong 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
260

261 262
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
263

Q
Qiao Longfei 已提交
264
    def _create_global_learning_rate(self):
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        from paddle.optimizer.lr_scheduler import _LRScheduler
        if isinstance(self._learning_rate, _LRScheduler):
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

289 290 291
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
292 293 294 295 296 297 298 299 300 301 302 303
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
304
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
305
            elif isinstance(self._learning_rate, LearningRateDecay):
306 307 308
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
309
                raise TypeError(
310 311
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
312
        else:
313 314 315 316
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
317 318 319 320 321 322
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
323

324 325 326 327 328 329 330 331
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

410 411 412
    @framework.dygraph_only
    def current_step_lr(self):
        """
413
        :api_attr: imperative
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
459
        if isinstance(current_lr, framework.Variable):
460 461 462 463
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
464 465 466
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
467 468 469 470 471 472 473
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
474
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
475 476 477 478
        """
        get global decayed learning rate
        :return:
        """
479 480
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
481
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
482

Q
Qiao Longfei 已提交
483 484 485 486 487
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

488 489 490 491
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
492 493
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
494
        else:
W
Wu Yi 已提交
495
            if param_lr == 1.0:
Y
yuyang18 已提交
496
                return self._global_learning_rate()
W
Wu Yi 已提交
497
            else:
X
Xin Pan 已提交
498 499 500
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
501
                    return self._global_learning_rate() * param_lr
502 503 504 505 506 507 508

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
509
        """
510 511
        pass

512
    def _finish_update(self, block, parameters_and_grads):
513 514 515 516 517 518 519 520
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
521
            None
522 523 524
        """
        pass

525 526 527 528 529
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
530
                         shape=None,
531
                         type=None,
532
                         device=None):
533 534 535 536 537 538 539 540 541
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
542 543
        if self._name is not None:
            name = self._name + "_" + name
544 545
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
546
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
547
                return self._accumulators[name][param.name]
548
            raise Exception("Accumulator {} already exists for parameter {}".
549
                            format(name, param.name))
550 551
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
552
        assert isinstance(self.helper, LayerHelper)
553 554 555 556 557

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
558
        var = self.helper.create_global_variable(
559
            name=var_name,
Q
Qiao Longfei 已提交
560
            persistable=True,
F
fengjiayi 已提交
561
            dtype=dtype or param.dtype,
562
            type=param.type if type is None else type,
H
hong 已提交
563 564
            shape=shape,
            belong_to_optimizer=True)
565 566 567 568 569
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
570 571 572 573 574 575 576

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
577
        self._accumulators[name][param.name] = var
578
        return var
579 580 581 582 583 584 585 586 587 588 589

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
590 591
        if self._name is not None:
            name = self._name + "_" + name
592 593 594 595 596 597
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

598 599 600 601 602 603 604 605 606 607 608 609
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
610
                        break
611 612 613 614 615 616 617

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

618
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
619 620 621
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
622
          parameters_and_grads(list(tuple(Variable, Variable))):
623
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
624 625

        Returns:
626
          return_op_list: a list of operators that will complete one step of
627 628 629
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
630
        """
631 632 633 634 635
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
636
        # for parameters and extend _finish_update method to add custom ops.
637

638
        # Allways called under program_guard use global block as loss block
639 640 641
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

642
        global_block = framework.default_main_program().global_block()
643 644 645 646 647 648 649 650 651
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
652
        self.helper = LayerHelper(self.__class__.__name__)
653
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
654
        self._create_accumulators(
655
            target_block,
C
chengduo 已提交
656
            [p[0] for p in parameters_and_grads if p[0].trainable])
657 658
        self._create_global_learning_rate()

M
minqiyang 已提交
659
        if framework.in_dygraph_mode():
660 661 662
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
663 664
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
665 666 667 668 669 670 671
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
672 673 674 675 676
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
677 678 679

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
680
        self._finish_update(target_block, parameters_and_grads)
681

682 683
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
684 685

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
686 687 688 689 690 691 692 693 694
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
695 696
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
712 713 714 715 716 717 718 719 720 721 722 723 724
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
725 726
        return new_param_grads, (table_param, table_grad), sgd_op

727 728 729
    def _append_dgc_ops(self, param_and_grad):
        pass

730 731 732 733 734 735 736
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
737
        The first part of ``minimize``, do auto-diff to append backward operations for
738 739 740
        the current program.

        Args:
741 742 743 744
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
745
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
746 747
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
748
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
749 750 751
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
752

753
        Return:
754 755
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
756

757
        Examples:
758
            See examples in ``apply_gradients``.
759
        """
760
        act_no_grad_set = None
L
Leo Chen 已提交
761
        if framework.in_dygraph_mode():
762
            pass
L
Leo Chen 已提交
763 764
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
765

C
chengduo 已提交
766
        self._dtype = loss.dtype
L
lujun 已提交
767
        if framework.in_dygraph_mode():
C
chengduo 已提交
768
            params_grads = []
769
            for param in self._parameter_list:
C
chengduo 已提交
770 771
                if not param.trainable:
                    continue
772
                if param._grad_ivar() is not None:
C
chengduo 已提交
773
                    # create gradient variable
774
                    grad_var = param._grad_ivar()
C
chengduo 已提交
775
                    params_grads.append((param, grad_var))
776
        else:
C
chengduo 已提交
777 778 779 780 781
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
782 783 784 785
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
786 787
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
788 789
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
790
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
791
                # Note: since we can't use all_reduce_op now,
D
Dong Daxiang 已提交
792
                # dgc_op should be the last op of one grad.
C
chengduo 已提交
793 794
                self._append_dgc_ops(params_grads)
        return params_grads
795 796 797 798 799 800 801 802

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
803

804 805
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
806

807 808 809
        Examples:
            .. code-block:: python

810
                import paddle.fluid as fluid
811 812 813 814 815 816 817
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
818

819 820
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

821
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
822 823 824 825
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
826 827

        # Add regularization if any
828 829
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
830 831 832 833

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
834 835 836 837 838 839 840 841 842 843 844 845
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
846
        if framework.in_dygraph_mode():
C
chengduo 已提交
847 848
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
849 850
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
851 852
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
853 854 855 856 857 858 859
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
860
    def _get_no_grad_set(self, loss, no_grad_set=None):
861
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
862 863 864 865 866 867 868 869
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

901
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
902 903
    def minimize(self,
                 loss,
904
                 startup_program=None,
Q
Qiao Longfei 已提交
905
                 parameter_list=None,
906
                 no_grad_set=None):
907
        """
908
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
909

910
        Args:
911 912 913 914
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
915
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
916 917
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
918
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
919
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
920

921
        Returns:
922 923 924
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
925 926 927
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
928 929 930

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
931
        """
C
chengduo 已提交
932
        assert isinstance(loss, Variable), "The loss should be an Variable."
933

934 935
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
C
chengduo 已提交
936 937 938 939 940
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
941

C
chengduo 已提交
942 943
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
944

Q
Qiao Longfei 已提交
945
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
946 947 948


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
949 950 951 952 953 954 955
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

956 957 958
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
959
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
960 961
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
962 963 964 965 966
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
967 968 969 970
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
971 972
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
973 974 975 976

    Examples:
        .. code-block:: python

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1002 1003
    """

1004 1005 1006 1007
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1008
                 grad_clip=None,
1009
                 name=None):
Q
Qiao Longfei 已提交
1010
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1011
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1012
            learning_rate=learning_rate,
1013
            parameter_list=parameter_list,
X
Xin Pan 已提交
1014
            regularization=regularization,
1015
            grad_clip=grad_clip,
X
Xin Pan 已提交
1016
            name=name)
Q
Qiao Longfei 已提交
1017 1018
        self.type = "sgd"

