nn.py 125.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'conv2d',
    'pool2d',
    'dropout',
    'split',
    'l2_normalize',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
77
    'spectral_norm',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'relu',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'clip',
    'clip_by_norm',
    'mul',
C
chengduo 已提交
90 91
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
Y
Yu Yang 已提交
92 93
]

94
OP_NAMEMAPPING = {
95 96 97 98 99 100 101 102
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
103
    'elementwise_mod': 'remainder',
104 105
}

Y
Yu Yang 已提交
106

107 108
def _get_reduce_dim(dim, input):
    """
109
    Internal function for reduce_sum, reduce_mean, reduce_prod.
110 111 112 113 114 115 116 117 118
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
119
                "The type of dim must be int, list, tuple or range, but received {}".format(
120
                    type(dim)
121 122
                )
            )
123 124 125 126 127 128 129 130 131 132
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


133
@dygraph_only
134 135 136
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
137 138 139 140
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
141
        op = getattr(_legacy_C_ops, op_name)
142 143 144
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
145 146
            op = getattr(
                _C_ops,
147 148
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
149 150 151
            out = op(x, y)

        if _in_legacy_dygraph():
152
            op = getattr(_legacy_C_ops, op_name)
153
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
154 155 156 157 158 159 160 161 162 163 164 165 166 167
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
168
    r"""
169 170
    :api_attr: Static Graph

171
    **Fully Connected Layer**
Y
Yu Yang 已提交
172

173 174 175
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
176
    which represents a fully connected weight matrix from each input unit to
177 178 179 180
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
181
    is not None, a bias variable will be created and added to the output.
182
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
183

184
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
185

186 187 188 189
    .. math::

        Out = Act({XW + b})

190
    When the input is a list of Tensor(or LoDTensor):
191 192 193

    .. math::

194
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
195 196 197

    In the above equation:

198 199 200
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
201
    * :math:`b`: The bias parameter created by this layer (if needed).
202
    * :math:`Act`: The activation function.
203
    * :math:`Out`: The output Tensor.
204 205 206

    .. code-block:: text

207 208 209 210 211 212 213 214 215 216 217 218 219 220
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
221 222 223 224 225 226 227 228 229 230 231 232 233
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
234
    Args:
235 236 237
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
238
        size(int): The number of output units in this layer, which also means the feature size of output
239 240
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
241
            two dimensions. If this happens, the multidimensional tensor will first be flattened
242 243
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
244
            dimensions will be flatten to form the first dimension of the final matrix (height of
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
260 261

    Raises:
262
        ValueError: If dimensions of the input Tensor is less than 2.
263 264 265 266

    Examples:
        .. code-block:: python

267
          import paddle.fluid as fluid
268 269
          import paddle
          paddle.enable_static()
270
          # when input is single tensor
271
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
272
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
273 274

          # when input are multiple tensors
275 276
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
277
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
278
    """
C
caoying03 已提交
279
    helper = LayerHelper("fc", **locals())
280
    check_type(input, 'input', (list, tuple, Variable), 'fc')
281 282
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
283
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
284
    dtype = helper.input_dtype()
285 286 287
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
288
    mul_results = []
289 290
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
291 292
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
293 294 295
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
296

297 298 299
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
300
        tmp = helper.create_variable_for_type_inference(dtype)
301 302 303 304 305 306
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
307 308 309 310
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
311
    else:
X
Xin Pan 已提交
312
        pre_bias = helper.create_variable_for_type_inference(dtype)
313 314 315 316 317 318
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
319 320 321 322
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
323 324


T
tangwei12 已提交
325
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
326 327 328 329 330 331 332 333 334
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
335
    r"""
336
    :api_attr: Static Graph
337

338 339 340 341 342 343 344 345 346 347 348 349
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

350
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
368

369 370 371 372
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
373

374
        Case 2:
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
390 391

    Args:
392 393 394 395 396 397
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
398
            affects the performance of the backwards gradient update. It is recommended to set
399
            True because sparse update is faster. But some optimizer does not support sparse update,
400
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
401 402 403 404 405
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
406
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
407 408 409 410 411 412
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
413
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
414
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
415
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
416 417 418
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
419

420
    Returns:
421
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
422

423 424
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
425

B
bdzhuxiaoning 已提交
426
          import paddle.fluid as fluid
427
          import numpy as np
428 429
          import paddle
          paddle.enable_static()
430

431 432
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
433
          # example 1
434 435 436 437 438 439 440 441 442
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
443
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
444 445 446
    """

    helper = LayerHelper('embedding', **locals())
447 448 449 450 451 452 453 454 455
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
456 457 458 459 460 461 462 463 464

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

465 466 467
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
468
    tmp = helper.create_variable_for_type_inference(dtype)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
487 488 489
    return tmp


490 491 492 493 494 495 496 497 498 499 500
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
501
    r"""
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
547
        'is_distributed': True,
548 549
    }
    # this is only for compatible with embedding op
550 551 552 553 554 555 556 557 558
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
559 560 561 562 563
    if len(outs) == 1:
        return outs[0]
    return outs


564 565 566 567 568 569 570 571 572 573 574
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
575
    r"""
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
621
        'is_distributed': True,
622 623
    }
    # this is only for compatible with embedding op
624 625 626 627 628 629 630 631 632
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
633
    if len(outs) == 1:
Y
yaoxuefeng 已提交
634 635 636 637
        return outs[0]
    return outs


