framework.py 126.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
P
peizhilin 已提交
33

34
from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
74
    return _dygraph_tracer_ is not None
75 76


L
lujun 已提交
77 78
def _dygraph_tracer():
    return _dygraph_tracer_
79

W
Wu Yi 已提交
80

M
minqiyang 已提交
81
def _current_expected_place():
L
lujun 已提交
82
    return _dygraph_current_expected_place_
M
minqiyang 已提交
83 84


S
sneaxiy 已提交
85
def _cpu_num():
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    if "CPU_NUM" not in os.environ.keys():
        sys.stderr.write(
            'The CPU_NUM is not specified, you should set CPU_NUM in '
            'the environment variable list, i.e export CPU_NUM=1. CPU_NUM '
            'indicates that how many CPUPlace are used in the current task.\n'
            '!!! The default number of CPUPlaces is 1.\n\n')
        os.environ['CPU_NUM'] = str(1)
    cpu_num = os.environ.get('CPU_NUM')
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
104 105


C
chengduo 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
121
def cuda_places(device_ids=None):
L
lujun 已提交
122
    """
S
add doc  
sneaxiy 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
142 143 144 145 146 147 148

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
149 150 151
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
152
        device_ids = _cuda_ids()
S
sneaxiy 已提交
153 154 155 156 157 158
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
159
    """
S
add doc  
sneaxiy 已提交
160 161 162 163
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
164 165
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
166 167 168 169 170 171

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
172 173 174 175 176 177 178

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
179 180 181 182 183 184
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
185
    """
S
add doc  
sneaxiy 已提交
186 187 188 189 190 191 192 193 194 195 196 197
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
198 199 200 201 202 203 204 205 206

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
207 208 209 210 211 212 213
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
240
@signature_safe_contextmanager
241 242 243 244 245 246 247 248 249 250 251 252
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
253

254 255 256 257 258 259 260 261 262 263 264
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
284 285 286
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
287 288 289 290


def grad_var_name(var_name):
    """
291 292
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
293 294 295
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
296

297
def convert_np_dtype_to_dtype_(np_dtype):
298 299
    """
    Convert the data type in numpy to the data type in Paddle
300

301
    Args:
302
        np_dtype(np.dtype): the data type in numpy.
303

304 305
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
306 307

    """
308 309
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
310
        return core.VarDesc.VarType.FP32
311
    elif dtype == np.float64:
312
        return core.VarDesc.VarType.FP64
313
    elif dtype == np.float16:
314
        return core.VarDesc.VarType.FP16
315
    elif dtype == np.int32:
316
        return core.VarDesc.VarType.INT32
317
    elif dtype == np.int16:
318
        return core.VarDesc.VarType.INT16
319
    elif dtype == np.int64:
320
        return core.VarDesc.VarType.INT64
321
    elif dtype == np.bool:
322
        return core.VarDesc.VarType.BOOL
323 324
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
325 326
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
327 328
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
329
    else:
M
minqiyang 已提交
330
        raise ValueError("Not supported numpy dtype %s" % dtype)
331 332 333


def dtype_is_floating(dtype):
334 335 336
    """
    Check the data type is floating or not.
    Args:
337
        dtype(np.dtype|core.VarDesc.VarType): data type.
338 339 340 341 342
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
343
    if not isinstance(dtype, core.VarDesc.VarType):
344 345
        dtype = convert_np_dtype_to_dtype_(dtype)

346 347 348 349
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
350 351


Y
Yang Yang(Tony) 已提交
352
def _debug_string_(proto, throw_on_error=True):
353 354 355 356 357 358 359 360 361 362 363
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
364
    error_fields = list()
Y
Yang Yang(Tony) 已提交
365
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
366 367
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
368 369 370
    return proto.__str__()


X
Xin Pan 已提交
371
class Variable(object):
372
    """
373 374 375
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
376
    two variables in different blocks could have the same name.
377

378 379
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
380

381
    Most of a Variable's member variables can be setted to be None. It mean
382
    it is not available or will be specified later.
383 384

    Args:
385
        block(Block): The block that the variable belongs to.
386 387
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
388 389
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
390
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
391
            Some kinds of variable do not contain shape, just set it to None.
392 393 394
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
395
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
396
            series data.
397
            Default: None
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
420 421
    """

Y
Yu Yang 已提交
422 423
    def __init__(self,
                 block,
Y
Yu Yang 已提交
424
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
425 426 427 428
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
429
                 capacity=None,
Q
QI JUN 已提交
430
                 persistable=None,
F
fengjiayi 已提交
431
                 error_clip=None,
Y
Yu Yang 已提交
432
                 stop_gradient=False,
F
fengjiayi 已提交
433
                 is_data=False,
Y
Yu Yang 已提交
434
                 **kwargs):
Y
Yu Yang 已提交
435 436
        self.block = block
        if name is None:
Y
Yu Yang 已提交
437
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
438

Y
Yu Yang 已提交
439
        if dtype is not None:
440
            if not isinstance(dtype, core.VarDesc.VarType):
441
                dtype = convert_np_dtype_to_dtype_(dtype)
442