1019
    @no_grad
1020
    def _append_optimize_op(self, block, param_and_grad):
1021
        lr = self._create_param_lr(param_and_grad)
1022
        if framework.in_dygraph_mode():
1023 1024 1025
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
1026

1027
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1028 1029 1030 1031 1032 1033
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1034
                "LearningRate": lr
Q
Qiao Longfei 已提交
1035
            },
M
minqiyang 已提交
1036 1037
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1038 1039

        return sgd_op
1040 1041 1042


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1057
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1058 1059 1060

        & else:

Q
qiaolongfei 已提交
1061
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1062

1063 1064 1065 1066
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1067
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1068 1069
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1070
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1071 1072 1073 1074 1075
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1076 1077 1078 1079
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1080 1081
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1082 1083 1084 1085

    Examples:
        .. code-block:: python

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1111 1112 1113
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1114 1115 1116
    def __init__(self,
                 learning_rate,
                 momentum,
1117
                 parameter_list=None,
X
Xin Pan 已提交
1118 1119
                 use_nesterov=False,
                 regularization=None,
1120
                 grad_clip=None,
X
Xin Pan 已提交
1121
                 name=None):
1122 1123
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1124
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1125
            learning_rate=learning_rate,
1126
            parameter_list=parameter_list,
X
Xin Pan 已提交
1127
            regularization=regularization,
1128
            grad_clip=grad_clip,
X
Xin Pan 已提交
1129
            name=name)
1130 1131
        self.type = "momentum"
        self._momentum = momentum
1132
        self._use_nesterov = bool(use_nesterov)
1133 1134 1135 1136 1137

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1138
            self._add_accumulator(self._velocity_acc_str, p)
1139 1140 1141 1142 1143 1144

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1145 1146 1147 1148 1149 1150 1151 1152
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1153

1154
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1155 1156 1157 1158
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1159
            "LearningRate": [lr]
1160 1161 1162 1163 1164 1165
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1166 1167 1168
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1169 1170 1171
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1172
            stop_gradient=True)
1173 1174

        return momentum_op
1175 1176


1177
class DGCMomentumOptimizer(Optimizer):
1178
    """
S
sandyhouse 已提交
1179
	:api_attr: Static Graph
S
swtkiwi 已提交
1180

1181
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1182

G
gongweibao 已提交
1183
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1184 1185
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1186
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1187 1188 1189

    Eventually, these gradients become large enough to be transmitted.

1190
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1191

G
gongweibao 已提交
1192
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1193 1194 1195 1196

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1197

1198 1199
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1200

1201
        2. Call momentum to optimize the cost.
1202 1203

    Args:
1204 1205
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1206
        momentum (float): Momentum factor.
G
gongweibao 已提交
1207
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1208 1209 1210 1211 1212 1213 1214
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1215
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1216 1217
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1218
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1219 1220 1221 1222 1223
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1224 1225 1226
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1227 1228
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1229 1230 1231 1232

    Examples:
        .. code-block:: python

1233
            import paddle.fluid as fluid
1234
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1235 1236 1237 1238 1239
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1240 1241

    """
1242 1243
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1244 1245 1246 1247 1248 1249 1250

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1251
                 parameter_list=None,
1252 1253 1254
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1255
                 grad_clip=None,
1256
                 name=None):
Z
zhongpu 已提交
1257 1258
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1259 1260 1261 1262

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1263 1264 1265 1266
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1267
            parameter_list=parameter_list,
1268
            regularization=regularization,
1269
            grad_clip=grad_clip,
1270 1271 1272 1273
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1274

1275
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1276
        self._rampup_begin_step = rampup_begin_step
1277 1278
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1279

1280
        self._rampup_begin_step_var = None
1281
        self._global_step_var = None
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1294 1295

            self._num_trainers = num_trainers
1296
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1297

1298 1299
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1300

1301 1302 1303
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1304

1305 1306
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1307
            from .regularizer import L1Decay, L2Decay
1308 1309 1310 1311
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1312 1313
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1314
        return regular_type, regular_coeff
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1342 1343

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1344 1345 1346
            type = "momentum"
        else:
            type = "dgc_momentum"
1347 1348 1349 1350 1351
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1352
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1353 1354 1355

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1356 1357 1358 1359
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1360 1361 1362
            stop_gradient=True)
        return dgc_momentum_op

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1395 1396 1397 1398 1399 1400
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1401
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1402

1403 1404 1405
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1406 1407 1408 1409 1410
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1411
            name=core.dgc.kDGCRampUpBeginStepName(),
1412 1413 1414
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1415 1416
        self.helper = LayerHelper(self.__class__.__name__)

1417
        for param_var, grad_var in param_and_grads:
1418 1419 1420
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1421
            if not self._is_use_dgc(param_var, grad_var):
1422 1423
                continue

1424
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1425 1426 1427 1428 1429

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1430
                name=param_var.name + core.dgc.kDGCKName(),
1431 1432 1433 1434 1435 1436 1437
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1438
                name=param_var.name + core.dgc.kDGCEncodedName(),
1439 1440 1441
                value=0.0,
                force_cpu=False)

1442 1443 1444 1445 1446 1447 1448 1449
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1469 1470
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1471
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1472
                         encoded_var, gather_var)
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1488 1489
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1490 1491 1492 1493 1494

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1495
            type="dgc_clip_by_norm",
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1508
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1509 1510

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1511
                encoded_var, gather_var):
1512 1513
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1514

1515 1516 1517 1518 1519 1520 1521
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1522 1523 1524 1525 1526 1527
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1528
                "Param": param_var,
1529 1530
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1531 1532 1533 1534 1535 1536
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1537 1538
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1539 1540 1541 1542 1543 1544
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1545
                "rampup_step": float(self._rampup_step),
1546 1547
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1548 1549 1550 1551 1552 1553 1554 1555
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1556
    @imperative_base.no_grad
1557 1558 1559 1560 1561 1562 1563
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1564
        # DGC clip and regularization in optimizer.backward
1565 1566 1567 1568 1569 1570
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1571
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1572 1573 1574 1575 1576
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

1607 1608 1609 1610 1611 1612
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1613
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1614 1615
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1616 1617 1618 1619 1620
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1621 1622 1623 1624
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1625 1626
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1627 1628 1629 1630

    Examples:
        .. code-block:: python

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1647 1648 1649 1650 1651 1652 1653 1654
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1655
                 parameter_list=None,
1656
                 regularization=None,
1657
                 grad_clip=None,
1658 1659 1660 1661 1662
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1663
            parameter_list=parameter_list,
1664
            regularization=regularization,
1665
            grad_clip=grad_clip,
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
1700 1701
            },
            stop_gradient=True)
1702 1703 1704 1705

        return momentum_op


1706
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1707
    """
1708 1709
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1710

1711
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1712 1713 1714 1715 1716 1717 1718

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1719 1720 1721 1722 1723 1724
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1725 1726 1727
    for numerical stability to avoid the division by zero error.