638 639 640
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
654
        float32 now.
Y
yaoxuefeng 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
674 675 676
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
677 678 679 680 681 682
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
683 684 685 686 687 688 689 690 691 692 693 694 695
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
696
    if len(outs) == 1:
697 698 699 700
        return outs[0]
    return outs


701 702 703
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
704
    r"""
H
hutuxian 已提交
705 706 707 708 709 710 711
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
712
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
713
            contains the IDs information.
714
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
715
            each embedding vector respectively.
716
        dtype(str): The dtype refers to the data type of output tensor. Only supports
717
        float32 now.
H
hutuxian 已提交
718 719 720 721 722 723 724 725 726 727

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
728
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
729 730 731 732
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
733 734 735
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
736 737 738 739 740 741
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
742 743 744 745 746 747 748 749 750 751 752 753 754
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
755 756 757 758 759
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
760
@templatedoc()
761
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
762
    """
763 764
    :api_attr: Static Graph

Y
yuyang18 已提交
765 766 767 768 769
    Linear Chain CRF.

    ${comment}

    Args:
770
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
771
        label(${label_type}): ${label_comment}
772
        Length(${length_type}): ${length_comment}
773
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
774 775

    Returns:
D
dzhwinter 已提交
776 777
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
778
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
779

J
JesseyXujin 已提交
780 781 782
    Examples:
        .. code-block:: python

783 784
            import paddle.fluid as fluid
            import numpy as np
785 786
            import paddle
            paddle.enable_static()
787 788 789 790 791

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
792 793
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
794 795 796 797 798 799
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
800
                    learning_rate=0.01))
801 802 803
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
804
            exe.run(startup_program)
805 806 807 808 809
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
810
            print(loss)
811 812 813 814 815

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
816 817 818
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
819 820 821 822 823 824
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
825
                     name='crfw',
826 827 828 829 830 831
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
832

833 834 835
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
836
            ll=np.array([[3],[3],[4],[2]])
837 838
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
839
            print(loss2)
840 841 842 843 844
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

845 846 847
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
848

Y
yuyang18 已提交
849
    """
850 851 852
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
853
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
854
    helper = LayerHelper('linear_chain_crf', **locals())
855
    size = input.shape[2] if length else input.shape[1]
856 857 858 859 860
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
861
    alpha = helper.create_variable_for_type_inference(
862 863
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
864
    emission_exps = helper.create_variable_for_type_inference(
865 866
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
867
    transition_exps = helper.create_variable_for_type_inference(
868 869
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
870
    log_likelihood = helper.create_variable_for_type_inference(
871 872
        dtype=helper.input_dtype()
    )
873 874 875
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
876
        "Label": [label],
877 878
    }
    if length:
879
        this_inputs['Length'] = [length]
880 881 882 883 884 885 886 887 888 889
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
890 891 892 893

    return log_likelihood


W
wopeizl 已提交
894
@templatedoc()
895
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
896
    """
897
    :api_attr: Static Graph
898

W
wopeizl 已提交
899
    ${comment}
Y
yi.wu 已提交
900

W
wopeizl 已提交
901
    Args:
902
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
903

904 905
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
906
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
907

Y
Yibing Liu 已提交
908
        label(${label_type}, optional): ${label_comment}
909

Y
Yibing Liu 已提交
910
        length(${length_type}, optional): ${length_comment}
911

W
wopeizl 已提交
912
    Returns:
913
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
914

W
wopeizl 已提交
915 916
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
917

918 919
           import paddle
           paddle.enable_static()
920 921 922

           # LoDTensor-based example
           num_labels = 10
923 924 925
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
926

927 928 929 930
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
931 932 933

           # Common tensor example
           num_labels, max_len = 10, 20
934 935 936 937
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
938
                                      num_flatten_dims=2)
939

940 941 942 943
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
944
    """
945 946 947
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
948 949 950
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
951 952
        dtype=core.VarDesc.VarType.INT64
    )
953 954 955
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
956 957 958 959 960
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
961

W
wopeizl 已提交
962
    return viterbi_path
Y
Yu Yang 已提交
963 964


965
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
966 967 968 969 970 971 972 973
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
974
    """
975

976 977 978 979
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
980
    training. The dropout operator randomly sets (according to the given dropout
981 982 983
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
984 985
    dropout op can be removed from the program to make the program more efficient.

986
    Args:
L
lvmengsi 已提交
987
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
988
        dropout_prob (float): Probability of setting units to zero.
989
        is_test (bool): A flag indicating whether it is in test phrase or not.
990
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
991 992 993
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
994
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
995 996
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
997 998
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
999
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1000 1001

                                           - train: out = input * mask
C
ceci3 已提交
1002
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1003 1004 1005

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1006
                                        2. upscale_in_train, upscale the outcome at training time
1007

H
haowang101779990 已提交
1008 1009
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1010

H
haowang101779990 已提交
1011 1012
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1013

M
minqiyang 已提交
1014

1015
    Returns:
L
lvmengsi 已提交
1016
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1017 1018

    Examples:
1019

1020 1021
        .. code-block:: python

1022
            import paddle
1023
            import paddle.fluid as fluid
1024

1025
            paddle.enable_static()
L
lvmengsi 已提交
1026
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1027
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1028
    """
1029 1030
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1031 1032
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1033
    # fast return for p == 0
1034
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1035
        return x
1036

J
Jiabin Yang 已提交
1037
    if _non_static_mode():
1038 1039 1040
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1041
            seed = default_main_program().random_seed
1042 1043
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1057
        return out
1058