L
lujun 已提交
443
        if in_dygraph_mode():
M
minqiyang 已提交
444
            # record vars in tracer rather than blocks
M
minqiyang 已提交
445 446
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
447 448 449
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
450 451
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
452
            if persistable:
L
lujun 已提交
453
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
454
            self.op = None
M
minqiyang 已提交
455
        else:
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
528
            self.block.vars[name] = self
529
            self.op = None
530
            self._stop_gradient = stop_gradient
531
            self.is_data = is_data
Y
Yu Yang 已提交
532

533
    def numpy(self):
M
minqiyang 已提交
534
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
535
        return np.array(new_ivar.value().get_tensor())
536

537 538
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
539
        if backward_strategy is None:
540 541
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
542 543 544

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
545

546
    def gradient(self):
547 548
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
549

550
    def clear_gradient(self):
X
Xin Pan 已提交
551
        self._ivar._clear_gradient()
X
Xin Pan 已提交
552

553
    def __str__(self):
Y
Yang Yang(Tony) 已提交
554 555
        return self.to_string(True)

F
update  
fengjiayi 已提交
556
    def to_string(self, throw_on_error, with_details=False):
557 558 559 560
        """
        Get debug string.

        Args:
561 562
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
563
            with_details(bool): more details about variables and parameters
564 565
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
566

567 568
        Returns:
            str: The debug string.
569
        """
L
lujun 已提交
570
        if in_dygraph_mode():
L
lujun 已提交
571
            # TODO(panyx0718): add more dygraph debug info.
572 573 574
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
575

F
update  
fengjiayi 已提交
576 577
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
578
        protostr = self.desc.serialize_to_string()
579
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
580 581 582 583
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
584 585
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
586
        return res_str
587 588 589

    __repr__ = __str__

590
    def set_desc(self, input):
591 592 593 594 595 596 597 598 599
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
600 601
        self.desc = input

602
    @property
603
    def stop_gradient(self):
L
lujun 已提交
604
        if in_dygraph_mode():
M
minqiyang 已提交
605 606
            return self._ivar.stop_gradient
        else:
607
            return self._stop_gradient
608

609 610
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
611
        if in_dygraph_mode():
M
minqiyang 已提交
612
            self._ivar.stop_gradient = s
613
        else:
614
            self._stop_gradient = s
615

616 617
    @property
    def persistable(self):
L
lujun 已提交
618
        if in_dygraph_mode():
619 620 621
            return self._ivar.persistable
        else:
            return self.desc.persistable()
622

Y
Yu Yang 已提交
623 624
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
625
        if in_dygraph_mode():
626 627 628
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
629

Y
Yu Yang 已提交
630 631
    @property
    def name(self):
L
lujun 已提交
632
        if in_dygraph_mode():
633 634 635
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
636

T
typhoonzero 已提交
637 638
    @name.setter
    def name(self, new_name):
L
lujun 已提交
639
        if in_dygraph_mode():
640 641 642
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
643

Y
Yu Yang 已提交
644 645 646
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
647
        if in_dygraph_mode():
648 649 650
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
651 652

    @property
F
fengjiayi 已提交
653
    def dtype(self):
L
lujun 已提交
654
        if in_dygraph_mode():
655 656 657
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
658 659 660

    @property
    def lod_level(self):
L
lujun 已提交
661
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
662 663
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
664
        return self.desc.lod_level()
Y
Yu Yang 已提交
665

Y
Yu Yang 已提交
666 667
    @property
    def type(self):
L
lujun 已提交
668
        if in_dygraph_mode():
669 670 671
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
672

W
Wu Yi 已提交
673
    def _set_error_clip(self, error_clip):
674 675 676 677 678 679 680 681 682
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
683 684
        self.error_clip = error_clip

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
772
    def _cloneVar(self, copy=False):
773 774
        if not copy:
            return self.block.create_var(
775 776
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
777 778 779 780
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
781
        new_var = self._cloneVar()
782 783 784 785 786 787 788 789 790 791
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
792
        new_var = self._cloneVar()
793 794 795 796 797 798 799 800 801 802
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
803
                return self._cloneVar(True)
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
822
                return self._cloneVar(True)
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
875
            else:
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
919

Y
Yu Yang 已提交
920

F
fengjiayi 已提交
921 922 923
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
924

925 926
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
927 928 929 930
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
931
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
932 933 934 935 936
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
937 938 939 940
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
941 942 943 944 945 946 947 948 949
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
950
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
951 952 953 954 955 956
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
957 958 959 960 961 962 963 964
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
965 966
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
967 968
        return self.op_proto_map[type]

969 970 971 972
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
973
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
974 975
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
976 977
        }

F
fengjiayi 已提交
978

X
Xin Pan 已提交
979
class Operator(object):
980
    """
981 982 983 984 985 986 987
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
988
        type(str): The type of operator. Default None.
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1009
        Block.append_op or Block._prepend_op instead.
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1020
    """
1021
    OP_WITHOUT_KERNEL_SET = {
1022 1023 1024
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
1025
    }
1026

Y
Yu Yang 已提交
1027 1028
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1029
                 desc,
Y
Yu Yang 已提交
1030 1031 1032
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1033
                 attrs=None):
L
lujun 已提交
1034
        if in_dygraph_mode():
1035 1036
            if type is None:
                raise ValueError(
1037
                    "`type` to initialized an Operator can not be None.")
1038
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1039
            self.previous_ops = []
M
minqiyang 已提交
1040

M
minqiyang 已提交
1041
            self.attrs = attrs if attrs else {}
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1056
                )] = self.block.program._op_role
1057 1058 1059

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1060 1061
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1062 1063 1064 1065 1066 1067 1068 1069

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1070
                    "`type` to initialized an Operator can not be None.")
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1102
                        for index, arg in enumerate(in_args):
1103 1104 1105 1106
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1107
                            elif isinstance(arg, Variable):
1108
                                in_arg_names.append(cpt.to_text(arg.name))
1109 1110 1111 1112
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1139
                        if not in_dygraph_mode():
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1159
    def _has_kernel(self, op_type):
1160 1161
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1162
    def to_string(self, throw_on_error):
1163
        """
1164 1165
        Get debug string.

