optimizer.py 217.1 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import logging
20
from collections import defaultdict
21

Q
Qiao Longfei 已提交
22
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
23
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
24

25 26
from . import framework
from . import layers
27
from . import unique_name
28
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
29
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
30 31 32
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
33
from .layers import ops
34
from .regularizer import append_regularization_ops
35
from .dygraph import base as imperative_base
36
from .dygraph import no_grad
37
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
38 39 40
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
41
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
42
from .. import compat as cpt
M
MRXLT 已提交
43
import paddle
44

45
__all__ = [
46 47 48 49
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
50
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
51 52
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
53
]
Q
Qiao Longfei 已提交
54 55 56 57 58 59


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
60 61
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
62 63
    """

64
    @imperative_base.no_grad
65 66 67 68
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
69
                 grad_clip=None,
70
                 name=None):
71 72
        # Because of the loop import, so place it in the function body
        from paddle.optimizer.lr_scheduler import _LRScheduler
H
hong 已提交
73 74
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
75
        self._name = name
L
lujun 已提交
76
        if framework.in_dygraph_mode():
77 78
            if not isinstance(learning_rate,
                              (float, LearningRateDecay, _LRScheduler)):
M
minqiyang 已提交
79
                raise TypeError(
80
                    "learning rate should be float or _LRScheduler, got %s here"
M
minqiyang 已提交
81
                    % type(learning_rate))
82
            if self._parameter_list is None:
83 84 85
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
86 87 88 89 90 91 92 93
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
94
        else:
95 96
            if not isinstance(learning_rate,
                              (float, framework.Variable, _LRScheduler)):
M
minqiyang 已提交
97
                raise TypeError(
98 99
                    "learning rate should be float or _LRScheduler, got %s here"
                    % type(learning_rate))
M
minqiyang 已提交
100

101 102 103 104 105
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
106
        self.regularization = regularization
107
        self._grad_clip = grad_clip
108
        self._learning_rate = learning_rate
D
dzhwinter 已提交
109 110
        # the learning rate type should be inferenced from loss
        self._dtype = None
111
        # each program should have a independent learning rate
112
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
113
        self._learning_rate_map = dict()
114
        if isinstance(self._learning_rate, framework.Variable):
115 116
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
117 118 119 120 121
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
122
        self.helper = None
123
        self._opti_name_list = []
H
hong 已提交
124
        self._accumulators_holder = {}
125
        self._param_device_map = dict()
H
hong 已提交
126 127 128 129

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
130 131
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
132 133 134

        Args: None
        Return:
T
tianshuo78520a 已提交
135
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
136 137 138 139 140
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
141 142 143 144 145 146

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
147 148

        '''
149
        from paddle.optimizer.lr_scheduler import _LRScheduler
H
hong 已提交
150 151 152 153 154
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
155 156 157
        if isinstance(self._learning_rate, _LRScheduler):
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
158
        if isinstance(self._learning_rate, LearningRateDecay):
159 160 161 162
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
163 164 165
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

166 167
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
168

169
                state_dict['global_step'] = var_temp
H
hong 已提交
170 171 172
        return state_dict

    @framework.dygraph_only
173
    def set_state_dict(self, state_dict):
H
hong 已提交
174
        '''
T
tianshuo78520a 已提交
175
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
176 177 178 179 180 181 182 183

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
184

185 186 187 188 189
                import paddle   

                paddle.disable_static()

                emb = paddle.nn.Embedding([10, 10])
190

191 192
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy")
193

194
                adam = paddle.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), 
195
                                                parameter_list=emb.parameters())
196
                state_dict = adam.state_dict()
197

198
                para_state_dict, opti_state_dict = paddle.load("paddle_dy")
199

200
                adam.set_state_dict(opti_state_dict)
H
hong 已提交
201 202

        '''
203 204 205
        from paddle.optimizer.lr_scheduler import _LRScheduler
        if isinstance(self._learning_rate, _LRScheduler):
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
206 207

        if isinstance(self._learning_rate, LearningRateDecay):
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
230 231 232 233 234 235

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
236
                var = var_tmp.value()
H
hong 已提交
237 238 239 240 241 242 243 244
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
245
                    load_para_np = load_para.numpy()
H
hong 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
261

262 263 264
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

265 266
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
267

Q
Qiao Longfei 已提交
268
    def _create_global_learning_rate(self):
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        from paddle.optimizer.lr_scheduler import _LRScheduler
        if isinstance(self._learning_rate, _LRScheduler):
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

293 294 295
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
296 297 298 299 300 301 302 303 304 305 306 307
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
308
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
309
            elif isinstance(self._learning_rate, LearningRateDecay):
310 311 312
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
313
                raise TypeError(
314 315
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
316
        else:
317 318 319 320
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
321 322 323 324 325 326
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
327

328 329 330 331 332 333 334 335
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

414 415 416
    @framework.dygraph_only
    def current_step_lr(self):
        """
417
        :api_attr: imperative
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
463
        if isinstance(current_lr, framework.Variable):
464 465 466 467
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
468 469 470
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
471 472 473 474 475 476 477
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
478
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
479 480 481 482
        """
        get global decayed learning rate
        :return:
        """
483 484
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
485
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
486

Q
Qiao Longfei 已提交
487 488 489 490 491
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