    Args:
1728 1729 1730 1731
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
1732
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1733 1734
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1735 1736 1737 1738 1739
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1740 1741 1742 1743
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1744 1745 1746 1747 1748
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1749 1750 1751 1752

    Examples:
        .. code-block:: python

1753
            import numpy as np
1754
            import paddle.fluid as fluid
1755 1756

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1757
            inp = fluid.data(name="inp", shape=[2, 2])
1758 1759
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1760
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1761 1762 1763 1764 1765 1766 1767
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1768 1769 1770
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1771 1772 1773
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1774
                 parameter_list=None,
X
Xin Pan 已提交
1775
                 regularization=None,
1776
                 grad_clip=None,
1777
                 name=None,
X
xuezhong 已提交
1778
                 initial_accumulator_value=0.0):
1779 1780
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1781
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1782
            learning_rate=learning_rate,
1783
            parameter_list=parameter_list,
X
Xin Pan 已提交
1784
            regularization=regularization,
1785
            grad_clip=grad_clip,
X
Xin Pan 已提交
1786
            name=name)
1787 1788
        self.type = "adagrad"
        self._epsilon = epsilon
1789
        self.initial_accumulator_value = initial_accumulator_value
1790 1791 1792 1793 1794

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1795 1796 1797 1798
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1799 1800 1801 1802 1803 1804

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1805
        # Create the adagrad optimizer op
1806 1807 1808 1809 1810 1811
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1812
                "LearningRate": self._create_param_lr(param_and_grad)
1813 1814 1815
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1816 1817
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1818 1819

        return adagrad_op
1820 1821 1822


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1823
    """
T
tianshuo78520a 已提交
1824
    The Adam optimizer uses an optimization described at the end
1825 1826 1827 1828 1829
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1844 1845
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1846
    Args:
1847 1848
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1849 1850
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1851
            The default value is 0.9.
1852 1853
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1854 1855 1856
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
1857
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1858 1859
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1860 1861 1862 1863 1864
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1865 1866 1867 1868
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1879 1880 1881 1882

    Examples:
        .. code-block:: python

1883 1884 1885 1886 1887 1888
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1889 1890
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1924
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1953
                                                    beta1=beta1,
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1965 1966 1967
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1968 1969
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1970 1971 1972 1973 1974

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1975
                 epsilon=1e-8,
1976
                 parameter_list=None,
X
Xin Pan 已提交
1977
                 regularization=None,
1978
                 grad_clip=None,
Q
Qiao Longfei 已提交
1979
                 name=None,
Q
Qiao Longfei 已提交
1980
                 lazy_mode=False):
1981 1982 1983 1984
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1985
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1986
            learning_rate=learning_rate,
1987
            parameter_list=parameter_list,
X
Xin Pan 已提交
1988
            regularization=regularization,
1989
            grad_clip=grad_clip,
X
Xin Pan 已提交
1990
            name=name)
1991 1992 1993 1994
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1995
        self._lazy_mode = lazy_mode
1996 1997 1998 1999 2000 2001

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2002 2003
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
2004 2005 2006
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
2007 2008
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2009
                shape=[1],
2010
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
2011 2012 2013
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
2014 2015
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2016
                shape=[1],
2017
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2018 2019 2020 2021 2022 2023 2024 2025

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
2026 2027 2028 2029
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
2030
        lr = self._create_param_lr(param_and_grad)
2031
        # create the adam optimize op
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

2047
        inputs = {
2048 2049
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2050
            "LearningRate": [lr],
2051 2052 2053 2054
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2055 2056
        }
        outputs = {
2057 2058 2059 2060 2061
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

2078 2079
        adam_op = block.append_op(
            type=self.type,
2080 2081 2082
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2083
            stop_gradient=True)
2084 2085 2086

        return adam_op

2087 2088

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
2089
    """
2090 2091 2092 2093
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2094

2095
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2109
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2123
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2124 2125
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2126 2127 2128 2129 2130
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2131 2132 2133 2134
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2135 2136 2137 2138 2139 2140
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2155
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2156 2157
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2158
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2159 2160 2161 2162 2163 2164 2165 2166 2167
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2168 2169 2170
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2171
    _beta1_pow_acc_str = "beta1_pow_acc"
2172 2173 2174 2175 2176

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2177
                 epsilon=1e-8,
2178
                 parameter_list=None,
X
Xin Pan 已提交
2179
                 regularization=None,
2180
                 grad_clip=None,
X
Xin Pan 已提交
2181
                 name=None):
2182 2183 2184 2185
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2186
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2187
            learning_rate=learning_rate,
2188
            parameter_list=parameter_list,
X
Xin Pan 已提交
2189
            regularization=regularization,
2190
            grad_clip=grad_clip,
X
Xin Pan 已提交
2191
            name=name)
2192 2193 2194 2195 2196 2197 2198 2199
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2200 2201
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2202 2203 2204 2205 2206
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2207 2208 2209 2210 2211 2212 2213

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2214 2215
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2216 2217 2218 2219 2220 2221
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2222
                "LearningRate": self._create_param_lr(param_and_grad),
2223 2224
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2225
                "Beta1Pow": beta1_pow_acc
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2236 2237
            },
            stop_gradient=True)
2238 2239 2240

        return adamax_op

2241
    def _finish_update(self, block, parameters_and_grads):
2242 2243 2244
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2245
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2246
            if grad is None or param.trainable is False:
2247
                continue
X
Xin Pan 已提交
2248 2249
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2250 2251
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2252
                block.append_op(
2253 2254 2255
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2256 2257
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2258 2259


2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2298
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2299 2300
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2301 2302 2303 2304 2305 2306 2307 2308
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2309 2310
                 sigma=1e-8,
                 parameter_list=None):
2311 2312 2313 2314
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2315 2316
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2317 2318 2319 2320
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2321 2322 2323 2324 2325 2326 2327
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2328 2329 2330 2331 2332

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2333 2334 2335
        if self._seed == None:
            self._seed = 0

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2347 2348
                "sigma": self._sigma,
                "seed": self._seed
2349 2350 2351 2352 2353 2354
            },
            stop_gradient=True)

        return dpsgd_op


2355
class DecayedAdagradOptimizer(Optimizer):
2356
    """
2357 2358 2359
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2360

2361
    The parameter ``param_out`` update rule with gradient ``grad``:
2362 2363 2364 2365 2366 2367 2368

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2369 2370 2371 2372
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2373 2374 2375
    stability to avoid the division by zero error.

    Args:
2376 2377 2378 2379 2380
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2381
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2382 2383
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2384 2385 2386 2387 2388
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2389 2390 2391 2392
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2393 2394 2395 2396 2397 2398
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2399 2400 2401 2402

    Examples:
        .. code-block:: python

2403 2404
            import paddle.fluid as fluid

2405 2406 2407 2408
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2409
            optimizer.minimize(cost)
2410 2411 2412
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2413 2414 2415 2416
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2417
                 parameter_list=None,
X
Xin Pan 已提交
2418
                 regularization=None,
2419
                 grad_clip=None,
X
Xin Pan 已提交
2420
                 name=None):
2421 2422 2423 2424
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2425
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2426
            learning_rate=learning_rate,
2427
            parameter_list=parameter_list,
X
Xin Pan 已提交
2428
            regularization=regularization,
2429
            grad_clip=grad_clip,
X
Xin Pan 已提交
2430
            name=name)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2458 2459
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2460
            stop_gradient=True)
2461 2462

        return decayed_adagrad_op
2463 2464


2465
class AdadeltaOptimizer(Optimizer):
2466
    """
Z
Zeng Jinle 已提交
2467
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2468

Z
Zeng Jinle 已提交
2469
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2470 2471 2472
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2473

Z
Zeng Jinle 已提交
2474 2475
    .. math::

Z
Zeng Jinle 已提交
2476
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2477

Z
Zeng Jinle 已提交
2478
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2479

Z
Zeng Jinle 已提交
2480
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2481 2482