W
wanghuancoder 已提交
1059 1060 1061
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1062 1063
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1064 1065 1066 1067
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1077
    helper = LayerHelper('dropout', **locals())
1078 1079 1080
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1081

X
Xin Pan 已提交
1082 1083
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1084 1085
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1086

1087
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1088

1089 1090 1091 1092 1093 1094
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1095 1096 1097
    return out


1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1113
    r"""
1114 1115
    :api_attr: Static Graph

C
chengduoZH 已提交
1116
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1117
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1118
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1119
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1120 1121 1122 1123 1124 1125
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1126
    for more details.
1127 1128 1129
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1130

1131
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1132

C
chengduoZH 已提交
1133 1134
    .. math::

C
refine  
chengduoZH 已提交
1135
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1136

T
tensor-tang 已提交
1137
    Where:
C
chengduoZH 已提交
1138

L
liym27 已提交
1139
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1140 1141 1142 1143
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1144
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1145 1146 1147

    Example:

1148 1149
        - Input:

W
weixing02 已提交
1150
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1151

W
weixing02 已提交
1152
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1153

1154
        - Output:
T
tensor-tang 已提交
1155

W
weixing02 已提交
1156
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1157

C
chengduoZH 已提交
1158
        Where
1159 1160

        .. math::
C
chengduoZH 已提交
1161

W
weixing02 已提交
1162 1163
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1164 1165

    Args:
1166
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1167
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1168
        num_filters(int): The number of filter. It is as same as the output
1169
            image channel.
1170 1171
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1172 1173
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1174 1175
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1176 1177
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1178
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1179 1180
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1181 1182
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1183
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1184 1185 1186
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1187
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1188 1189
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1190
            Default: dilation = 1.
1191 1192 1193 1194
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1195 1196 1197 1198 1199
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1200
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1201 1202 1203 1204 1205
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1206 1207
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1208 1209
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1210 1211
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1212
           None by default.
1213
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1214
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1215 1216
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1217 1218

    Returns:
1219 1220 1221
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1222
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1223

1224 1225 1226 1227 1228
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1229
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1230 1231 1232 1233 1234 1235 1236
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1237 1238 1239
    Examples:
        .. code-block:: python

1240 1241
          import paddle
          paddle.enable_static()
1242

1243 1244 1245
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1246 1247
    """

1248 1249 1250
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1251
    if len(input.shape) != 4:
1252 1253 1254 1255
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1256
    num_channels = input.shape[1]
L
liym27 已提交
1257
    if not isinstance(use_cudnn, bool):
1258 1259 1260 1261
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1262 1263 1264 1265

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1266 1267
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1268

1269
    channel_last = data_format == "NHWC"
L
liym27 已提交
1270 1271 1272 1273
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1274 1275
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1276
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1277

1278 1279 1280
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1281 1282
        raise ValueError(
            "the groups of input must be greater than 0, "
1283 1284
            "but received the groups of input is {}".format(groups)
        )
1285 1286 1287 1288 1289
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1290 1291
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1292 1293
        num_filter_channels = num_channels // groups

1294
    l_type = 'conv2d'
1295 1296 1297 1298 1299
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1300
        l_type = 'depthwise_conv2d'
1301

1302 1303 1304 1305 1306
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1307 1308
        l_type = 'depthwise_conv2d'

1309 1310
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1311
        if num_channels == groups and num_channels == num_filters:
1312 1313 1314 1315
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1316 1317 1318
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1319 1320
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1321
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1322

L
liym27 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1335 1336
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1337 1338 1339 1340 1341 1342
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1343 1344
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1345 1346 1347
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1348 1349 1350
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1361 1362 1363
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1364 1365
        if padding == "VALID":
            padding_algorithm = "VALID"
1366
            padding = [0, 0]
L
liym27 已提交
1367 1368
        elif padding == "SAME":
            padding_algorithm = "SAME"
1369
            padding = [0, 0]
L
liym27 已提交
1370 1371

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1372

M
minqiyang 已提交
1373
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1374 1375

    def _get_default_param_initializer():
C
chengduo 已提交
1376
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1377 1378 1379 1380
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1381 1382 1383
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1390 1391
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1392

X
Xin Pan 已提交
1393
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1394

1395 1396 1397 1398 1399 1400
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1401 1402
        use_cudnn = False

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1422

1423 1424 1425 1426
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1427 1428 1429 1430

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1431
@templatedoc()
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1445
    """
1446

F
fengjiayi 已提交
1447
    ${comment}
1448 1449

    Args:
K
Kaipeng Deng 已提交
1450 1451 1452 1453 1454
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1455
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1456 1457
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1458
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1459 1460 1461
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1462 1463 1464 1465 1466 1467 1468
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1469
            Otherwise, the pool padding size will be a square of an int.
1470 1471 1472
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1473 1474 1475
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1476
        exclusive (bool): Whether to exclude padding points in average pooling
1477
                          mode, default is `true`.
1478
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1479 1480
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1481

1482
    Returns:
K
Kaipeng Deng 已提交
1483
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1484 1485

    Raises:
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1498 1499 1500 1501 1502

    Examples:

        .. code-block:: python

1503
          import paddle.fluid as fluid
1504 1505 1506
          import paddle

          paddle.enable_static()
1507

K
Kaipeng Deng 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1551 1552 1553
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1554
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1555 1556
            str(pool_type),
        )
C
chengduoZH 已提交
1557