492 493 494 495
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
496 497
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
498
        else:
W
Wu Yi 已提交
499
            if param_lr == 1.0:
Y
yuyang18 已提交
500
                return self._global_learning_rate()
W
Wu Yi 已提交
501
            else:
X
Xin Pan 已提交
502 503 504
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
505
                    return self._global_learning_rate() * param_lr
506 507 508 509 510 511 512

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
513
        """
514 515
        pass

516
    def _finish_update(self, block, parameters_and_grads):
517 518 519 520 521 522 523 524
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
525
            None
526 527 528
        """
        pass

529 530 531 532 533
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
534
                         shape=None,
535
                         type=None,
536
                         device=None):
537 538 539 540 541 542 543 544 545
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
546 547
        if self._name is not None:
            name = self._name + "_" + name
548 549
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
550
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
551
                return self._accumulators[name][param.name]
552
            raise Exception("Accumulator {} already exists for parameter {}".
553
                            format(name, param.name))
554 555
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
556
        assert isinstance(self.helper, LayerHelper)
557 558 559 560 561

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
562
        var = self.helper.create_global_variable(
563
            name=var_name,
Q
Qiao Longfei 已提交
564
            persistable=True,
F
fengjiayi 已提交
565
            dtype=dtype or param.dtype,
566
            type=param.type if type is None else type,
H
hong 已提交
567 568
            shape=shape,
            belong_to_optimizer=True)
569 570 571 572 573
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
574 575 576 577 578 579 580

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
581
        self._accumulators[name][param.name] = var
582
        return var
583 584 585 586 587 588 589 590 591 592 593

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
594 595
        if self._name is not None:
            name = self._name + "_" + name
596 597 598 599 600 601
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

602 603 604 605 606 607 608 609 610 611 612 613
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
614
                        break
615 616 617 618 619 620 621

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

622
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
623 624 625
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
626
          parameters_and_grads(list(tuple(Variable, Variable))):
627
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
628 629

        Returns:
630
          return_op_list: a list of operators that will complete one step of
631 632 633
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
634
        """
635 636 637 638 639
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
640
        # for parameters and extend _finish_update method to add custom ops.
641

642
        # Allways called under program_guard use global block as loss block
643 644 645
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

646
        global_block = framework.default_main_program().global_block()
647 648 649 650 651 652 653 654 655
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
656
        self.helper = LayerHelper(self.__class__.__name__)
657
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
658
        self._create_accumulators(
659
            target_block,
C
chengduo 已提交
660
            [p[0] for p in parameters_and_grads if p[0].trainable])
661 662
        self._create_global_learning_rate()

M
minqiyang 已提交
663
        if framework.in_dygraph_mode():
664 665 666
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
667 668
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
669 670 671 672 673 674 675
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
676 677 678 679 680
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
681 682 683

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
684
        self._finish_update(target_block, parameters_and_grads)
685

686 687
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
688 689

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
690 691 692 693 694 695 696 697 698
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
699 700
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
716 717 718 719 720 721 722 723 724 725 726 727 728
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
729 730
        return new_param_grads, (table_param, table_grad), sgd_op

731 732 733
    def _append_dgc_ops(self, param_and_grad):
        pass

734 735 736 737 738 739 740
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
741
        The first part of ``minimize``, do auto-diff to append backward operations for
742 743 744
        the current program.

        Args:
745 746 747 748
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
749
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
750 751
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
752
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
753 754 755
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
756

757
        Return:
758 759
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
760

761
        Examples:
762
            See examples in ``apply_gradients``.
763
        """
764
        act_no_grad_set = None
L
Leo Chen 已提交
765
        if framework.in_dygraph_mode():
766
            pass
L
Leo Chen 已提交
767 768
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
769

C
chengduo 已提交
770
        self._dtype = loss.dtype
L
lujun 已提交
771
        if framework.in_dygraph_mode():
C
chengduo 已提交
772
            params_grads = []
773
            for param in self._parameter_list:
C
chengduo 已提交
774 775
                if not param.trainable:
                    continue
776
                if param._grad_ivar() is not None:
C
chengduo 已提交
777
                    # create gradient variable
778
                    grad_var = param._grad_ivar()
C
chengduo 已提交
779
                    params_grads.append((param, grad_var))
780
        else:
C
chengduo 已提交
781 782 783 784 785
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
786 787 788 789
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
790 791
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
792 793
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
794
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
795
                # Note: since we can't use all_reduce_op now,
D
Dong Daxiang 已提交
796
                # dgc_op should be the last op of one grad.
C
chengduo 已提交
797 798
                self._append_dgc_ops(params_grads)
        return params_grads
799 800 801 802 803 804 805 806

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
807

808 809
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
810

811 812 813
        Examples:
            .. code-block:: python

814
                import paddle.fluid as fluid
815 816 817 818 819 820 821
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
822

823 824
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

825
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
826 827 828 829
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
830 831

        # Add regularization if any
832 833
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
834 835 836 837

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
838 839 840 841 842 843 844 845 846 847 848 849
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
850
        if framework.in_dygraph_mode():
C
chengduo 已提交
851 852
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
853 854
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
855 856
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
857 858 859 860 861 862 863
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
864
    def _get_no_grad_set(self, loss, no_grad_set=None):
865
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
866 867 868 869 870 871 872 873
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

905
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
906 907
    def minimize(self,
                 loss,
908
                 startup_program=None,
Q
Qiao Longfei 已提交
909
                 parameter_list=None,
910
                 no_grad_set=None):
911
        """
912
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
913

914
        Args:
915 916 917 918
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
919
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
920 921
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
922
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
923
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
924