    Args:
Z
Zeng Jinle 已提交
2483 2484 2485
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2486
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2487 2488
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2489 2490 2491 2492 2493
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2494 2495 2496 2497
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2498 2499 2500
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2501 2502 2503 2504

    Examples:
        .. code-block:: python

2505
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2506

2507
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2508 2509
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2510 2511
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2512

Z
Zeng Jinle 已提交
2513 2514 2515 2516
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2517
    """
2518

2519 2520 2521
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2522 2523 2524 2525
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2526
                 parameter_list=None,
X
Xin Pan 已提交
2527
                 regularization=None,
2528
                 grad_clip=None,
X
Xin Pan 已提交
2529
                 name=None):
2530 2531 2532 2533 2534 2535
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2536
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2537
            learning_rate=learning_rate,
2538
            parameter_list=parameter_list,
X
Xin Pan 已提交
2539
            regularization=regularization,
2540
            grad_clip=grad_clip,
X
Xin Pan 已提交
2541
            name=name)
2542 2543 2544 2545 2546
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2547 2548
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2549 2550 2551 2552 2553 2554

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2555 2556
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2578 2579
                   "rho": self._rho},
            stop_gradient=True)
2580 2581 2582 2583

        return adadelta_op


Q
qingqing01 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2594
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2595 2596 2597 2598

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2599
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2600 2601 2602 2603 2604 2605

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2606
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2622 2623 2624 2625
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2626
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2627 2628 2629 2630 2631
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2632 2633 2634
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2635
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2636
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2637
        momentum(float): :math:`\\beta` in equation is the momentum term,
2638
            default is 0.0.
2639 2640 2641 2642
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
2643
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2644 2645
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2646 2647 2648 2649 2650
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2651 2652 2653 2654
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2655 2656
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2657 2658 2659 2660 2661 2662 2663

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2689 2690 2691 2692
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2693
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2694 2695 2696 2697 2698 2699

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2700
                 centered=False,
2701
                 parameter_list=None,
X
Xin Pan 已提交
2702
                 regularization=None,
2703
                 grad_clip=None,
X
Xin Pan 已提交
2704
                 name=None):
Q
qingqing01 已提交
2705
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2706
            learning_rate=learning_rate,
2707
            parameter_list=parameter_list,
X
Xin Pan 已提交
2708
            regularization=regularization,
2709
            grad_clip=grad_clip,
X
Xin Pan 已提交
2710
            name=name)
Q
qingqing01 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2724
        self._centered = centered
Q
qingqing01 已提交
2725 2726 2727 2728 2729 2730 2731 2732

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2733
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2743 2744
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2745 2746 2747 2748 2749 2750 2751
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2752
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2753 2754 2755 2756 2757
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2758 2759
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2760 2761 2762 2763
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2764 2765
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2766 2767
            },
            stop_gradient=True)
Q
qingqing01 已提交
2768 2769 2770 2771

        return rmsprop_op


Q
qiaolongfei 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2812 2813 2814 2815 2816
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
2817
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2818 2819
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2820 2821 2822 2823 2824
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2825 2826 2827 2828
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2829 2830
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2831 2832 2833 2834 2835 2836 2837

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2862

2863
    NOTE:
C
chengduo 已提交
2864
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2865 2866 2867 2868 2869
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2870 2871 2872 2873 2874
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2875
                 parameter_list=None,
X
Xin Pan 已提交
2876
                 regularization=None,
2877
                 grad_clip=None,
X
Xin Pan 已提交
2878
                 name=None):
Q
qiaolongfei 已提交
2879
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2880
            learning_rate=learning_rate,
2881
            parameter_list=parameter_list,
X
Xin Pan 已提交
2882
            regularization=regularization,
2883
            grad_clip=grad_clip,
X
Xin Pan 已提交
2884
            name=name)
Q
qiaolongfei 已提交
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
2924
                   "l2": self._l2,
M
minqiyang 已提交
2925 2926
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2927 2928 2929 2930

        return ftrl_op


Y
Yibing Liu 已提交
2931 2932 2933 2934 2935 2936
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2937 2938
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2939 2940 2941 2942 2943

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2944
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2945

Y
Yibing Liu 已提交
2946
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2947

Y
Yibing Liu 已提交
2948
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2949

Y
Yibing Liu 已提交
2950
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2951 2952 2953 2954 2955 2956


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2957 2958 2959 2960 2961 2962 2963 2964
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
2965
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2966 2967
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2968 2969 2970 2971 2972
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2973 2974 2975 2976
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
2977 2978 2979 2980 2981
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
2982 2983 2984 2985 2986 2987

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
2988
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
2989 2990 2991
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
2992 2993 2994 2995 2996
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
2997 2998 2999 3000
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
3001
    # these two not used in op temporarily
Y
Yibing Liu 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3011
                 parameter_list=None,
Y
Yibing Liu 已提交
3012
                 regularization=None,
3013
                 grad_clip=None,
Y
Yibing Liu 已提交
3014
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3015 3016 3017 3018 3019 3020 3021 3022
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3023
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3024
            regularization=regularization,
3025
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3026 3027 3028 3029 3030 3031
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3032
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3033 3034 3035

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3036
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3047 3048 3049 3050 3051 3052
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3074
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3075 3076 3077 3078 3079 3080
            },
            stop_gradient=True)

        return lamb_op


3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3094
Dpsgd = DpsgdOptimizer
3095
DecayedAdagrad = DecayedAdagradOptimizer
3096
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3097
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3098
Ftrl = FtrlOptimizer
3099
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3100
Lamb = LambOptimizer
3101 3102 3103


class ModelAverage(Optimizer):
3104
    """
S
sandyhouse 已提交
3105
	:api_attr: Static Graph
S
swtkiwi 已提交
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3135 3136

    Args:
3137 3138 3139
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3140 3141 3142 3143 3144
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3145 3146 3147
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3148

3149
    Examples:
Q
qiaolongfei 已提交
3150 3151 3152

      .. code-block:: python

3153 3154 3155 3156 3157 3158
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3159

3160 3161 3162 3163
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3164
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3165 3166 3167 3168 3169 3170 3171 3172
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3173
                                                         max_average_window=12500)
3174 3175

            exe.run(startup_program)
3176 3177 3178 3179 3180
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3181 3182

            # apply ModelAverage
3183
            with model_average.apply(exe):
3184 3185 3186 3187
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3188 3189 3190
    """

    def __init__(self,
W
wanghaoshuang 已提交
3191
                 average_window_rate,
3192 3193
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3194 3195
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3196 3197
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3198 3199
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3200 3201 3202
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3203

3204
        self.params_grads = []
3205 3206
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3207
            if param.do_model_average != False:
3208
                grad = param.block.create_var(
3209 3210
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3211 3212
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3213
                    stop_gradient=True)
3214
                self.params_grads.append((param, grad))
3215

3216
        for param, grad in self.params_grads:
3217 3218
            if grad is None:
                continue
X
Xin Pan 已提交
3219 3220
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3221
                self._append_average_accumulate_op(param)
3222

3223 3224 3225 3226
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3227
                self._add_average_apply_op(block, param_grad)
3228 3229 3230 3231 3232

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3233
                self._add_average_restore_op(block, param_grad)
3234

3235
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3236 3237 3238 3239 3240 3241
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3242
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3243
        old_num_accumulates = block._clone_variable(
3244
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3245
        num_updates = block._clone_variable(
3246 3247 3248 3249 3250 3251
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3252 3253 3254 3255
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3256
        ops._elementwise_div(x=sum, y=tmp, out=param)
3257 3258