1166
        Args:
1167 1168
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1169

1170 1171
        Returns:
            str: The debug string.
1172 1173

        """
1174
        protostr = self.desc.serialize_to_string()
1175
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1176 1177 1178 1179
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1180 1181 1182

    __repr__ = __str__

F
fengjiayi 已提交
1183 1184
    @property
    def type(self):
L
lujun 已提交
1185
        if in_dygraph_mode():
1186 1187 1188
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1189 1190

    def input(self, name):
1191
        """
1192
        Get the input arguments according to the input parameter name.
1193

1194 1195
        Args:
            name(str): The input parameter name.
1196

1197 1198 1199
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1200
        """
F
fengjiayi 已提交
1201 1202
        return self.desc.input(name)

W
Wu Yi 已提交
1203
    def _rename_input(self, old_name, new_name):
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1214
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1215

W
Wu Yi 已提交
1216
    def _rename_output(self, old_name, new_name):
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1227
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1228

F
fengjiayi 已提交
1229 1230 1231 1232
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1233 1234 1235 1236 1237 1238 1239 1240
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1241
    def output(self, name):
1242
        """
1243
        Get output arguments by the output parameter name.
1244

1245 1246
        Args:
            name(str): The output parameter name.
1247

1248 1249 1250
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1251
        """
F
fengjiayi 已提交
1252 1253 1254 1255 1256 1257
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1258 1259 1260 1261 1262 1263 1264 1265
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1266
    def has_attr(self, name):
1267
        """
1268 1269
        Whether this Operator has the attribute with name or not.

1270
        Args:
1271
            name(str): the attribute name.
1272

1273 1274
        Returns:
            bool: True if has this attribute.
1275 1276

        """
F
fengjiayi 已提交
1277 1278 1279
        return self.desc.has_attr(name)

    def attr_type(self, name):
1280
        """
1281
        Get the type of attribute by attribute's name.
1282

1283 1284
        Args:
            name(str): the attribute name.
1285

1286 1287
        Returns:
            core.AttrType: the attribute type.
1288
        """
F
fengjiayi 已提交
1289 1290
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1291
    def _set_attr(self, name, val):
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1302 1303
        self._update_desc_attr(name, val)

1304 1305 1306
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1318 1319
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1320 1321
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1322
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1323 1324 1325 1326
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1327
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1328

F
fengjiayi 已提交
1329 1330 1331 1332 1333
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1334
        """
1335 1336
        Get the attribute by name.

1337
        Args:
1338
            name(str): the attribute name.
1339

1340 1341
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1342 1343
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1344
        return self.desc.attr(name)
Y
Yu Yang 已提交
1345

W
Wu Yi 已提交
1346
    def _block_attr_id(self, name):
1347
        """
G
gongweibao 已提交
1348
        Get the block attribute's id by name.
1349

1350 1351
        Args:
            name(str): the attribute name.
1352

1353 1354
        Returns:
            int: the block index.
1355
        """
W
Wu Yi 已提交
1356
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1357

W
Wu Yi 已提交
1358
    def _block_attr(self, name):
G
gongweibao 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1369
        id = self._block_attr_id(name)
G
gongweibao 已提交
1370 1371 1372
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1373
    def _blocks_attr(self, name):
G
gongweibao 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1384
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1385 1386 1387 1388 1389
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1390
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1401
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1402

J
JiayiFeng 已提交
1403
    def all_attrs(self):
F
fengjiayi 已提交
1404
        """
1405 1406 1407
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1408
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1409 1410 1411 1412
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1413 1414
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1415
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1416 1417 1418
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1419
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1420 1421 1422 1423
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1424 1425
        return attr_map

Y
Yu Yang 已提交
1426

Y
Yu Yang 已提交
1427
class Block(object):
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1442
        use `Program._create_block()` to create a block.
1443 1444 1445 1446

    Examples:
        .. code-block:: python

1447 1448 1449
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1450 1451 1452 1453 1454 1455 1456 1457 1458
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1459
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1460
        self.desc = program.desc.block(idx)
1461
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1462
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1463
        self.program = program
1464
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1465

1466
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1467 1468
        return self.to_string(True)

F
fengjiayi 已提交
1469 1470
    def to_string(self, throw_on_error, with_details=False):
        """
1471 1472
        Get debug string.