925
        Returns:
926 927 928
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
929 930 931
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
932 933 934

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
935
        """
C
chengduo 已提交
936
        assert isinstance(loss, Variable), "The loss should be an Variable."
937

938 939
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
C
chengduo 已提交
940 941 942 943 944
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
945

C
chengduo 已提交
946 947
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
948

Q
Qiao Longfei 已提交
949
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
950 951 952


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
953 954 955 956 957 958 959
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

960 961 962
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
963
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
964 965
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
966 967 968 969 970
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
971 972 973 974
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
975 976
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
977 978 979 980

    Examples:
        .. code-block:: python

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1006 1007
    """

1008 1009 1010 1011
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1012
                 grad_clip=None,
1013
                 name=None):
Q
Qiao Longfei 已提交
1014
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1015
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1016
            learning_rate=learning_rate,
1017
            parameter_list=parameter_list,
X
Xin Pan 已提交
1018
            regularization=regularization,
1019
            grad_clip=grad_clip,
X
Xin Pan 已提交
1020
            name=name)
Q
Qiao Longfei 已提交
1021 1022
        self.type = "sgd"

1023
    @no_grad
1024
    def _append_optimize_op(self, block, param_and_grad):
1025
        lr = self._create_param_lr(param_and_grad)
1026
        if framework.in_dygraph_mode():
1027 1028 1029
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
1030

1031
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1032 1033 1034 1035 1036 1037
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1038
                "LearningRate": lr
Q
Qiao Longfei 已提交
1039
            },
M
minqiyang 已提交
1040 1041
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1042 1043

        return sgd_op
1044 1045 1046


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1061
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1062 1063 1064

        & else:

Q
qiaolongfei 已提交
1065
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1066

1067 1068 1069 1070
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1071
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1072 1073
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1074
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1075 1076 1077 1078 1079
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1080 1081 1082 1083
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1084 1085
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1086 1087 1088 1089

    Examples:
        .. code-block:: python

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1115 1116 1117
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1118 1119 1120
    def __init__(self,
                 learning_rate,
                 momentum,
1121
                 parameter_list=None,
X
Xin Pan 已提交
1122 1123
                 use_nesterov=False,
                 regularization=None,
1124
                 grad_clip=None,
X
Xin Pan 已提交
1125
                 name=None):
1126 1127
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1128
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1129
            learning_rate=learning_rate,
1130
            parameter_list=parameter_list,
X
Xin Pan 已提交
1131
            regularization=regularization,
1132
            grad_clip=grad_clip,
X
Xin Pan 已提交
1133
            name=name)
1134 1135
        self.type = "momentum"
        self._momentum = momentum
1136
        self._use_nesterov = bool(use_nesterov)
1137 1138 1139 1140 1141

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1142
            self._add_accumulator(self._velocity_acc_str, p)
1143 1144 1145 1146 1147 1148

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1149 1150 1151 1152 1153 1154 1155 1156
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1157

1158
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1159 1160 1161 1162
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1163
            "LearningRate": [lr]
1164 1165 1166 1167 1168 1169
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1170 1171 1172
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1173 1174 1175
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1176
            stop_gradient=True)
1177 1178

        return momentum_op
1179 1180


1181
class DGCMomentumOptimizer(Optimizer):
1182
    """
1183
	:api_attr: Static Graph
S
swtkiwi 已提交
1184

1185
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1186

G
gongweibao 已提交
1187
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1188 1189
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1190
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1191 1192 1193

    Eventually, these gradients become large enough to be transmitted.

1194
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1195

G
gongweibao 已提交
1196
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1197 1198 1199 1200

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1201

1202 1203
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1204

1205
        2. Call momentum to optimize the cost.
1206 1207

    Args:
1208 1209
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1210
        momentum (float): Momentum factor.
G
gongweibao 已提交
1211
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1212 1213 1214 1215 1216 1217 1218
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1219
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1220 1221
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1222
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1223 1224 1225 1226 1227
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1228 1229 1230
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1231 1232
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1233 1234 1235 1236

    Examples:
        .. code-block:: python

1237
            import paddle.fluid as fluid
1238
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1239 1240 1241 1242 1243
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1244 1245

    """
1246 1247
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1248 1249 1250 1251 1252 1253 1254

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1255
                 parameter_list=None,
1256 1257 1258
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1259
                 grad_clip=None,
1260
                 name=None):
Z
zhongpu 已提交
1261 1262
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1263 1264 1265 1266

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1267 1268 1269 1270
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1271
            parameter_list=parameter_list,
1272
            regularization=regularization,
1273
            grad_clip=grad_clip,
1274 1275 1276 1277
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1278

1279
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1280
        self._rampup_begin_step = rampup_begin_step
1281 1282
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1283

1284
        self._rampup_begin_step_var = None
1285
        self._global_step_var = None
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1298 1299

            self._num_trainers = num_trainers
1300
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1301

1302 1303
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1304

1305 1306 1307
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1308

1309 1310
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1311
            from .regularizer import L1Decay, L2Decay
1312 1313 1314 1315
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1316 1317
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1318
        return regular_type, regular_coeff
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1346 1347

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1348 1349 1350
            type = "momentum"
        else:
            type = "dgc_momentum"
1351 1352 1353 1354 1355
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1356
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1357 1358 1359

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1360 1361 1362 1363
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1364 1365 1366
            stop_gradient=True)
        return dgc_momentum_op