C
chengduoZH 已提交
1558 1559
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1560
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1561 1562
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1563 1564

    if not isinstance(use_cudnn, bool):
1565 1566 1567 1568
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1569 1570 1571 1572

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1573 1574
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1575

C
chengduoZH 已提交
1576 1577 1578
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1590 1591
                        "is not supported." % str(padding)
                    )
1592 1593 1594 1595 1596 1597
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1598 1599
                        "is not supported." % str(padding)
                    )
1600 1601 1602
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1603

1604 1605
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1617 1618
                % str(pool_padding)
            )
1619 1620
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1621
            pool_padding = [0, 0]
1622
            if ceil_mode is not False:
1623 1624
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1625 1626
                    "Received ceil_mode: True."
                )
1627 1628
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1629
            pool_padding = [0, 0]
1630 1631

    pool_padding = update_padding(pool_padding, data_format)
1632
    if in_dygraph_mode():
1633
        input = input._use_gpudnn(use_cudnn)
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1647 1648
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1649
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1650
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1670 1671 1672 1673

    return pool_out


Y
yuyang18 已提交
1674
@templatedoc()
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
1686
    r"""
1687 1688
    :api_attr: Static Graph

1689 1690 1691 1692
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
1693 1694 1695

    The formula is as follows:

Y
yuyang18 已提交
1696
    ..  math::
G
guosheng 已提交
1697

1698
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
1699

1700
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
1701

1702
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
1703

1704 1705 1706 1707 1708
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
1709

G
guosheng 已提交
1710
    Args:
1711
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
1712 1713 1714 1715 1716
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
1717
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1718 1719 1720 1721
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1722 1723
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
1724
            a default :code:`ParamAttr` would be added as scale. The
1725 1726
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1727 1728
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
1729
            a default :code:`ParamAttr` would be added as bias. The
1730
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1731
        act(str, optional): Activation to be applied to the output of layer normalization.
1732 1733
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
1734 1735

    Returns:
1736
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
1737 1738 1739

    Examples:

1740 1741
        .. code-block:: python

1742 1743
            import paddle
            paddle.enable_static()
1744 1745 1746
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
1747
    """
1748 1749 1750
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
1751
    helper = LayerHelper('layer_norm', **locals())
1752 1753 1754
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
1755 1756 1757 1758 1759 1760 1761
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
1762 1763 1764 1765 1766 1767 1768 1769 1770
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
1771
        inputs['Scale'] = scale
1772 1773
    else:
        if param_attr:
T
tianshuo78520a 已提交
1774
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
1775
    if shift:
1776 1777 1778 1779 1780 1781
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
1782
        inputs['Bias'] = bias
1783 1784
    else:
        if bias_attr:
T
tianshuo78520a 已提交
1785
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
1786 1787

    # create output
1788 1789 1790 1791 1792 1793
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
1794
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
1806 1807 1808 1809

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
1810
@templatedoc()
1811
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
1812
    r"""
1813 1814
    :api_attr: Static Graph

D
dengkaipeng 已提交
1815 1816
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
1817
    This operation calculates the spectral normalization value of weight parameters of
1818
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
1819 1820
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
1821

D
dengkaipeng 已提交
1822 1823 1824
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
1825
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
1826 1827

    Step 2:
T
tianshuo78520a 已提交
1828
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
1829 1830
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
1831

1832
    .. math::
D
dengkaipeng 已提交
1833 1834 1835 1836 1837 1838

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
1839
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
1840 1841 1842 1843

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
1844

D
dengkaipeng 已提交
1845
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
1846

1847

D
dengkaipeng 已提交
1848 1849 1850
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
1851
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
1852 1853 1854
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
1855 1856 1857
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
1858 1859

    Returns:
C
Chen Long 已提交
1860
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
1861
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
1862 1863

    Examples:
K
Kaipeng Deng 已提交
1864
       .. code-block:: python
D
dengkaipeng 已提交
1865

1866
            import paddle
K
Kaipeng Deng 已提交
1867

1868
            paddle.enable_static()
C
Chen Long 已提交
1869
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
1870
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
1871
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
1872 1873
    """
    helper = LayerHelper('spectral_norm', **locals())
1874 1875 1876
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
1877 1878 1879
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
1880
    dtype = weight.dtype
D
dengkaipeng 已提交
1881 1882

    # create intput and parameters
1883
    input_shape = weight.shape
1884
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
1885 1886 1887 1888 1889
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
1890 1891 1892
    h = input_shape[dim]
    w = np.prod(input_shape) // h

1893 1894 1895 1896 1897 1898
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1899
    u.stop_gradient = True
1900 1901 1902 1903 1904 1905
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1906
    v.stop_gradient = True
D
dengkaipeng 已提交
1907

1908 1909 1910 1911 1912 1913 1914
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
1915
    # create output
1916
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
1930

1931
    return out
D
Dun 已提交
1932 1933


C
caoying03 已提交
1934
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1935
    """
1936

Y
yangyaming 已提交
1937
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1938 1939

    Args:
1940 1941 1942
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
1943 1944
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
1945 1946
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
1947
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
1948
            output Tensor. The result tensor will have one fewer dimension
1949 1950 1951 1952
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
1953 1954

    Returns:
1955 1956
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
1957

1958 1959
    Raises:
        TypeError, if out data type is different with the input data type.
1960

G
guosheng 已提交
1961 1962 1963
    Examples:
        .. code-block:: python

1964
            import paddle.fluid as fluid
1965 1966
            import paddle
            paddle.enable_static()
G
guosheng 已提交
1967 1968 1969
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
1970
            # Each example is followed by the corresponding output tensor.
1971
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
1972 1973 1974 1975
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
1976