F
fengjiayi 已提交
1473 1474
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1475
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1476
            with_details(bool): more details about variables and parameters
1477 1478
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1479

1480 1481
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1482 1483 1484 1485
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1486
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1487 1488
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1489
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1490
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1491
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1492
            for op in self.ops:
F
fengjiayi 已提交
1493 1494
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1495 1496 1497
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1498 1499
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1500 1501
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1502 1503 1504

    __repr__ = __str__

Y
Yu Yang 已提交
1505 1506
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1507
        return self.desc.parent
Y
Yu Yang 已提交
1508

Y
Yu Yang 已提交
1509 1510 1511 1512
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1513
    def _set_forward_block_idx(self, idx):
1514 1515 1516 1517 1518 1519 1520 1521 1522
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1523
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1524

Y
Yu Yang 已提交
1525 1526
    @property
    def idx(self):
Y
Yu Yang 已提交
1527
        return self.desc.id
Y
Yu Yang 已提交
1528

Q
Qiao Longfei 已提交
1529
    def var(self, name):
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1543
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1544 1545 1546
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1547 1548
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1549
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1550
        return v
Q
Qiao Longfei 已提交
1551

X
Xin Pan 已提交
1552
    def _find_var_recursive(self, name):
1553 1554 1555 1556 1557 1558 1559
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1560
            Variable: the Variable with the giving name. Or None if not found.
1561
        """
Y
Yu Yang 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1586
        return None
Y
Yu Yang 已提交
1587

X
Xin Pan 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1607

Q
Qiao Longfei 已提交
1608
    def all_parameters(self):
1609
        return list(self.iter_parameters())
1610

1611
    def iter_parameters(self):
M
minqiyang 已提交
1612
        return (item[1] for item in six.iteritems(self.vars)
1613
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1614

Y
Yu Yang 已提交
1615
    def create_var(self, *args, **kwargs):
1616
        var = Variable(block=self, *args, **kwargs)
1617 1618
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1619
        return var
Y
Yu Yang 已提交
1620

Q
Qiao Longfei 已提交
1621 1622 1623
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1624
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1625 1626
        """
        Rename variable in vars and ops' inputs and outputs
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1639
        """
M
minqiyang 已提交
1640 1641
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1642

T
typhoonzero 已提交
1643
        if not self.has_var(name):
1644
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1645 1646
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1647
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1648 1649 1650 1651 1652 1653 1654
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1655
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1656 1657 1658 1659
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1660
        orig_var_type = v.type
M
minqiyang 已提交
1661
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1662
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1663
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1664
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1665 1666 1667 1668
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1669
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1670 1671 1672 1673 1674 1675 1676
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1677
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1678 1679
            var = Variable(
                self,
T
typhoonzero 已提交
1680
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1681 1682 1683 1684
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1685
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1686 1687 1688
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1689
        self._sync_with_cpp()
1690
        return var
T
typhoonzero 已提交
1691

W
Wu Yi 已提交
1692 1693
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1694
        self.desc._remove_var(cpt.to_bytes(name))
1695 1696
        del self.vars[name]

Y
Yu Yang 已提交
1697 1698
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1699
        param = Parameter(global_block, *args, **kwargs)
1700
        if 'initializer' in kwargs:
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1721
        return param
Y
Yu Yang 已提交
1722

Y
Yu Yang 已提交
1723
    def append_op(self, *args, **kwargs):
1724 1725 1726 1727 1728 1729
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1730
        if in_dygraph_mode():
1731 1732 1733
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1734 1735 1736 1737 1738
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1739

1740 1741 1742 1743
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1744 1745
                inputs=None,
                outputs=None,
1746
                attrs=attrs)
1747

M
minqiyang 已提交
1748 1749 1750
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1751
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1752 1753 1754 1755
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1756
        else:
1757 1758 1759 1760 1761 1762 1763 1764 1765
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1766
            self.ops.append(op)
M
minqiyang 已提交
1767

1768 1769
        return op

W
Wu Yi 已提交
1770
    def _insert_op(self, index, *args, **kwargs):
1771 1772 1773 1774 1775 1776 1777 1778 1779
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1780 1781
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1782 1783 1784 1785
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1786
    def _remove_op(self, index):
1787 1788 1789 1790 1791 1792 1793 1794 1795
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1796 1797
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1798 1799
        del self.ops[index]

W
Wu Yi 已提交
1800
    def _slice_ops(self, start, end):
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1811
        return self.ops[start:end]
Y
Yancey1989 已提交
1812

W
Wu Yi 已提交
1813
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1814
        if in_dygraph_mode():
1815 1816 1817 1818
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1819 1820 1821 1822 1823 1824 1825 1826
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1827
        else:
1828 1829 1830 1831 1832 1833 1834 1835
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1836
            self.ops.insert(0, op)
1837

Y
Yu Yang 已提交
1838 1839
        return op

W
Wu Yi 已提交
1840
    def _sync_with_cpp(self):
1841
        """
1842 1843
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1844
        """
Q
Qiao Longfei 已提交
1845 1846 1847 1848 1849
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1850
        # sync variables removed from c++ end
1851
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1852
            if not self.desc.find_var(cpt.to_bytes(var)):
1853 1854
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1855
        # sync operators from cpp
1856 1857 1858 1859
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1876 1877 1878 1879 1880

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1881
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1882 1883 1884 1885 1886 1887 1888

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1902 1903 1904 1905
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1906
    def _copy_param_info_from(self, other):
1907
        """
1908 1909
        Copy the information of parameters from the other block.