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1399 1400 1401 1402 1403 1404
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1405
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1406

1407 1408 1409
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1410 1411 1412 1413 1414
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1415
            name=core.dgc.kDGCRampUpBeginStepName(),
1416 1417 1418
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1419 1420
        self.helper = LayerHelper(self.__class__.__name__)

1421
        for param_var, grad_var in param_and_grads:
1422 1423 1424
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1425
            if not self._is_use_dgc(param_var, grad_var):
1426 1427
                continue

1428
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1429 1430 1431 1432 1433

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1434
                name=param_var.name + core.dgc.kDGCKName(),
1435 1436 1437 1438 1439 1440 1441
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1442
                name=param_var.name + core.dgc.kDGCEncodedName(),
1443 1444 1445
                value=0.0,
                force_cpu=False)

1446 1447 1448 1449 1450 1451 1452 1453
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1473 1474
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1475
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1476
                         encoded_var, gather_var)
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1492 1493
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1494 1495 1496 1497 1498

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1499
            type="dgc_clip_by_norm",
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1512
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1513 1514

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1515
                encoded_var, gather_var):
1516 1517
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1518

1519 1520 1521 1522 1523 1524 1525
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1526 1527 1528 1529 1530 1531
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1532
                "Param": param_var,
1533 1534
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1535 1536 1537 1538 1539 1540
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1541 1542
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1543 1544 1545 1546 1547 1548
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1549
                "rampup_step": float(self._rampup_step),
1550 1551
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1552 1553 1554 1555 1556 1557 1558 1559
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1560
    @imperative_base.no_grad
1561 1562 1563 1564 1565 1566 1567
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1568
        # DGC clip and regularization in optimizer.backward
1569 1570 1571 1572 1573 1574
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1575
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1576 1577 1578 1579 1580
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1607
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1608 1609 1610

        & param = param - velocity

1611 1612 1613 1614 1615 1616
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1617
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1618 1619
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1620 1621 1622 1623 1624
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1625 1626 1627 1628
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1629 1630
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1631 1632 1633
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
        
1634 1635 1636
    Examples:
        .. code-block:: python

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1653 1654 1655 1656 1657 1658 1659 1660
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1661
                 parameter_list=None,
1662
                 regularization=None,
1663
                 grad_clip=None,
1664 1665 1666
                 name=None,
                 exclude_from_weight_decay=None,
                 epsilon=0):
1667 1668 1669 1670
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1671
            parameter_list=parameter_list,
1672
            regularization=regularization,
1673
            grad_clip=grad_clip,
1674 1675 1676 1677 1678
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1679 1680 1681 1682 1683
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1694 1695 1696 1697 1698 1699 1700 1701
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
1720 1721
                "lars_weight_decay": _lars_weight_decay,
                "epsilon": self._epsilon
M
minqiyang 已提交
1722 1723
            },
            stop_gradient=True)
1724 1725 1726 1727

        return momentum_op


1728
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1729
    """
1730 1731
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1732

1733
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1734 1735 1736 1737 1738 1739 1740

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1741 1742 1743 1744 1745 1746
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1747 1748 1749
    for numerical stability to avoid the division by zero error.

    Args:
1750 1751 1752 1753
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
1754
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1755 1756
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1757 1758 1759 1760 1761
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1762 1763 1764 1765
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1766 1767 1768 1769 1770
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1771 1772 1773 1774

    Examples:
        .. code-block:: python

1775
            import numpy as np
1776
            import paddle.fluid as fluid
1777 1778

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1779
            inp = fluid.data(name="inp", shape=[2, 2])
1780 1781
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1782
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1783 1784 1785 1786 1787 1788 1789
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1790 1791 1792
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1793 1794 1795
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1796
                 parameter_list=None,
X
Xin Pan 已提交
1797
                 regularization=None,
1798
                 grad_clip=None,
1799
                 name=None,
X
xuezhong 已提交
1800
                 initial_accumulator_value=0.0):
1801 1802
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1803
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1804
            learning_rate=learning_rate,
1805
            parameter_list=parameter_list,
X
Xin Pan 已提交
1806
            regularization=regularization,
1807
            grad_clip=grad_clip,
X
Xin Pan 已提交
1808
            name=name)
1809 1810
        self.type = "adagrad"
        self._epsilon = epsilon
1811
        self.initial_accumulator_value = initial_accumulator_value
1812 1813 1814 1815 1816

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1817 1818 1819 1820
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1821 1822 1823 1824 1825 1826

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1827
        # Create the adagrad optimizer op
1828 1829 1830 1831 1832 1833
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1834
                "LearningRate": self._create_param_lr(param_and_grad)
1835 1836 1837
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1838 1839
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1840 1841

        return adagrad_op
1842 1843 1844


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1845
    """
T
tianshuo78520a 已提交
1846
    The Adam optimizer uses an optimization described at the end
1847 1848 1849 1850 1851
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1866 1867
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1868
    Args:
1869 1870
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1871 1872
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1873
            The default value is 0.9.
1874 1875
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1876 1877 1878
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
1879
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1880 1881
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1882 1883 1884 1885 1886
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1887 1888 1889 1890
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1901 1902 1903 1904

    Examples:
        .. code-block:: python

1905 1906 1907 1908 1909 1910
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1911 1912
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1928

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1946
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1975
                                                    beta1=beta1,
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1987 1988 1989
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1990 1991
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1992 1993 1994 1995 1996