1977
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
1978 1979
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
1980
            # Each example is followed by the corresponding output tensor.
1981
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
1982 1983
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
1984

G
guosheng 已提交
1985
    """
1986 1987
    reduce_all, dim = _get_reduce_dim(dim, input)

1988
    if in_dygraph_mode():
1989
        return _C_ops.sum(input, dim, None, keep_dim)
1990
    elif _in_legacy_dygraph():
1991 1992 1993
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
1994
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
1995
    check_variable_and_dtype(
1996 1997 1998 1999 2000
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
2001
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
2002
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2003 2004 2005 2006 2007 2008
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
2009
    return out
G
guosheng 已提交
2010 2011


C
caoying03 已提交
2012
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2013
    """
2014
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
2015 2016

    Args:
2017
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
2018
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
2019
            indicates the number of equal sized sub-Tensors that the ``input``
2020
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
2021 2022 2023 2024 2025
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
2026
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
2027
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2028 2029

    Returns:
2030
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
2031

2032
    Example:
G
guosheng 已提交
2033 2034
        .. code-block:: python

2035 2036
            import paddle.fluid as fluid

2037
            # input is a Tensor which shape is [3, 9, 5]
2038
            input = fluid.data(
2039 2040
                 name="input", shape=[3, 9, 5], dtype="float32")

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
2055

2056 2057 2058 2059 2060 2061
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
2062

G
guosheng 已提交
2063
    """
J
Jiabin Yang 已提交
2064
    if _non_static_mode():
2065 2066 2067
        num = None
        attrs = ()

S
songyouwei 已提交
2068 2069
        if isinstance(dim, Variable):
            dim = dim.numpy()
2070
            dim = dim.item(0)
W
wangzhen38 已提交
2071
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
2072
        dim = (len(input.shape) + dim) if dim < 0 else dim
2073
        attrs += ('axis', dim)
2074 2075 2076

        if isinstance(num_or_sections, int):
            num = num_or_sections
2077
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
2078
        elif isinstance(num_or_sections, (list, tuple)):
2079
            num = len(num_or_sections)
L
Leo Chen 已提交
2080
            if utils._contain_var(num_or_sections):
2081 2082
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2083 2084 2085
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2086
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
2087
            else:
2088
                attrs += ('sections', list(num_or_sections))
2089 2090
        else:
            raise TypeError(
2091
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2092 2093
                "received %s." % (type(num_or_sections))
            )
2094
        if in_dygraph_mode():
C
Charles-hit 已提交
2095 2096 2097 2098
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2099 2100
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2101
            _legacy_C_ops.split(input, out, *attrs)
2102
            return out
L
Leo Chen 已提交
2103

2104
    check_variable_and_dtype(
2105 2106 2107 2108 2109
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
2110 2111 2112 2113
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2114

G
guosheng 已提交
2115
    helper = LayerHelper('split', **locals())
2116

G
guosheng 已提交
2117
    input_shape = input.shape
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2129
                assert isinstance(dim_size, int)
2130 2131 2132
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2133 2134 2135
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2136 2137
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2138 2139 2140
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2141 2142 2143 2144 2145 2146 2147
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
2148
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
2149 2150 2151
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
2152 2153
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
2154
        if isinstance(dim, int) and input_shape[dim] > 0:
2155 2156 2157 2158 2159 2160
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
2161 2162
        num = num_or_sections
    else:
2163
        if isinstance(dim, int) and input_shape[dim] > 0:
2164 2165 2166
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
2167
        num = len(num_or_sections)
2168
        attrs['sections'] = list(
2169 2170 2171 2172 2173
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
2174
        if utils._contain_var(num_or_sections):
2175
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2176 2177
                num_or_sections
            )
2178

G
guosheng 已提交
2179
    outs = [
X
Xin Pan 已提交
2180
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
2181 2182
        for i in range(num)
    ]
2183 2184 2185
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
2186
    return outs
C
caoying03 已提交
2187 2188 2189


def l2_normalize(x, axis, epsilon=1e-12, name=None):
2190
    r"""
2191

R
ruri 已提交
2192
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
2193 2194
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2195
    .. math::
2196 2197

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2198 2199 2200 2201 2202

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2203
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
2204
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
2205 2206
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
2207
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
2208
            the default value is 1e-12.
2209
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2210

C
caoying03 已提交
2211
    Returns:
R
ruri 已提交
2212
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
2213 2214

    Examples:
2215

2216 2217
    .. code-block:: python
        :name: code-example1
2218

2219
        import paddle
2220

2221 2222
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
2223
        print(out)
R
ruri 已提交
2224

2225 2226 2227
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
2228

C
caoying03 已提交
2229
    """
F
fengjiayi 已提交
2230 2231
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
2232
    if _non_static_mode():
2233 2234 2235
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
2236 2237 2238
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
2239 2240 2241
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
2242

2243
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
2244 2245
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
2246 2247 2248 2249 2250 2251 2252 2253 2254
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
2255
    return out
2256 2257


Y
yuyang18 已提交
2258
@templatedoc()
2259
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
2260
    """
2261 2262
    :api_attr: Static Graph

Y
yuyang18 已提交
2263
    ${comment}
2264 2265

    Args:
Y
yuyang18 已提交
2266
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
2267 2268
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
2269 2270 2271 2272 2273
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
2274
        ${out_comment}.
2275 2276