1910
        Args:
1911 1912 1913 1914 1915
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1916 1917 1918 1919 1920

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1921 1922
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1923
        for p in other.iter_parameters():
1924 1925 1926
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1927
                raise ValueError("_copy_param_info_from should be invoked with "
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1940
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1941
                error_clip=p.error_clip,
1942 1943 1944
                name=v.name)
            self.vars[new_p.name] = new_p

1945
    def _clone_variable(self, var, force_persistable=True):
1946 1947
        """
        Clone a variable into current block.
1948

1949 1950
        Args:
            var: the variable to be cloned.
1951 1952 1953
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1954 1955

        Returns:
1956
            Variable: the new  variable cloned from 'var' in current block.
1957 1958
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1959 1960 1961 1962 1963
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1964 1965
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1966
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1967 1968 1969 1970 1971 1972
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1973
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1974
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1975 1976 1977 1978 1979 1980 1981
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1982
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1983
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1984
        return ret_var
1985

Y
Yu Yang 已提交
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2082
    def remove_input_by_id(self, node_id):
2083 2084 2085 2086 2087 2088
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2089
        self.node.remove_input(node_id)
2090

2091
    def remove_input(self, node):
2092 2093 2094 2095
        """
        Remove a node from inputs.

        Args:
2096
            node(IrNode): the node being removed.
2097
        """
2098
        self.node.remove_input(node.node)
2099

2100
    def append_input(self, node):
2101 2102 2103 2104
        """
        Append a node in inputs.

        Args:
2105
            node(IrNode): the node being appended.
2106
        """
2107
        self.node.append_input(node.node)
2108 2109 2110 2111 2112 2113 2114 2115

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2116
    def remove_output_by_id(self, node_id):
2117 2118 2119 2120 2121 2122
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2123
        self.node.remove_output(node_id)
2124

2125
    def remove_output(self, node):
2126 2127 2128 2129
        """
        Remove a node from outputs.

        Args:
2130
            node(IrNode): the node being removed.
2131
        """
2132
        self.node.remove_output(node.node)
2133

2134
    def append_output(self, node):
2135 2136 2137 2138
        """
        Append a node in outputs.

        Args:
2139
            node(IrNode): the node being appended.
2140
        """
2141
        self.node.append_output(node.node)
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2396 2397
class IrGraph(object):
    """
2398
    Python IrGraph. Beneath it is a core.Graph, which is used for
2399
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2400 2401
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2402 2403 2404 2405
    """

    def __init__(self, graph, for_test=False):
        """
2406 2407
        Construct an IrGraph using core.Graph.

2408 2409 2410 2411 2412 2413 2414 2415 2416
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2417 2418 2419 2420
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2421 2422 2423
        Warns:
            The method only clones the graph structure, not its attributes.

2424 2425 2426
        Returns:
            IrGraph: A new and duplicated graph.
        """
2427
        g = self.graph.clone()
2428 2429
        return IrGraph(g, self._for_test)

2430
    def is_test(self):
2431 2432 2433
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2434 2435
        return self._for_test

W
WangZhen 已提交
2436
    def all_nodes(self):
2437 2438 2439
        """
        Return all nodes included in the graph as a set.
        """
2440
        return {IrNode(node) for node in self.graph.nodes()}
2441

2442
    def all_var_nodes(self):
2443 2444 2445
        """
        Return all variable nodes included in the graph as a set.
        """
2446
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2447

2448
    def all_persistable_nodes(self):
2449 2450 2451
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2452 2453 2454 2455 2456
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2457
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2458

2459
    def all_op_nodes(self):
2460 2461 2462
        """
        Return all operator nodes included in the graph as a set.
        """
2463
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2464

2465
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2477
            IrVarNode: the created persistable variable node.
2478
        """
2479 2480 2481 2482 2483
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2484
        return IrVarNode(self.graph.create_var_node(var_desc))
2485 2486

    def create_var_node(self, name, var_type, shape, var_dtype):
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2498
            IrVarNode: the created variable node.
2499 2500
        """

2501 2502 2503 2504
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2505
        return IrVarNode(self.graph.create_var_node(var_desc))
2506 2507

    def create_var_node_from_desc(self, var_desc):
2508 2509 2510 2511 2512 2513 2514 2515
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2516
            IrVarNode: the created variable node.
2517
        """
2518
        return IrVarNode(self.graph.create_var_node(var_desc))
2519 2520

    def create_op_node(self, op_type, attrs, inputs, outputs):
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2531
            IrOpNode: the created operator node.
2532
        """
2533 2534
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2535
        for attr, value in six.iteritems(attrs):
2536
            self._update_desc_attr(op_desc, attr, value)
2537
        for input_name, var_nodes in six.iteritems(inputs):
2538 2539 2540 2541
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2542
        for output_name, var_nodes in six.iteritems(outputs):
2543 2544 2545 2546
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2547
        return IrOpNode(self.graph.create_op_node(op_desc))
2548 2549

    def create_op_node_from_desc(self, op_desc):
2550 2551 2552 2553 2554 2555 2556
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2557
            IrOpNode: the created operator node.
2558
        """
2559
        return IrOpNode(self.graph.create_op_node(op_desc))
2560 2561

    def update_input_link(self, old_input_node, new_input_node, op_node):
2562 2563 2564 2565
        """
        Update the input's link of a operator node.