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3259 3260
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3298 3299
            },
            stop_gradient=True)
3300

S
rename  
sneaxiy 已提交
3301
    @signature_safe_contextmanager
3302
    def apply(self, executor, need_restore=True):
3303 3304
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3305 3306

        Args:
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3351
        """
3352 3353 3354 3355 3356 3357
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3358 3359

    def restore(self, executor):
3360 3361
        """
        Restore ``Parameter`` values of current model.
3362 3363
        
        Args:
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3408
        """
3409
        executor.run(self.restore_program)
3410 3411 3412 3413


class ExponentialMovingAverage(object):
    """
S
sandyhouse 已提交
3414
	:api_attr: Static Graph
S
swtkiwi 已提交
3415

3416 3417 3418 3419 3420 3421
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3422
        \\text{EMA}_0 & = 0
3423

3424 3425
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3426 3427 3428 3429
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3451 3452 3453


    Args:
Y
Yibing Liu 已提交
3454 3455 3456 3457 3458 3459 3460
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3461 3462 3463 3464 3465


    Examples:

	.. code-block:: python
3466 3467 3468 3469 3470

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3471
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3472 3473 3474 3475 3476 3477 3478 3479
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3480
	    global_steps = fluid.layers.autoincreased_step_counter()
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3510 3511
    """

3512
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3513 3514 3515
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3516
        self._decay = decay
3517
        self._thres_steps = thres_steps
3518
        self._name = name if name is not None else ''
3519 3520
        self._decay_var = self._get_ema_decay()

3521
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3522
        self._params_tmps = []
3523
        for param in default_main_program().global_block().all_parameters():
3524 3525 3526 3527 3528 3529 3530
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3531
                self._params_tmps.append((param, tmp))
3532

Y
Yibing Liu 已提交
3533 3534
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3535 3536
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3537
                self._ema_vars[param.name] = self._create_ema_vars(param)
3538 3539 3540 3541

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3542
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3543
            for param, tmp in self._params_tmps:
3544 3545
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3546
                ema = block._clone_variable(self._ema_vars[param.name])
3547
                layers.assign(input=param, output=tmp)
3548
                # bias correction
3549 3550 3551
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
                        layers.assign(output=ema, input=ema / (1.0 - decay_pow))
3552 3553 3554 3555 3556
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3557
            for param, tmp in self._params_tmps:
3558 3559 3560 3561
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3584 3585 3586 3587 3588 3589 3590
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3591
        decay_var = block._clone_variable(self._decay_var)
3592 3593
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3594

Y
Yibing Liu 已提交
3595
    def _create_ema_vars(self, param):
3596 3597 3598 3599 3600 3601 3602 3603 3604
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3605 3606 3607 3608 3609
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3610 3611
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3612
        param_master_emas = []
Y
Yibing Liu 已提交
3613 3614 3615 3616
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3617
                if param.name + '.master' in self._ema_vars:
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3635

3636 3637 3638 3639 3640 3641 3642
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3643 3644
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3660 3661 3662


class PipelineOptimizer(object):
3663
    """
S
sandyhouse 已提交
3664
	:api_attr: Static Graph
S
swtkiwi 已提交
3665

3666 3667 3668 3669
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
3670

3671
    Args:
3672 3673 3674 3675
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
3676 3677
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3678

3679
            import paddle.fluid as fluid
H
hutuxian 已提交
3680 3681
            import paddle.fluid.layers as layers

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
3698
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
3699
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
3700
            optimizer.minimize(loss)
3701 3702 3703 3704 3705 3706 3707 3708 3709

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
3710 3711
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3712 3713
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
3714
            exe.train_from_dataset(
3715
                    fluid.default_main_program())
3716
            data_loader.reset()
3717 3718
    """

3719
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
3720 3721
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
M
MRXLT 已提交
3722 3723
        if not isinstance(optimizer, Optimizer) and not isinstance(
                optimizer, paddle.optimizer.Optimizer):
3724 3725 3726 3727
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
                             "Optimizer, but the given type is {}.".format(
                                 type(optimizer)))
H
hutuxian 已提交
3728
        self._optimizer = optimizer
3729 3730 3731 3732
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
3733
            "start_cpu_core_id must be a non negative integer.")
H
hutuxian 已提交
3734
        self._start_cpu_core_id = start_cpu_core_id
3735 3736 3737 3738 3739 3740
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
3741
        self._param_device_map = None
H
hutuxian 已提交
3742

H
hutuxian 已提交
3743
    def _create_vars(self, block, main_program):
3744
        # Create vars for block, copied from main_program's global block
H
hutuxian 已提交
3745 3746 3747 3748 3749
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
3750 3751 3752
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
3753 3754 3755
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
3756 3757 3758 3759
                if source_var.type == core.VarDesc.VarType.READER:
                    block.create_var(name=var, type=core.VarDesc.VarType.READER)
                else:
                    block._clone_variable(source_var, False)
H
hutuxian 已提交
3760

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
    def _is_loss_grad_op(self, op):
        if self._op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self._op_role_key])
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

    def _is_backward_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Backward)

    def _is_optimize_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Optimize)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

3780
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
3781
        """
3782
        Split a program into sections according to devices that ops run on.
3783
        The ops of the role LRSched are copied to all sections.
3784 3785 3786

        Args:
            main_program (Program): the main program
S
sandyhouse 已提交
3787
            devices: all used devices
H
hutuxian 已提交
3788
        """
3789 3790 3791
        programs = []
        # Map from device to its corresponding section program info
        device_program_map = dict()
3792 3793 3794
        for device in devices:
            p = {'program': Program()}
            device_program_map[device] = p
3795

3796
        block = main_program.block(0)
3797 3798
        for op in block.ops:
            device = op.attr(self._op_device_key)
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
            op_role = op.attr(self._op_role_key)
            if int(op_role) & int(self._op_role.LRSched):
                # Copy ops of the role LRSched to all sections.
                for device in device_program_map.keys():
                    program = device_program_map[device]
                    op_desc = op.desc
                    ap_op = program["program"].block(0).desc.append_op()
                    ap_op.copy_from(op_desc)
                    ap_op._set_attr(self._op_device_key, device)
            else:
                program = device_program_map[device]
                op_desc = op.desc
                ap_op = program["program"].block(0).desc.append_op()
                ap_op.copy_from(op_desc)
3813 3814 3815 3816 3817

        for key in sorted(device_program_map.keys()):
            program = device_program_map[key]
            program['program']._sync_with_cpp()
            programs.append(program)
H
hutuxian 已提交
3818

3819
        return programs
H
hutuxian 已提交
3820

S
sandyhouse 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
    def _split_startup_program(self, startup_program, local_rank):
        block = startup_program.block(0)
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
            if device:
                device_index = int(device.split(":")[1])
            else:
                device_index = 0
            if device_index != local_rank: continue
            op_role = op.attr(self._op_role_key)
            op_desc = op.desc
            ap_op = new_startup_program.block(0).desc.append_op()
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, device)
        self._create_vars(new_startup_program.block(0), startup_program)
        return new_startup_program