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1997
                 epsilon=1e-8,
1998
                 parameter_list=None,
X
Xin Pan 已提交
1999
                 regularization=None,
2000
                 grad_clip=None,
Q
Qiao Longfei 已提交
2001
                 name=None,
Q
Qiao Longfei 已提交
2002
                 lazy_mode=False):
2003 2004 2005 2006
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2007
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
2008
            learning_rate=learning_rate,
2009
            parameter_list=parameter_list,
X
Xin Pan 已提交
2010
            regularization=regularization,
2011
            grad_clip=grad_clip,
X
Xin Pan 已提交
2012
            name=name)
2013 2014 2015 2016
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2017
        self._lazy_mode = lazy_mode
2018 2019 2020 2021 2022 2023

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2024 2025
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
2026 2027 2028
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
2029 2030
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2031
                shape=[1],
2032
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
2033 2034 2035
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
2036 2037
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2038
                shape=[1],
2039
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2040 2041 2042 2043 2044 2045 2046 2047

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
2048 2049 2050 2051
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
2052
        lr = self._create_param_lr(param_and_grad)
2053
        # create the adam optimize op
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

2069
        inputs = {
2070 2071
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2072
            "LearningRate": [lr],
2073 2074 2075 2076
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2077 2078
        }
        outputs = {
2079 2080 2081 2082 2083
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

2100 2101
        adam_op = block.append_op(
            type=self.type,
2102 2103 2104
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2105
            stop_gradient=True)
2106 2107 2108

        return adam_op

2109 2110

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
2111
    """
2112 2113 2114 2115
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2116

2117
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2131
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2132

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2145
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2146 2147
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2148 2149 2150 2151 2152
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2153 2154 2155 2156
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2157 2158 2159 2160 2161 2162
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2177
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2178 2179
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2180
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2181 2182 2183 2184 2185 2186 2187 2188 2189
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2190 2191 2192
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2193
    _beta1_pow_acc_str = "beta1_pow_acc"
2194 2195 2196 2197 2198

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2199
                 epsilon=1e-8,
2200
                 parameter_list=None,
X
Xin Pan 已提交
2201
                 regularization=None,
2202
                 grad_clip=None,
X
Xin Pan 已提交
2203
                 name=None):
2204 2205 2206 2207
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2208
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2209
            learning_rate=learning_rate,
2210
            parameter_list=parameter_list,
X
Xin Pan 已提交
2211
            regularization=regularization,
2212
            grad_clip=grad_clip,
X
Xin Pan 已提交
2213
            name=name)
2214 2215 2216 2217 2218 2219 2220 2221
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2222 2223
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2224 2225 2226 2227 2228
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2229 2230 2231 2232 2233 2234 2235

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2236 2237
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2238 2239 2240 2241 2242 2243
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2244
                "LearningRate": self._create_param_lr(param_and_grad),
2245 2246
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2247
                "Beta1Pow": beta1_pow_acc
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2258 2259
            },
            stop_gradient=True)
2260 2261 2262

        return adamax_op

2263
    def _finish_update(self, block, parameters_and_grads):
2264 2265 2266
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2267
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2268
            if grad is None or param.trainable is False:
2269
                continue
X
Xin Pan 已提交
2270 2271
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2272 2273
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2274
                block.append_op(
2275 2276 2277
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2278 2279
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2280 2281


2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2320
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2321 2322
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2323 2324 2325 2326 2327 2328 2329 2330
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2331 2332
                 sigma=1e-8,
                 parameter_list=None):
2333 2334 2335 2336
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2337 2338
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2339 2340 2341 2342
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2343 2344 2345 2346 2347 2348 2349
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2350 2351 2352 2353 2354

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2355 2356 2357
        if self._seed == None:
            self._seed = 0

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2369 2370
                "sigma": self._sigma,
                "seed": self._seed
2371 2372 2373 2374 2375 2376
            },
            stop_gradient=True)

        return dpsgd_op


2377
class DecayedAdagradOptimizer(Optimizer):
2378
    """
2379 2380 2381
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2382

2383
    The parameter ``param_out`` update rule with gradient ``grad``:
2384 2385 2386 2387 2388 2389 2390

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2391 2392 2393 2394
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2395 2396 2397
    stability to avoid the division by zero error.

    Args:
2398 2399 2400 2401 2402
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2403
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2404 2405
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2406 2407 2408 2409 2410
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2411 2412 2413 2414
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2415 2416 2417 2418 2419 2420
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2421 2422 2423 2424

    Examples:
        .. code-block:: python

2425 2426
            import paddle.fluid as fluid

2427 2428 2429 2430
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2431
            optimizer.minimize(cost)
2432 2433 2434
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2435 2436 2437 2438
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2439
                 parameter_list=None,
X
Xin Pan 已提交
2440
                 regularization=None,
2441
                 grad_clip=None,
X
Xin Pan 已提交
2442
                 name=None):
2443 2444 2445 2446
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2447
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2448
            learning_rate=learning_rate,
2449
            parameter_list=parameter_list,
X
Xin Pan 已提交
2450
            regularization=regularization,
2451
            grad_clip=grad_clip,
X
Xin Pan 已提交
2452
            name=name)
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2480 2481
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2482
            stop_gradient=True)
2483 2484

        return decayed_adagrad_op
2485 2486


2487
class AdadeltaOptimizer(Optimizer):
2488
    """
Z
Zeng Jinle 已提交
2489
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2490