    Examples:
B
Bai Yifan 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
2289 2290
    """
    helper = LayerHelper('row_conv', **locals())
2291
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
2292
    dtype = helper.input_dtype()
2293
    filter_shape = [future_context_size + 1, input.shape[-1]]
2294 2295 2296
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
2297
    out = helper.create_variable_for_type_inference(dtype)
2298 2299 2300 2301 2302
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
2303
    return helper.append_activation(out)
2304 2305


2306
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
2307
def one_hot(input, depth, allow_out_of_range=False):
2308
    """
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
2347
                        [0., 1., 0., 0.],
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
2360
            The second dimension in X is 5, which is greater than depth.
2361 2362
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
2363 2364

    Args:
2365 2366 2367
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
2368
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
2369
            is word id, depth is generally the dictionary size.
2370
        allow_out_of_range(bool): A bool value indicating whether the input
2371 2372 2373 2374
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
2375 2376

    Returns:
2377
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
2378 2379

    Examples:
C
caoying03 已提交
2380
        .. code-block:: python
2381

2382
            import paddle
2383
            import paddle.fluid as fluid
2384 2385
            paddle.enable_static()

2386 2387 2388
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
2389
    """
J
Jiabin Yang 已提交
2390
    if _non_static_mode():
S
songyouwei 已提交
2391 2392 2393
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
2394 2395
                1,
            ), "depth of type Variable should have shape [1]"
2396
            depth = depth.item(0)
2397 2398 2399
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
2400 2401
        out.stop_gradient = True
        return out
2402

2403
    helper = LayerHelper("one_hot", **locals())
2404
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
2405
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
2406
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
2407

2408 2409
    if not isinstance(depth, Variable):
        # user attribute
2410
        inputs = {'X': input}
Y
Yi Liu 已提交
2411
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
2412
    else:
2413 2414 2415
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
2416 2417 2418
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
2419
    one_hot_out.stop_gradient = True
2420
    return one_hot_out
Y
Yu Yang 已提交
2421 2422


Y
Yu Yang 已提交
2423
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
2424
    """
2425 2426
    :api_attr: Static Graph

2427 2428
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
2429
    and the step size is 1.
Y
Yu Yang 已提交
2430 2431

    Args:
Y
Yibing Liu 已提交
2432 2433 2434
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
2435

2436
    Returns:
Y
Yibing Liu 已提交
2437
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
2438 2439 2440 2441

    Examples:
        .. code-block:: python

2442
           import paddle.fluid as fluid
2443 2444
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
2445
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
2446
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
2447 2448
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
2449 2450
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
2451
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
2452 2453 2454 2455
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
2456 2457
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
2458
    if is_new_var:
2459 2460 2461
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
2462
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
2463 2464
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
2465
            outputs={'Out': [counter]},
2466 2467
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
2468 2469 2470
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
2471 2472


2473
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
2474
    """
2475
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
2476 2477
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
2478

M
minqiyang 已提交
2479
    For example:
H
haowang101779990 已提交
2480 2481 2482

    .. code-block:: text

M
minqiyang 已提交
2483
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
2484
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
2485

Y
Yibing Liu 已提交
2486
    Args:
2487
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2488
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
2489
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
2490 2491

    Returns:
2492
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
2493 2494 2495 2496

    Examples:
        .. code-block:: python

2497 2498 2499
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
2500

Y
Yibing Liu 已提交
2501
    """
J
Jiabin Yang 已提交
2502
    if _non_static_mode():
L
Leo Chen 已提交
2503 2504 2505
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2506
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
2507 2508 2509 2510 2511
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
2512
        if _in_legacy_dygraph():
2513
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2514
            return out
2515
        return _C_ops.unsqueeze(input, axes)
2516 2517

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
2545
        if utils._contain_var(axes):
2546
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
2547 2548 2549
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
2550 2551
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2552 2553 2554 2555 2556 2557
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
2558

2559 2560
    return out

2561

Y
yangyaming 已提交
2562
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
2563
    """
Y
Yibing Liu 已提交
2564
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
2565 2566 2567 2568
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
2569
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
2570 2571 2572 2573 2574 2575

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
2576
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
2577 2578 2579
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

2580
            target_lod: [4, 2]
Y
yangyaming 已提交
2581 2582

            then we get a 1-level LoDTensor:
2583
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
2584 2585 2586 2587 2588 2589
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
2590
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
2591 2592 2593 2594
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
2595
                y.data = [[2, 4]]
Y
yangyaming 已提交
2596 2597 2598
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
2599
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
2600 2601 2602 2603 2604 2605
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
2606
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
2607 2608 2609 2610
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
2611
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
2612 2613 2614 2615
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
2616
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
2617 2618 2619 2620
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
2621
        x (Variable): Input variable which could be a Tensor or LoDTensor.
2622
                      The data type should be int32, int64, float32 or float64.
2623 2624
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
2625 2626
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
2627
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
2628 2629

    Returns:
Y
Yibing Liu 已提交
2630
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
2631 2632

    Raises:
Y
Yibing Liu 已提交
2633
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
2634 2635 2636 2637

    Examples:
        .. code-block:: python

2638
            import paddle.fluid as fluid
2639 2640 2641
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
2642
    """
2643 2644 2645
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
2646
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
2647
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
2648
    if y is not None:
2649
        check_type(y, 'y', (Variable), 'lod_reset')
2650 2651 2652 2653
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
2654
    elif target_lod is not None:
2655 2656 2657 2658 2659 2660
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
2661
    else:
2662 2663 2664 2665
        raise ValueError("y and target_lod should not be both none.")
    return out