S
sandyhouse 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
    def _find_post_op(self, ops, cur_op, var_name):
        """
        Find the real post op that has variable named var_name as input.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as output.
            var_name (string): Variable name.
        """
        post_op = []
        before = True
        for op in ops:
            if op == cur_op:
                before = False
                continue
            if before:
                continue
            for in_var_name in op.input_arg_names:
                if in_var_name == var_name:
                    post_op.append(op)
                    break
        if post_op:
            return post_op[0]
        return None
3864 3865

    def _find_real_prev_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3866
        """
3867 3868 3869 3870 3871 3872 3873
        Find the real previous op that outputs variable named var_name.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as input.
            var_name (string): Variable name.
H
hutuxian 已提交
3874
        """
3875
        prev_op = []
H
hutuxian 已提交
3876
        for op in ops:
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
            if op == cur_op:
                break
            for out_var_name in op.output_arg_names:
                if out_var_name == var_name:
                    prev_op.append(op)
        if prev_op:
            # A op may have more than one prev op,
            # e.g., for 'learning_rate', there may be multiple ops have it as
            # output.
            return prev_op[-1]
        return None

    def _rename_arg(self, op, old_name, new_name):
        op_desc = op.desc
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=ref_var.desc.need_check_feed())
        return new_var

    def _get_data_var_info(self, block):
        """
        Get all vars whose is_data attribute are true and then rename them.
        """
3917
        # map of data vars to devices that that data on
3918 3919 3920 3921
        data_devices_map = dict()
        for op in block.ops:
            dev_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
3922 3923 3924
                if "blocking_queue" in var_name: continue
                var = block.var(var_name)
                if not var.is_data:
3925 3926 3927 3928 3929
                    continue
                if not var_name in data_devices_map:
                    data_devices_map[var_name] = []
                if not dev_spec in data_devices_map[var_name]:
                    data_devices_map[var_name].append(dev_spec)
3930
        return data_devices_map
H
hutuxian 已提交
3931

S
sandyhouse 已提交
3932 3933
    def _insert_sendrecv_for_data_var(self, main_block, programs, startup,
                                      devices):
3934
        """
S
sandyhouse 已提交
3935
        Insert send and recv ops for data var that on other devices.
3936 3937 3938 3939 3940 3941 3942 3943

        Args:
            main_block (Block): Global block for main program
            programs (dict): Dictionary for section params
            startup (Program): Startup program
            devices (list): List of devices in the format (dev:dev_index)
        """
        main_program = main_block.program
3944
        data_devices_map = self._get_data_var_info(main_block)
3945 3946 3947

        first_prog = programs[0]['program']
        first_block = first_prog.block(0)
S
sandyhouse 已提交
3948
        insert_index = 0
3949
        for op in first_block.ops:
S
sandyhouse 已提交
3950
            insert_index += 1
3951 3952
            if op.type == "read":
                break
3953
        first_dev_spec = devices[0]
S
sandyhouse 已提交
3954
        first_dev_index = int(first_dev_spec.split(':')[1])
3955 3956
        for var_name in data_devices_map.keys():
            for device in data_devices_map[var_name]:
3957
                if device == first_dev_spec: continue
3958 3959 3960 3961
                main_var = main_block.var(var_name)
                assert main_var.is_data
                if not var_name in first_block.vars:
                    self._create_var(first_block, main_var, var_name)
S
sandyhouse 已提交
3962
                dev_index = int(device.split(':')[1])
3963
                first_block._insert_op(
S
sandyhouse 已提交
3964 3965
                    index=insert_index,
                    type='c_send',
3966 3967 3968
                    inputs={'X': first_block.var(var_name)},
                    attrs={
                        self._op_device_key: first_dev_spec,
S
sandyhouse 已提交
3969 3970
                        self._op_role_key: self._op_role.Forward,
                        'peer': dev_index
3971 3972 3973 3974 3975 3976 3977 3978
                    })
                # Get the device that that data on
                assert device in devices
                prog_index = devices.index(device)
                prog = programs[prog_index]['program']
                block = prog.block(0)
                index = 0
                source_var = main_program.block(0).var(var_name)
3979
                new_var = self._create_var(block, source_var, var_name)
3980
                block._insert_op(
3981
                    index=0,
S
sandyhouse 已提交
3982
                    type='c_recv',
3983 3984
                    outputs={'Out': [new_var]},
                    attrs={
S
sandyhouse 已提交
3985
                        'out_shape': new_var.shape,
3986 3987
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Forward,
S
sandyhouse 已提交
3988
                        'peer': first_dev_index
3989 3990 3991 3992 3993 3994 3995 3996
                    })

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
3997

3998 3999 4000 4001 4002 4003 4004
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

    def _add_opdevice_attr_for_regularization_clip(self, block):
H
hutuxian 已提交
4005
        """
4006
        Add op_device attribute for regulization and clip ops.
H
hutuxian 已提交
4007
        """
4008 4009 4010
        for op in block.ops:
            # role for regularization and clip ops is optimize
            if int(op.attr(self._op_role_key)) != int(self._op_role.Optimize):
H
hutuxian 已提交
4011
                continue
4012 4013 4014 4015 4016 4017
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
S
sandyhouse 已提交
4018
            param_name = op_role_var[0]
4019 4020
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
H
hutuxian 已提交
4021

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
    def _add_default_opdevice_attr(self, block):
        """
        1. Add default op_device attribute for lr-related ops.
           The default value is the one that of the first place.
        2. Add default op_device attribute for sum ops added during
           backward. For these ops, we set the op_device attribute
           as the one of its post op, i.e, which op has the output of the
           sum op as an input.
        """
        first_devcie = ""

        # Get the device spec of the first place.
        # device_spec: 'cpu' for cpu device and 'gpu:id' for gpu device,
        # e.g. 'gpu:0', 'gpu:1', etc.
        for op in block.ops:
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                first_device = op.attr(self._op_device_key)
                break
        assert first_device

        # set op_device attr for lr-related ops
        lrsched_role = int(self._op_role.LRSched)
        for op in block.ops:
            if not op.has_attr(self._op_device_key) or (
                    op.attr(self._op_device_key) == ""):
                if op.type == "sum":
                    # For sum ops that compute the sum of @RENAMED@ vars
                    for name in op.desc.input_arg_names():
                        assert '@RENAME@' in name
                    assert len(op.desc.output_arg_names()) == 1
                    out_name = op.desc.output_arg_names()[0]
S
sandyhouse 已提交
4054 4055
                    post_op = self._find_post_op(block.ops, op, out_name)
                    device = post_op.attr(self._op_device_key)
4056 4057 4058
                    assert device
                    op._set_attr(self._op_device_key, device)
                    continue
H
hutuxian 已提交
4059

4060 4061 4062 4063
                assert op.attr(self._op_role_key) == lrsched_role, (
                    "Op whose op_device attr has not been set for pipeline"
                    " must be of the role LRSched.")
                op._set_attr(self._op_device_key, first_device)
H
hutuxian 已提交
4064

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
    def _check_validation(self, block):
        """
        Check whether ops in a block are all validate (i.e., the 
        op_device attribute has been set).
        Then, return all device specifications in order.
        """
        device_specs = []
        for op in block.ops:
            type = op.type
            if not op._has_kernel(type):
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
            dev_spec = op.attr(self._op_device_key)
            assert dev_spec, ("op_device attribute for op "
                              "{} has not been set.".format(op.type))
            if not dev_spec in device_specs:
                device_specs.append(dev_spec)
4087 4088
        sorted_device_specs = sorted(device_specs)
        assert sorted_device_specs == device_specs
4089 4090
        return device_specs

S
sandyhouse 已提交
4091
    def _insert_sendrecv_ops_for_boundaries(self, block, origin_block):
4092
        """
S
sandyhouse 已提交
4093
        Insert a pair of send and recv ops for every two
4094 4095 4096 4097 4098
        consecutive ops on different devices.
        """
        extra_index = 0