        Args:
2566 2567 2568
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2569
        """
2570 2571
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2572
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2573 2574 2575 2576
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2577
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2578 2579

    def link_to(self, node_in, node_out):
2580 2581 2582 2583
        """
        Connect two nodes.

        Args:
2584 2585
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2586
        """
2587
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2588
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2589 2590
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2591 2592

    def safe_remove_nodes(self, remove_nodes):
2593 2594 2595 2596 2597 2598 2599
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2600
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2601 2602 2603 2604
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2605 2606
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2607

Z
Zhen Wang 已提交
2608 2609 2610 2611 2612 2613 2614 2615
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2616
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2617 2618 2619 2620
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2621
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2622 2623 2624
                        ]
                    else:
                        var_nodes[each_var_name].append(
2625 2626
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2627 2628
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2629
    def has_circle(self):
2630 2631 2632 2633 2634 2635
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2636 2637 2638
        return core.has_circle(self.graph)

    def graph_num(self):
2639 2640 2641 2642 2643 2644
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2645 2646 2647
        return core.graph_num(self.graph)

    def topology_sort(self):
2648 2649 2650 2651 2652 2653
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2654
            list(IrNode): nodes in topology order.
2655
        """
2656
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2657
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2658 2659

    def build_adjacency_list(self):
2660 2661 2662 2663
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2664
            dict{IrNode: set(IrNode)}: the adjacency list.
2665
        """
2666 2667 2668 2669 2670
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2671

2672 2673 2674 2675 2676 2677 2678 2679
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2680
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2681 2682 2683 2684 2685
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2686 2687 2688 2689 2690 2691 2692 2693 2694
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2695
        remove_ctr_vars = set()
2696
        if remove_ctr_var:
2697
            for node in self.all_var_nodes():
2698 2699 2700
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2701 2702
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2703 2704
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2705 2706 2707 2708 2709 2710
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2722 2723 2724
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2725
        WARN: When the graph includes backward operator nodes, the
2726 2727 2728 2729 2730 2731
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2732
        convert_pass = core.get_pass('graph_to_program_pass')
2733 2734
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2735 2736 2737 2738
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2766
class Program(object):
D
dzhwinter 已提交
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2778
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2779 2780

    Returns:
Y
yuyang18 已提交
2781
        A empty program.
D
dzhwinter 已提交
2782 2783

    Examples:
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2797 2798 2799

    """

2800 2801
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2802 2803
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2804
        self._seed = 0
Y
yuyang18 已提交
2805
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2806
        self.__op_role_var = []
T
tangwei12 已提交
2807

2808 2809
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2810
        self._is_distributed = False
2811
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2812
        self._is_chief = False
2813 2814 2815
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2816
        self._endpoints = []
2817 2818 2819
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2820
        self._trainers_endpoints = []
2821
        # the distributed lookup table names
T
tangwei12 已提交
2822
        self._distributed_lookup_table = None
2823 2824 2825

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2826 2827 2828 2829
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2830

D
dzhwinter 已提交
2831
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2832
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2833
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2834

2835 2836 2837
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2838
        self._program_config = None
2839

2840 2841 2842
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2843 2844 2845
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2846
    @property
D
dzhwinter 已提交
2847
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2848 2849
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2850
        return self.__is_mem_optimized
D
dzhwinter 已提交
2851

D
dzhwinter 已提交
2852 2853 2854
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2855 2856

    @property
2857
    def _op_role(self):
Y
yuyang18 已提交
2858 2859 2860 2861 2862 2863 2864 2865
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2866
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2867 2868 2869 2870
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2871 2872
        return self._current_role

2873 2874
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2875 2876 2877
        self._current_role = role

    @property
2878
    def _op_role_var(self):
Y
yuyang18 已提交
2879
        """
2880
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2881

2882
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2883 2884 2885

        Notes: This is a very low-level API. Users should not use it directly.
        """
2886
        return self.__op_role_var
Y
yuyang18 已提交
2887

2888 2889 2890 2891 2892 2893 2894 2895 2896
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2897
    @signature_safe_contextmanager
W
Wu Yi 已提交
2898
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2899 2900 2901 2902 2903 2904 2905
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2906
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2907 2908 2909 2910

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2911
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2912 2913
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2914
        tmp_role = self._current_role
2915
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2916

Y
yuyang18 已提交
2917 2918
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2919
        self.__op_role_var = [
2920 2921 2922
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2923
        yield
2924
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2925
        self._current_role = tmp_role
Y
Yu Yang 已提交
2926

S
rename  
sneaxiy 已提交
2927
    @signature_safe_contextmanager
X
Xin Pan 已提交
2928
    def _lr_schedule_guard(self, is_with_opt=False):
2929 2930 2931 2932 2933 2934 2935
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2936 2937 2938 2939
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2940 2941 2942 2943 2944 2945 2946

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2947 2948

        tmp_role = self._current_role
2949
        tmp_var = self.__op_role_var
2950

2951 2952
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2953 2954
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2955
        # TODO(typhoonzero): how to set target learning rate var
2956
        self.__op_role_var = []
2957
        yield
2958
        self.__op_role_var = tmp_var
2959
        self._current_role = tmp_role
2960

2961
    def __str__(self):
Y
yuyang18 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2971 2972
        return self.to_string(True)

F
fengjiayi 已提交
2973 2974 2975
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2976

F
fengjiayi 已提交
2977
        Args:
Y
yuyang18 已提交
2978 2979
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2980

Y
yuyang18 已提交
2981 2982 2983 2984
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2985 2986
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2987 2988 2989 2990

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3010 3011
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3012 3013
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3014

W
Wu Yi 已提交
3015
    def _get_desc(self):
Y
yuyang18 已提交
3016 3017 3018 3019 3020 3021 3022
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3023 3024
        return self.desc

X
version  
Xin Pan 已提交
3025 3026 3027
    def _version(self):
        return self.desc._version()

3028
    def clone(self, for_test=False):
Y
yuyang18 已提交
3029 3030 3031
        """
        Create a new, duplicated program.