2666
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
2667
def relu(x, name=None):
W
wanghaoshuang 已提交
2668
    """
Z
zhupengyang 已提交
2669
    ${comment}
W
wanghaoshuang 已提交
2670 2671

    Args:
Z
zhupengyang 已提交
2672 2673 2674 2675
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
2676 2677

    Returns:
Z
zhupengyang 已提交
2678
        Variable: ${out_comment}
W
wanghaoshuang 已提交
2679 2680 2681 2682 2683

    Examples:

        .. code-block:: python

2684
            import paddle.fluid as fluid
Z
zhupengyang 已提交
2685 2686 2687 2688 2689 2690 2691
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
2692
                #  [1.  2.6]]"""
2693 2694

    if in_dygraph_mode():
W
wanghuancoder 已提交
2695
        return _C_ops.relu(x)
2696 2697
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
2698

2699 2700
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

2701
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
2702
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
2703
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
2704
    out = helper.create_variable_for_type_inference(dtype)
2705 2706 2707
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
2708
    return out
2709 2710


G
fix  
gongweibao 已提交
2711 2712 2713
from paddle.fluid.framework import convert_np_dtype_to_dtype_


S
sneaxiy 已提交
2714 2715 2716 2717
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
2718

S
sneaxiy 已提交
2719 2720
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
2721
    check_variable_and_dtype(
2722 2723 2724 2725 2726
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
2727
    check_variable_and_dtype(
2728 2729 2730 2731 2732
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
2733

S
sneaxiy 已提交
2734 2735
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
2736
    name = helper.kwargs.get('name', None)
2737
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
2738

2739 2740 2741 2742 2743 2744
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
2745 2746 2747
    return helper.append_activation(out)


X
Xin Pan 已提交
2748
def elementwise_add(x, y, axis=-1, act=None, name=None):
2749
    """
2750

2751
    Examples:
2752

2753
        .. code-block:: python
2754

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
2768

2769 2770 2771 2772
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2773

2774
            print(z_value) # [3., 8., 6.]
2775 2776


2777
        .. code-block:: python
2778

2779 2780 2781
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2782

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
2793

2794 2795
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2796

2797 2798
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2799

2800
            print(z_value) # z.shape=[2,3,4,5]
2801 2802


2803
        ..  code-block:: python
2804

2805 2806 2807
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
2819

2820 2821
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2822

2823 2824 2825
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
2826 2827

    """
J
Jiabin Yang 已提交
2828
    if _non_static_mode():
2829
        return _elementwise_op_in_dygraph(
2830 2831 2832 2833 2834
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
2835 2836
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
2837

S
sneaxiy 已提交
2838 2839 2840
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


2841
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
2842
def elementwise_div(x, y, axis=-1, act=None, name=None):
2843
    """
2844

2845
    Examples:
2846

2847
        .. code-block:: python
2848

2849 2850 2851
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2852

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
2863

2864 2865 2866 2867
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2868

2869
            print(z_value) # [2., 0.6, 2.]
2870 2871


2872
        .. code-block:: python
2873

2874 2875 2876
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
2888

2889 2890
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2891

2892 2893
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2894

2895
            print(z_value) # z.shape=[2,3,4,5]
2896 2897


2898
        ..  code-block:: python
2899

2900 2901 2902
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
2914

2915 2916
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2917

2918 2919 2920
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
2921 2922

    """
J
Jiabin Yang 已提交
2923
    if _non_static_mode():
2924 2925 2926
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
2927

S
sneaxiy 已提交
2928 2929 2930
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
2931
def elementwise_sub(x, y, axis=-1, act=None, name=None):
2932
    """
2933

2934
    Examples:
2935

2936
        .. code-block:: python
2937

2938 2939 2940
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
2952

2953 2954 2955 2956
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2957

2958
            print(z_value) # [1., -2., 2.]
2959 2960


2961
        .. code-block:: python
2962

2963 2964 2965
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2966

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
2977

2978 2979
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
2980

2981 2982
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
2983

2984
            print(z_value) # z.shape=[2,3,4,5]
2985 2986


2987
        ..  code-block:: python
2988

2989 2990 2991
            import paddle.fluid as fluid
            import numpy as np
            import paddle
2992

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
3003

3004 3005
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
3006

3007 3008 3009
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
3010 3011

    """
J
Jiabin Yang 已提交
3012
    if _non_static_mode():
3013 3014 3015
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
3016

S
sneaxiy 已提交
3017 3018 3019
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


3020
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
3021
def elementwise_mul(x, y, axis=-1, act=None, name=None):
3022
    """
3023

3024
    Examples:
3025

3026
        .. code-block:: python
3027

3028 3029 3030
            import paddle.fluid as fluid
            import numpy as np
            import paddle
3031

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
3042

3043 3044 3045 3046
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
3047

3048
            print(z_value) # [2., 15., 8.]
3049 3050


3051
        .. code-block:: python
3052

3053 3054 3055
            import paddle.fluid as fluid
            import numpy as np
            import paddle
3056

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
3067

3068 3069
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
3070

3071 3072
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
3073

3074
            print(z_value) # z.shape=[2,3,4,5]
3075 3076


3077
        ..  code-block:: python
3078

3079 3080 3081
            import paddle.fluid as fluid
            import numpy as np
            import paddle
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
3093