Z
Zeng Jinle 已提交
2491
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2492 2493 2494
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2495

Z
Zeng Jinle 已提交
2496 2497
    .. math::

Z
Zeng Jinle 已提交
2498
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2499

Z
Zeng Jinle 已提交
2500
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2501

Z
Zeng Jinle 已提交
2502
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2503 2504

    Args:
Z
Zeng Jinle 已提交
2505 2506 2507
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2508
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2509 2510
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2511 2512 2513 2514 2515
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2516 2517 2518 2519
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2520 2521 2522
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2523 2524 2525 2526

    Examples:
        .. code-block:: python

2527
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2528

2529
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2530 2531
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2532 2533
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2534

Z
Zeng Jinle 已提交
2535 2536 2537 2538
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2539
    """
2540

2541 2542 2543
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2544 2545 2546 2547
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2548
                 parameter_list=None,
X
Xin Pan 已提交
2549
                 regularization=None,
2550
                 grad_clip=None,
X
Xin Pan 已提交
2551
                 name=None):
2552 2553 2554 2555 2556 2557
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2558
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2559
            learning_rate=learning_rate,
2560
            parameter_list=parameter_list,
X
Xin Pan 已提交
2561
            regularization=regularization,
2562
            grad_clip=grad_clip,
X
Xin Pan 已提交
2563
            name=name)
2564 2565 2566 2567 2568
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2569 2570
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2571 2572 2573 2574 2575 2576

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2577 2578
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2600 2601
                   "rho": self._rho},
            stop_gradient=True)
2602 2603 2604 2605

        return adadelta_op


Q
qingqing01 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2616
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2617 2618 2619 2620

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2621
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2622 2623 2624 2625 2626 2627

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2628
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2629

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2644 2645 2646 2647
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2648
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2649 2650 2651 2652 2653
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2654 2655 2656
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2657
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2658
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2659
        momentum(float): :math:`\\beta` in equation is the momentum term,
2660
            default is 0.0.
2661 2662 2663 2664
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
2665
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2666 2667
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2668 2669 2670 2671 2672
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2673 2674 2675 2676
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2677 2678
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2679 2680 2681 2682 2683 2684 2685

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2711 2712 2713 2714
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2715
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2716 2717 2718 2719 2720 2721

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2722
                 centered=False,
2723
                 parameter_list=None,
X
Xin Pan 已提交
2724
                 regularization=None,
2725
                 grad_clip=None,
X
Xin Pan 已提交
2726
                 name=None):
Q
qingqing01 已提交
2727
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2728
            learning_rate=learning_rate,
2729
            parameter_list=parameter_list,
X
Xin Pan 已提交
2730
            regularization=regularization,
2731
            grad_clip=grad_clip,
X
Xin Pan 已提交
2732
            name=name)
Q
qingqing01 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2746
        self._centered = centered
Q
qingqing01 已提交
2747 2748 2749 2750 2751 2752 2753 2754

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2755
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2765 2766
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2767 2768 2769 2770 2771 2772 2773
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2774
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2775 2776 2777 2778 2779
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2780 2781
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2782 2783 2784 2785
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2786 2787
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2788 2789
            },
            stop_gradient=True)
Q
qingqing01 已提交
2790 2791 2792 2793

        return rmsprop_op


Q
qiaolongfei 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2834 2835 2836 2837 2838
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
2839
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2840 2841
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2842 2843 2844 2845 2846
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2847 2848 2849 2850
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2851 2852
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2853 2854 2855 2856 2857 2858 2859

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2884

2885
    NOTE:
C
chengduo 已提交
2886
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2887 2888 2889 2890 2891
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2892 2893 2894 2895 2896
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2897
                 parameter_list=None,
X
Xin Pan 已提交
2898
                 regularization=None,
2899
                 grad_clip=None,
X
Xin Pan 已提交
2900
                 name=None):
Q
qiaolongfei 已提交
2901
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2902
            learning_rate=learning_rate,
2903
            parameter_list=parameter_list,
X
Xin Pan 已提交
2904
            regularization=regularization,
2905
            grad_clip=grad_clip,
X
Xin Pan 已提交
2906
            name=name)
Q
qiaolongfei 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
2946
                   "l2": self._l2,
M
minqiyang 已提交
2947 2948
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2949 2950 2951 2952

        return ftrl_op


Y
Yibing Liu 已提交
2953 2954 2955 2956 2957 2958
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2959 2960
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2961 2962 2963 2964 2965

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2966
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2967

Y
Yibing Liu 已提交
2968
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2969

Y
Yibing Liu 已提交
2970
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2971

Y
Yibing Liu 已提交
2972
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2973 2974 2975 2976 2977 2978


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2979 2980 2981 2982 2983 2984 2985 2986
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
2987
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2988 2989
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2990 2991 2992 2993 2994
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2995 2996 2997 2998
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
2999 3000 3001 3002 3003
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3004 3005 3006 3007 3008 3009

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3010
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3011 3012 3013
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3014 3015 3016 3017 3018
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3019 3020 3021 3022
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
3023
    # these two not used in op temporarily
Y
Yibing Liu 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3033
                 parameter_list=None,
Y
Yibing Liu 已提交
3034
                 regularization=None,
3035
                 grad_clip=None,
Y
Yibing Liu 已提交
3036
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3037 3038 3039 3040 3041 3042 3043 3044
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3045
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3046
            regularization=regularization,
3047
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3048 3049 3050 3051 3052 3053
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3054
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3055 3056 3057