3032

Y
yuyang18 已提交
3033 3034 3035 3036
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3037

Y
yuyang18 已提交
3038
        * Set for_test to False when we want to clone the program for training.
3039 3040 3041 3042
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3043

3044 3045 3046 3047
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3048

3049 3050 3051 3052 3053
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3054 3055

        Args:
Y
yuyang18 已提交
3056 3057
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3058

D
dzhwinter 已提交
3059
        Returns:
Y
yuyang18 已提交
3060 3061 3062 3063
            Program: The new, duplicated Program object.

        Examples:

3064 3065 3066 3067 3068 3069
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3165 3166
        """
        if for_test:
X
Xin Pan 已提交
3167
            p = self._inference_optimize(prune_read_op=False)
3168
        else:
3169
            p = Program()
G
gongweibao 已提交
3170 3171
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3172
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3173 3174 3175
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3176 3177

            p._current_role = self._current_role
3178
            p.__op_role_var = self.__op_role_var
3179
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3180

W
Wu Yi 已提交
3181
            p._sync_with_cpp()
3182

W
Wu Yi 已提交
3183
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3184
        p._copy_data_info_from(self)
3185
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3186
        return p
3187

W
Wu Yi 已提交
3188
    def _prune(self, targets):
Y
yuyang18 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3204 3205 3206 3207 3208 3209
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3210 3211
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3212
                    # and we need to find the current op that generate this
3213 3214 3215 3216 3217 3218 3219 3220
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3221
                    t = t.op
3222 3223 3224 3225
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3226
                else:
3227 3228
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3229 3230 3231 3232

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3233 3234 3235
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3236
        res._sync_with_cpp()
3237 3238
        return res

X
Xin Pan 已提交
3239
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3240
        """
F
fengjiayi 已提交
3241 3242 3243 3244 3245
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3246
        3. change the :code:`is_test`
Y
yuyang18 已提交
3247 3248 3249
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3250
        Args:
X
Xin Pan 已提交
3251 3252
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3253

Y
yuyang18 已提交
3254 3255 3256 3257 3258 3259
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3260
        res = Program()
3261
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3262 3263 3264 3265

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3266
        if prune_read_op:
3267 3268 3269 3270 3271 3272 3273 3274 3275
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3276
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3277 3278

        # change all `is_test` attributes to True
M
minqiyang 已提交
3279
        for i in six.moves.range(res.desc.num_blocks()):
3280
            block = res.desc.block(i)
M
minqiyang 已提交
3281
            for j in six.moves.range(block.op_size()):
3282 3283
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3284
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3285 3286 3287
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3288
        res._sync_with_cpp()
3289 3290
        return res

3291 3292
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3293 3294 3295 3296 3297 3298 3299
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3300
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3301 3302 3303 3304

        Returns:
            Program: A deserialized program desc.
        """
3305 3306
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3307
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3308
        p._sync_with_cpp()
3309
        return p
Y
Yu Yang 已提交
3310

3311
    @staticmethod
3312
    def _construct_from_desc(desc):
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3328 3329
    @property
    def random_seed(self):
Y
yuyang18 已提交
3330 3331 3332 3333 3334
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3346
        """
D
dzhwinter 已提交
3347 3348
        return self._seed

Q
qiaolongfei 已提交
3349 3350
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3351 3352
        """
        The number of blocks in this program.
3353 3354 3355 3356 3357 3358 3359 3360 3361

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3362
        """
Q
qiaolongfei 已提交
3363 3364
        return self.desc.num_blocks()

D
dzhwinter 已提交
3365 3366 3367 3368 3369 3370
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3371
    def __repr__(self):
3372
        return self.__str__()
3373

Y
Yu Yang 已提交
3374
    def global_block(self):
Y
yuyang18 已提交
3375 3376
        """
        Get the first block of this program.
3377 3378 3379 3380 3381 3382 3383 3384 3385

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3386
        """
Y
Yu Yang 已提交
3387 3388
        return self.blocks[0]

Q
Qiao Longfei 已提交
3389
    def block(self, index):
Y
yuyang18 已提交
3390 3391 3392 3393 3394 3395 3396
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3397 3398 3399 3400 3401 3402 3403 3404 3405

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3406
        """
Q
Qiao Longfei 已提交
3407 3408
        return self.blocks[index]

Y
Yu Yang 已提交
3409
    def current_block(self):
Y
yuyang18 已提交
3410 3411 3412
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3413 3414 3415 3416 3417 3418 3419 3420 3421

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3422
        """
Y
Yu Yang 已提交
3423 3424
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3425
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3436
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3437 3438 3439
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3440 3441 3442 3443
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3444
    def _rollback(self):
Y
yuyang18 已提交
3445 3446 3447 3448 3449
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3450 3451
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3452
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3463 3464 3465
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3466
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3467

W
Wu Yi 已提交
3468
    def _copy_param_info_from(self, other):
3469
        """
3470
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3471

Y
yuyang18 已提交
3472 3473 3474
        Notes: This is a very low level API. Users should not invoke it
        directly.