3094 3095
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
3096

3097 3098 3099
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
3100

3101
    """
J
Jiabin Yang 已提交
3102
    if _non_static_mode():
3103 3104 3105
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
3106

S
sneaxiy 已提交
3107 3108 3109 3110
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
3111 3112 3113 3114
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
3115 3116
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
3117 3118

    # insert the c++ doc string on top of python doc string
3119 3120 3121 3122 3123
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
3124 3125
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
3126
                "act (string, optional): Activation applied to the output. \
3127
            Default is None. Details: :ref:`api_guide_activations_en` ",
3128
                "name (string, optional): Name of the output. \
3129
            Default is None. It's used to print debug info for developers. Details: \
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
3146

3147 3148 3149
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
3150 3151 3152 3153 3154
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
3155 3156 3157 3158
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

3159
for func in []:
S
sneaxiy 已提交
3160 3161 3162 3163
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
3164
            "act (basestring|None): Activation applied to the output.",
3165 3166 3167 3168 3169 3170
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
3171 3172 3173

Examples:
  .. code-block:: python
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
3215 3216


3217
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
3218
    if _non_static_mode():
3219
        op = getattr(_legacy_C_ops, op_name)
3220 3221 3222 3223
        if binary_op:
            return op(x, y)
        else:
            return op(x)
3224
    check_variable_and_dtype(
3225 3226
        x,
        "x",
3227
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
3228 3229
        op_name,
    )
3230
    if y is not None:
3231
        check_variable_and_dtype(
3232 3233
            y,
            "y",
3234
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
3235 3236
            op_name,
        )
3237
    if out is not None:
3238
        check_type(out, "out", Variable, op_name)
3239

M
minqiyang 已提交
3240 3241
    helper = LayerHelper(op_name, **locals())

3242 3243 3244
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
3245 3246
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
3247 3248

    if out is None:
3249
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
3250 3251

    if binary_op:
3252 3253 3254
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
3255 3256 3257 3258 3259 3260
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


3261 3262 3263
@templatedoc()
def clip(x, min, max, name=None):
    """
3264
        :old_api: paddle.fluid.layers.clip
3265

3266 3267 3268 3269
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
3270 3271
        min(float): ${min_comment}
        max(float): ${max_comment}
3272 3273
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
3274
                             For more information, please refer to :ref:`api_guide_Name`
3275 3276

    Returns:
S
SunGaofeng 已提交
3277 3278 3279 3280
        ${out_comment}

    Return Type:
        ${out_type}
3281 3282 3283 3284

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
3285
            import paddle.fluid as fluid
S
SunGaofeng 已提交
3286
            input = fluid.data(
3287 3288
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
3289 3290 3291
    """

    helper = LayerHelper("clip", **locals())
3292
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
3293 3294

    if name is None:
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
3321 3322 3323
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
3324 3325

    Returns:
3326
        Tensor:
W
wangguanzhong 已提交
3327

3328
        out(${out_type}): ${out_comment}
3329

W
wangguanzhong 已提交
3330

3331 3332 3333
    Examples:
        .. code-block:: python

3334
            import paddle
3335
            import paddle.fluid as fluid
3336

3337 3338 3339
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
3340 3341
    """

L
lyq 已提交
3342
    if in_dygraph_mode():
3343
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
3344
    if _non_static_mode():
3345
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
3346

3347
    helper = LayerHelper("clip_by_norm", **locals())
3348
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
3349
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
3350 3351

    if name is None:
3352 3353 3354
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
3355

3356 3357 3358
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
3359

3360 3361 3362 3363 3364 3365
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
3366 3367

    return out
X
Xin Pan 已提交
3368 3369


C
chengduo 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
3381 3382 3383 3384

    Examples:
        .. code-block:: python

3385
            import paddle.fluid as fluid
3386 3387 3388 3389 3390
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
3391
    """
3392 3393 3394
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

3395
    if _non_static_mode():
3396
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
3397 3398 3399

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3400 3401 3402 3403 3404 3405
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
3406 3407 3408
    return out


X
Xin Pan 已提交
3409 3410
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
3411 3412 3413 3414 3415 3416 3417 3418
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
3419 3420

    Args:
L
liu zhengxi 已提交
3421 3422
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
3423 3424 3425
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
3426 3427

    Returns:
L
liu zhengxi 已提交
3428
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
3429 3430

    Examples:
L
liu zhengxi 已提交
3431
        ..  code-block:: python
3432

3433
            import paddle.fluid as fluid
3434 3435
            import paddle
            paddle.enable_static()
3436 3437 3438 3439 3440
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
3441

3442

X
Xin Pan 已提交
3443
    """
J
Jiabin Yang 已提交
3444
    if _non_static_mode():
3445 3446 3447 3448 3449 3450 3451 3452
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
3453

3454 3455
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
3456
    helper = LayerHelper("mul", **locals())
3457 3458
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
3459
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
3460

3461 3462 3463
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
3464 3465 3466
    return out


C
chengduo 已提交
3467 3468 3469
@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
3470 3471 3472 3473 3474 3475 3476 3477 3478
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

3479
        Output is LoDTensor:
3480 3481 3482 3483 3484 3485
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
3486 3487

    Args:
3488 3489 3490
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
3491 3492

    Returns:
3493
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
3494 3495 3496

    Examples:
        .. code-block:: python
3497

B
bdzhuxiaoning 已提交
3498 3499 3500 3501
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
3502 3503
    """

3504 3505 3506 3507 3508
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
3509 3510
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3511 3512 3513 3514 3515 3516
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
3517
    return out