        # A map from var to device spec where op takes it as input,
S
sandyhouse 已提交
4099
        # avoiding multiple send and recv ops.
4100 4101 4102
        var_devspec = dict()

        for index, op in list(enumerate(origin_block.ops)):
S
sandyhouse 已提交
4103
            # skips lr-related ops and vars, as we will process them later.
4104 4105
            if int(op.attr(self._op_role_key)) & int(self._op_role.LRSched):
                continue
S
sandyhouse 已提交
4106
            # skips update ops and vars, as we will process them later.
4107 4108
            if self._is_update_op(op): continue

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
            cur_device_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                # i.e., lod_tensor_blocking_queue created by DataLoader,
                # which only exists in startup program.
                if not var_name in origin_block.vars: continue
                var = block.var(var_name)
                # skip data, because we will process it later
                if var.is_data: continue
                prev_op = self._find_real_prev_op(origin_block.ops, op,
                                                  var_name)
                if prev_op is None:
                    continue
                prev_device_spec = prev_op.attr(self._op_device_key)

                if prev_device_spec != cur_device_spec:
                    if var_name not in var_devspec:
                        var_devspec[var_name] = []
                    if cur_device_spec in var_devspec[var_name]: continue
                    var_devspec[var_name].append(cur_device_spec)

                    op_role = op.all_attrs()[self._op_role_key]
                    var = block.vars[var_name]
S
sandyhouse 已提交
4131 4132
                    prev_device_index = int(prev_device_spec.split(':')[1])
                    cur_device_index = int(cur_device_spec.split(':')[1])
4133 4134
                    block._insert_op(
                        index=index + extra_index,
S
sandyhouse 已提交
4135
                        type='c_send',
4136 4137 4138
                        inputs={'X': var},
                        attrs={
                            self._op_device_key: prev_device_spec,
S
sandyhouse 已提交
4139 4140
                            self._op_role_key: op_role,
                            'peer': prev_device_index
4141 4142 4143 4144
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
S
sandyhouse 已提交
4145
                        type='c_recv',
4146 4147
                        outputs={'Out': [var]},
                        attrs={
S
sandyhouse 已提交
4148
                            'out_shape': var.shape,
4149
                            self._op_device_key: cur_device_spec,
S
sandyhouse 已提交
4150 4151
                            self._op_role_key: op_role,
                            'peer': cur_device_index
4152 4153 4154
                        })
                    extra_index += 1

4155
    def _clear_gradients(self, main_block):
4156
        """
4157
        Clear gradients at the begining of each run of a minibatch.
4158 4159 4160
        """
        for param_name in self._param_device_map:
            grad_name = self._append_grad_suffix(param_name)
4161 4162 4163 4164 4165
            param_var = main_block.vars[param_name]
            grad_var = main_block.vars[grad_name]
            device = self._param_device_map[param_name]
            main_block._insert_op(
                index=0,
4166 4167
                type='fill_constant',
                inputs={},
S
sandyhouse 已提交
4168
                outputs={'Out': [grad_var]},
4169
                attrs={
4170 4171 4172
                    'shape': grad_var.shape,
                    'dtype': grad_var.dtype,
                    'value': float(0),
4173
                    self._op_device_key: device,
S
sandyhouse 已提交
4174
                    self._op_role_key: self._op_role.Optimize.LRSched,
4175 4176
                })

4177
    def _accumulate_gradients(self, block):
4178
        """
S
sandyhouse 已提交
4179 4180 4181
        Accumulate the gradients generated in microbatch to the one in mini-batch.
        We also scale the loss corresponding to number of micro-batches at
        the same time.
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
        """
        for index, op in reversed(list(enumerate(block.ops))):
            offset = index
            device = op.attr(self._op_device_key)

            # Backward pass
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                scale_factor = self._num_microbatches
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / scale_factor,
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Backward
                    })
                break
            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.all_attrs()[self._op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
4209
                offset = index
4210 4211 4212
                for i in range(0, len(op_role_var), 2):
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
S
sandyhouse 已提交
4213 4214 4215 4216
                    new_grad_var_name = unique_name.generate(grad_name)
                    new_var = self._create_var(block, grad_var,
                                               new_grad_var_name)
                    self._rename_arg(op, grad_name, new_grad_var_name)
4217 4218
                    block._insert_op(
                        index=offset + 1,
4219 4220 4221
                        type='sum',
                        inputs={'X': [grad_var, new_var]},
                        outputs={'Out': grad_var},
4222 4223
                        attrs={
                            self._op_device_key: device,
4224 4225
                            self._op_role_key: self._op_role.Backward,
                            self._op_role_var_key: op_role_var
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
                        })
                    offset += 1

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
        for prog_info in program_list:
            prog = prog_info['program']
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
                for op in origin_sub_block.ops:
                    op_desc = op.desc
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
                op._set_attr('sub_block:', new_sub_block)

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
        for prog_info in program_list:
            prog = prog_info['program']
            block = prog.block(0)
            for var_name in block.vars:
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
S
sandyhouse 已提交
4282
                    if op.type == "c_recv": continue
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
S
sandyhouse 已提交
4302
            write_dev_index = int(write_device.split(':')[1])
4303 4304 4305
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
S
sandyhouse 已提交
4306 4307 4308
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
4309 4310 4311

                write_block._insert_op(
                    index=0,
S
sandyhouse 已提交
4312
                    type='c_send',
4313 4314 4315 4316 4317
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        self._op_device_key: write_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
S
sandyhouse 已提交
4318 4319
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index
4320 4321 4322
                    })
                read_block._insert_op(
                    index=0,
S
sandyhouse 已提交
4323
                    type='c_recv',
4324 4325
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
S
sandyhouse 已提交
4326
                        'out_shape': read_block.var(var_name).shape,
4327 4328 4329 4330
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
S
sandyhouse 已提交
4331
                        'peer': write_dev_index
4332
                    })
H
hutuxian 已提交
4333 4334 4335 4336 4337 4338

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
4339 4340 4341 4342 4343
        main_block = loss.block
        if startup_program is None:
            startup_program = default_startup_program()
        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
4344
        self._param_device_map = self._optimizer._param_device_map
4345 4346 4347 4348 4349

        # Step1: add default op_device attribute for regulization and clip ops
        self._add_opdevice_attr_for_regularization_clip(main_block)

        # Step2: add default op_device attribute for ops whose op_device
4350 4351
        # attribute have not been set yet. Then check all ops have the
        # op_device attribute.
4352
        self._add_default_opdevice_attr(main_block)
S
sandyhouse 已提交
4353

4354 4355
        device_specs = self._check_validation(main_block)

S
sandyhouse 已提交
4356
        # Step3: add send and recv ops between section boundaries
4357 4358
        origin_prog = main_block.program.clone(for_test=False)
        origin_main_block = origin_prog.global_block()
S
sandyhouse 已提交
4359
        self._insert_sendrecv_ops_for_boundaries(main_block, origin_main_block)
4360

S
sandyhouse 已提交
4361 4362
        # Step4: clear gradients before each mini-batch and 
        # accumulate gradients during backward
4363
        self._clear_gradients(main_block)
4364
        self._accumulate_gradients(main_block)
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381

        main_program = main_block.program

        place_list = []
        place_id_list = []
        for dev_spec in device_specs:
            if dev_spec == "cpu":
                place_list.append(core.CPUPlace())
                place_id_list.append(-1)
            elif "gpu" in dev_spec and ":" in dev_spec:
                dev_index = dev_spec.split(":")[1]
                place_list.append(core.CUDAPlace(int(dev_index)))
                place_id_list.append(int(dev_index))
            else:
                raise ValueError("Unknown device type: %s", dev_spec)