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3058
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3069 3070 3071 3072 3073 3074
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3096
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3097 3098 3099 3100 3101 3102
            },
            stop_gradient=True)

        return lamb_op


3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3116
Dpsgd = DpsgdOptimizer
3117
DecayedAdagrad = DecayedAdagradOptimizer
3118
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3119
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3120
Ftrl = FtrlOptimizer
3121
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3122
Lamb = LambOptimizer
3123 3124 3125


class ModelAverage(Optimizer):
3126
    """
3127
	:api_attr: Static Graph
S
swtkiwi 已提交
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3147

3148 3149 3150 3151 3152 3153 3154 3155 3156
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3157 3158

    Args:
3159 3160 3161
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3162 3163 3164 3165 3166
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3167 3168 3169
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3170

3171
    Examples:
Q
qiaolongfei 已提交
3172 3173 3174

      .. code-block:: python

3175 3176 3177 3178 3179 3180
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3181

3182 3183 3184 3185
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3186
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3187 3188 3189 3190 3191 3192 3193 3194
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3195
                                                         max_average_window=12500)
3196 3197

            exe.run(startup_program)
3198 3199 3200 3201 3202
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3203 3204

            # apply ModelAverage
3205
            with model_average.apply(exe):
3206 3207 3208 3209
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3210 3211 3212
    """

    def __init__(self,
W
wanghaoshuang 已提交
3213
                 average_window_rate,
3214 3215
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3216 3217
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3218 3219
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3220 3221
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3222 3223 3224
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3225

3226
        self.params_grads = []
3227 3228
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3229
            if param.do_model_average != False:
3230
                grad = param.block.create_var(
3231 3232
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3233 3234
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3235
                    stop_gradient=True)
3236
                self.params_grads.append((param, grad))
3237

3238
        for param, grad in self.params_grads:
3239 3240
            if grad is None:
                continue
X
Xin Pan 已提交
3241 3242
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3243
                self._append_average_accumulate_op(param)
3244

3245 3246 3247 3248
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3249
                self._add_average_apply_op(block, param_grad)
3250 3251 3252 3253 3254

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3255
                self._add_average_restore_op(block, param_grad)
3256

3257
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3258 3259 3260 3261 3262 3263
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3264
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3265
        old_num_accumulates = block._clone_variable(
3266
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3267
        num_updates = block._clone_variable(
3268 3269 3270 3271 3272 3273
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3274 3275 3276 3277
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3278
        ops._elementwise_div(x=sum, y=tmp, out=param)
3279 3280

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3281 3282
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3320 3321
            },
            stop_gradient=True)
3322

S
rename  
sneaxiy 已提交
3323
    @signature_safe_contextmanager
3324
    def apply(self, executor, need_restore=True):
3325 3326
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3327 3328

        Args:
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3373
        """
3374 3375 3376 3377 3378 3379
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3380 3381

    def restore(self, executor):
3382 3383
        """
        Restore ``Parameter`` values of current model.
3384 3385
        
        Args:
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3430
        """
3431
        executor.run(self.restore_program)
3432 3433 3434 3435


class ExponentialMovingAverage(object):
    """
3436
	:api_attr: Static Graph
S
swtkiwi 已提交
3437

3438 3439 3440 3441 3442 3443
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3444
        \\text{EMA}_0 & = 0
3445

3446 3447
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3448 3449 3450 3451
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3473 3474 3475


    Args:
Y
Yibing Liu 已提交
3476 3477 3478 3479 3480 3481 3482
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3483 3484 3485 3486 3487


    Examples:

	.. code-block:: python
3488 3489 3490 3491 3492

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3493
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3494 3495 3496 3497 3498 3499 3500 3501
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3502
	    global_steps = fluid.layers.autoincreased_step_counter()
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3532 3533
    """

3534
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3535 3536 3537
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3538
        self._decay = decay
3539
        self._thres_steps = thres_steps
3540
        self._name = name if name is not None else ''
3541 3542
        self._decay_var = self._get_ema_decay()

3543
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3544
        self._params_tmps = []
3545
        for param in default_main_program().global_block().all_parameters():
3546 3547 3548 3549 3550 3551 3552
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3553
                self._params_tmps.append((param, tmp))
3554

Y
Yibing Liu 已提交
3555 3556
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3557 3558
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3559
                self._ema_vars[param.name] = self._create_ema_vars(param)
3560 3561 3562 3563

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3564
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3565
            for param, tmp in self._params_tmps:
3566 3567
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3568
                ema = block._clone_variable(self._ema_vars[param.name])
3569
                layers.assign(input=param, output=tmp)
3570
                # bias correction
3571 3572
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
3573 3574 3575 3576
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow))
                    with switch.default():
                        layers.assign(output=param, input=ema)
3577 3578 3579 3580

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3581
            for param, tmp in self._params_tmps:
3582 3583 3584 3585
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3608 3609 3610 3611 3612 3613 3614
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3615
        decay_var = block._clone_variable(self._decay_var)
3616 3617
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3618

Y
Yibing Liu 已提交
3619
    def _create_ema_vars(self, param):
3620 3621 3622 3623 3624 3625 3626 3627 3628
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3629 3630 3631 3632 3633
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3634 3635
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3636
        param_master_emas = []
Y
Yibing Liu 已提交
3637 3638 3639 3640
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3641
                if param.name + '.master' in self._ema_vars:
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3659