3475 3476 3477 3478 3479 3480 3481
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3482
            raise TypeError("_copy_param_info_from should be invoked with "
3483 3484 3485
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3486
            raise ValueError("_copy_param_info_from should be invoked with two "
3487
                             "program, with represent the same topology")
W
Wu Yi 已提交
3488
        self.global_block()._copy_param_info_from(other.global_block())
3489

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3505
        self._parameters_on_pservers = other._parameters_on_pservers
3506
        self._endpoints = other._endpoints
3507
        self._ps_endpoint = other._ps_endpoint
3508 3509
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3510
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3511 3512
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3513

Y
yuyang18 已提交
3514 3515 3516
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3517 3518 3519 3520 3521 3522 3523
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3524
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3525 3526 3527
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3528
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3529
                             "program, with represent the same topology")
3530
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3531 3532 3533
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3534
    def list_vars(self):
Y
yuyang18 已提交
3535 3536 3537 3538 3539
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3551
        """
3552
        for each_block in self.blocks:
3553
            for each_var in list(each_block.vars.values()):
3554 3555
                yield each_var

Y
Yu Yang 已提交
3556

Y
Yu Yang 已提交
3557
class Parameter(Variable):
3558
    """
3559
    Parameter is derived from Variable. A parameter is a persistable
3560
    Variable, and will be updated by optimizers after each iteration.
3561
    The training of a neural network is essentially the updating of
3562 3563
    its parameters.

3564
    Relative to a general Variable, a Parameter has several its own
3565 3566
    member variables:

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3579 3580
    """

Y
Yu Yang 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3591 3592 3593

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3594 3595 3596 3597
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3598 3599
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3600
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3601

W
wanghaoshuang 已提交
3602
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3603

F
fengjiayi 已提交
3604 3605 3606
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3607 3608 3609
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3610

F
update  
fengjiayi 已提交
3611 3612 3613 3614 3615 3616 3617 3618
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3619 3620 3621 3622 3623 3624 3625 3626 3627
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3628 3629 3630 3631 3632 3633
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3634
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3635
            for attr_name in additional_attr:
3636 3637
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3638 3639
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3640 3641 3642 3643
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3644

Y
Yu Yang 已提交
3645
# program is a global instance.
Y
Yu Yang 已提交
3646 3647
_main_program_ = Program()
_startup_program_ = Program()
3648

3649

3650
def default_startup_program():
Y
Yu Yang 已提交
3651
    """
Y
yuyang18 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3661

Y
Yu Yang 已提交
3662 3663
    Returns:
        Program: startup program
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3679
    """
Y
Yu Yang 已提交
3680
    return _startup_program_
3681

3682

3683
def default_main_program():
Y
Yu Yang 已提交
3684
    """
Y
yuyang18 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3694

Y
Yu Yang 已提交
3695 3696
    Returns:
        Program: main program
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3726
    """
Y
Yu Yang 已提交
3727
    return _main_program_
Y
Yu Yang 已提交
3728 3729 3730 3731 3732


def switch_main_program(program):
    """
    Switch the main program to a new program.
3733

Y
Yu Yang 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3748
    Switch the startup program to a new program
Y
Yu Yang 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3761
@signature_safe_contextmanager
Y
Yu Yang 已提交
3762 3763
def program_guard(main_program, startup_program=None):
    """
3764 3765
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3766
    variables to the new main programs.
3767

Y
Yu Yang 已提交
3768
    Examples:
3769 3770 3771
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3772

3773 3774 3775 3776 3777
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3778 3779 3780

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3781

Y
Yu Yang 已提交
3782
    Examples:
3783
       .. code-block:: python
Y
yuyang18 已提交
3784

3785 3786 3787 3788 3789 3790
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3791

Y
Yu Yang 已提交
3792
    Args:
3793 3794 3795
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3808 3809


W
Wu Yi 已提交
3810
def _get_var(name, program=None):
X
xuwei06 已提交
3811
    """
Y
yuyang18 已提交
3812
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3813

X
xuwei06 已提交
3814 3815 3816
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3817
        If None, default_global_program() will be used.
X
xuwei06 已提交
3818 3819 3820 3821 3822 3823 3824

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3825
    assert isinstance(program, Program)
X
xuwei06 已提交
3826 3827

    return program.global_block().var(name)
3828 3829


S
rename  
sneaxiy 已提交
3830
@signature_safe_contextmanager
L
lujun 已提交
3831 3832 3833 3834
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3835

3836
    yield
P
Paddle CI 已提交
3837

L
lujun 已提交
3838
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3839 3840


S
rename  
sneaxiy 已提交
3841
@signature_safe_contextmanager
L
lujun 已提交
3842 3843 3844 3845
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3846

3847
    yield
M
minqiyang 已提交
3848

L
lujun 已提交
3849
    _dygraph_current_expected_place_ = tmp_place