        # Step5: split program into sections and add pairs of
S
sandyhouse 已提交
4382
        # send and recv ops for data var.
4383 4384 4385 4386 4387
        if len(place_list) <= 1:
            raise ValueError("Run on one device, do not use pipeline.")
        program_list = self._split_program(main_program, device_specs)
        for p in program_list:
            self._create_vars(p["program"].block(0), main_program)
S
sandyhouse 已提交
4388 4389
        self._insert_sendrecv_for_data_var(main_block, program_list,
                                           startup_program, device_specs)
4390 4391 4392 4393 4394 4395 4396 4397 4398

        # Step6: Special Case: process persistable vars that exist in
        # multiple sections
        self._process_persistable_vars_in_multi_sections(
            main_program, startup_program, program_list)

        # Step7: Add sub blocks for section programs
        self._add_sub_blocks(main_block, program_list)

S
sandyhouse 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
        assert (main_program._pipeline_opt and
                isinstance(main_program._pipeline_opt, dict) and
                'local_rank' in main_program._pipeline_opt), \
                "You must use pipeline with fleet"
        local_rank = main_program._pipeline_opt['local_rank']
        # Step8: Split startup program
        startup_program = self._split_startup_program(
            startup_program, program_list[local_rank]['program'])
        with open("startup_prog_%d" % local_rank, 'w') as f:
            f.writelines(str(startup_program))
        with open("main_prog_%d" % local_rank, 'w') as f:
            f.writelines(str(program_list[local_rank]['program']))

4412
        main_program._pipeline_opt = {
H
hutuxian 已提交
4413 4414
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
S
sandyhouse 已提交
4415 4416 4417
            "section_program": program_list[local_rank],
            "place": place_list[local_rank],
            "place_id": place_id_list[local_rank],
4418
            "sync_steps": -1,
L
lilong12 已提交
4419
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
4420 4421
            "start_cpu_core_id": self._start_cpu_core_id,
        }
4422
        return optimize_ops, params_grads, program_list
M
mapingshuo 已提交
4423 4424


M
mapingshuo 已提交
4425 4426
class RecomputeOptimizer(Optimizer):
    """
S
sandyhouse 已提交
4427
	:api_attr: Static Graph
S
swtkiwi 已提交
4428

M
mapingshuo 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
4489 4490
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
4491 4492
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
4493 4494
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
M
mapingshuo 已提交
4495 4496

    def _set_checkpoints(self, checkpoints):
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
4508 4509 4510 4511
        self._checkpoints = checkpoints

    def load(self, stat_dict):
        """
S
sandyhouse 已提交
4512
	:api_attr: Static Graph
S
swtkiwi 已提交
4513

M
mapingshuo 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
            stat_dict: the dict load by load_persistable method

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
                    stat_dict = {}
                    sgd.load(stat_dict)
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4581
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4582 4583 4584 4585
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4586
                    no_grad_set=None)
M
mapingshuo 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
4602
                 callbacks=None):
M
mapingshuo 已提交
4603 4604 4605 4606 4607 4608 4609
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
4610 4611
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4636
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4637 4638 4639 4640
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4641
                    no_grad_set=None)
M
mapingshuo 已提交
4642 4643
                print("Finished backward")
        """
4644 4645
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
4646 4647 4648 4649 4650 4651 4652 4653

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
4654 4655 4656 4657 4658 4659 4660
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

M
mapingshuo 已提交
4661
            params_grads = append_backward(
4662
                loss, parameter_list, no_grad_set, checkpoints=checkpoint_vars)
4663 4664
            # Note: since we can't use all_reduce_op now,
            #  dgc_op should be the last op of one grad.
M
mapingshuo 已提交
4665 4666
            if hasattr(self._optimizer, "_append_dgc_ops"):
                self._optimizer._append_dgc_ops(params_grads)
M
mapingshuo 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
4686
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
4687 4688 4689 4690 4691 4692 4693 4694
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4695
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4696 4697 4698 4699
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4700
                    no_grad_set=None)
M
mapingshuo 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
4715
                 no_grad_set=None):
4716
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
4717 4718 4719 4720 4721 4722 4723 4724 4725
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
4726
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
4727 4728 4729 4730 4731 4732 4733

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
4734 4735
class LookaheadOptimizer(object):
    """
S
sandyhouse 已提交
4736
	:api_attr: Static Graph
S
swtkiwi 已提交
4737

M
mapingshuo 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
4791 4792
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

4844 4845 4846 4847 4848 4849 4850 4851
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
4852

4853 4854 4855 4856 4857 4858 4859
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
4860

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
4879 4880 4881 4882 4883
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
4897
        return mini_out
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg

4971 4972 4973 4974 4975 4976
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):

        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)

        #TODO(mapingshuo) support sparse embedding
        for k, v in params_grads:
            assert (
                v.type != core.VarDesc.VarType.SELECTED_ROWS
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

        param_to_grad = {k.name: v for (k, v) in params_grads}

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program and startup_program
        startup_block = startup_program.global_block()
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

        for param_name in param_names:
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            gradient_merge_k = layers.create_global_var(
                name="gradient_merge_k",
                shape=[1],
                value=int(self.k_steps),
                dtype='int32',
                persistable=True)

            # Add Var step
            gradient_merge_step = layers.create_global_var(
                name="gradient_merge_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=gradient_merge_step, value=1.0, in_place=True)

            # gradient merge
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(gradient_merge_step, gradient_merge_k)
            with layers.control_flow.Switch() as switch:
                with switch.case(mod != zero_var):
                    # 1. update the gradient_merge_vars
                    #  gradient_merge_vars += gradient_vars
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        cur_block.append_op(
                            type="elementwise_add",
                            inputs={'X': grad,
                                    'Y': grad_merge},
                            outputs={'Out': grad_merge},
                            attrs={'axis': -1,
                                   'use_mkldnn': False})

                with switch.default():
                    # 1. update the graient_vars
                    #     gradient_vars += gradient_merge_vars
                    cur_block_idx = main_block.program.current_block_idx
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        if self.avg:
                            tmp_var = layers.elementwise_add(grad, grad_merge)
                            cur_block.append_op(
                                type='scale',
                                inputs={'X': tmp_var},
                                outputs={'Out': grad},
                                attrs={
                                    'scale': 1.0 / self.k_steps,
                                    'bias': 0.0,
                                    'bias_after_scale': False
                                })
                        else:
                            cur_block.append_op(
                                type="elementwise_add",
                                inputs={'X': grad,
                                        'Y': grad_merge},
                                outputs={'Out': grad},
                                attrs={'axis': -1,
                                       'use_mkldnn': False})

                    # 2. apply_optimize
                    target_grad_block = main_block.program._create_block(
                        parent_idx=cur_block.parent_idx)
                    target_grad_block._set_forward_block_idx(cur_block_idx)
                    main_block.program.current_block_idx = cur_block_idx

                    optimize_ops = self.inner_optimizer.apply_optimize(
                        loss,
                        startup_program=startup_program,
                        params_grads=params_grads)

                    # 3. clear gradient_merge_vars
                    for param_name in param_names:
                        grad_merge = param_to_gradient_merge[param_name]
                        layers.fill_constant(
                            shape=grad_merge.shape,
                            dtype=grad_merge.dtype,
                            value=0.0,
                            out=grad_merge)
        return optimize_ops, params_grads