3660 3661 3662 3663 3664 3665 3666
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3667 3668
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3684 3685 3686


class PipelineOptimizer(object):
3687
    """
3688
	:api_attr: Static Graph
S
swtkiwi 已提交
3689

3690 3691 3692 3693
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
3694

3695
    Args:
3696 3697 3698 3699
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
3700 3701
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3702

3703
            import paddle.fluid as fluid
H
hutuxian 已提交
3704 3705
            import paddle.fluid.layers as layers

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
3722
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
3723
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
3724
            optimizer.minimize(loss)
3725 3726 3727 3728 3729 3730 3731 3732 3733

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
3734 3735
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3736
            batch_size = 1
H
hutuxian 已提交
3737 3738 3739 3740 3741
            filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
            dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
            dataset.set_use_var([x,y])
            dataset.set_batch_size(batch_size)
            dataset.set_filelist(filelist)
3742
            data_loader.start()
H
hutuxian 已提交
3743
            exe.train_from_dataset(
3744 3745 3746
                    fluid.default_main_program(),
                    dataset)
            data_loader.reset()
3747 3748
    """

3749
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
3750 3751
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
M
MRXLT 已提交
3752 3753
        if not isinstance(optimizer, Optimizer) and not isinstance(
                optimizer, paddle.optimizer.Optimizer):
3754 3755 3756 3757
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
                             "Optimizer, but the given type is {}.".format(
                                 type(optimizer)))
H
hutuxian 已提交
3758
        self._optimizer = optimizer
3759 3760 3761 3762 3763
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
            "start_cpu_core_id must be greater than or equal to 0.")
H
hutuxian 已提交
3764
        self._start_cpu_core_id = start_cpu_core_id
3765 3766 3767 3768 3769 3770 3771
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
        self._param_device_map = dict()
H
hutuxian 已提交
3772

H
hutuxian 已提交
3773
    def _create_vars(self, block, main_program):
3774
        # Create vars for block, copied from main_program's global block
H
hutuxian 已提交
3775 3776 3777 3778 3779
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
3780 3781 3782
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
3783 3784 3785
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
3786 3787 3788 3789
                if source_var.type == core.VarDesc.VarType.READER:
                    block.create_var(name=var, type=core.VarDesc.VarType.READER)
                else:
                    block._clone_variable(source_var, False)
H
hutuxian 已提交
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
    def _is_loss_grad_op(self, op):
        if self._op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self._op_role_key])
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

    def _is_backward_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Backward)

    def _is_optimize_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Optimize)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

    def _split_program(self, main_program):
H
hutuxian 已提交
3811
        """
3812 3813 3814 3815
        Split a program into sections according to devices that ops run on.

        Args:
            main_program (Program): the main program
H
hutuxian 已提交
3816
        """
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
        programs = []
        # Map from device to its corresponding section program info
        device_program_map = dict()
        block = main_program.block(0)

        for op in block.ops:
            device = op.attr(self._op_device_key)

            if device not in device_program_map:
                program = {"program": Program()}
                device_program_map[device] = program
            program = device_program_map[device]
            op_desc = op.desc
            ap_op = program["program"].block(0).desc.append_op()
            ap_op.copy_from(op_desc)

        for key in sorted(device_program_map.keys()):
            program = device_program_map[key]
            program['program']._sync_with_cpp()
            programs.append(program)
H
hutuxian 已提交
3837

3838
        return programs
H
hutuxian 已提交
3839

3840
    def _find_post_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3841
        """
3842 3843 3844 3845 3846 3847 3848
        Find the real post op that has variable named var_name as input.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as output.
            var_name (string): Variable name.
H
hutuxian 已提交
3849
        """
3850 3851
        post_op = []
        before = True
H
hutuxian 已提交
3852
        for op in ops:
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
            if op == cur_op:
                before = False
                continue
            if before:
                continue
            for in_var_name in op.input_arg_names:
                if in_var_name == var_name:
                    post_op.append(op)
        if post_op:
            if not len(post_op) == 1:
                raise ValueError("Each op can only have one post op.")
            return post_op[0]
        return None

    def _find_real_prev_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3868
        """
3869 3870 3871 3872 3873 3874 3875
        Find the real previous op that outputs variable named var_name.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as input.
            var_name (string): Variable name.
H
hutuxian 已提交
3876
        """
3877
        prev_op = []
H
hutuxian 已提交
3878
        for op in ops:
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
            if op == cur_op:
                break
            for out_var_name in op.output_arg_names:
                if out_var_name == var_name:
                    prev_op.append(op)
        if prev_op:
            # A op may have more than one prev op,
            # e.g., for 'learning_rate', there may be multiple ops have it as
            # output.
            return prev_op[-1]
        return None

    def _rename_arg(self, op, old_name, new_name):
        op_desc = op.desc
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=ref_var.desc.need_check_feed())
        return new_var

    def _get_data_var_info(self, block):
        """
        Get all vars whose is_data attribute are true and then rename them.
H
hutuxian 已提交
3918

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
        For PipelineTrainer, all data vars are binded to
        minibatch scope, so we have to feed them to the microbatch
        to avoid conflicts. The vars feeded to microbatch have to
        be renamed.
        """
        # A map from var name to the renamed name.
        raw_name_new_name_map = dict()
        # Because we will create vars in block, it is more safe
        # to get all var_names before iteration.
        var_names = list(block.vars.keys())
        for var_name in var_names:
            var = block.var(var_name)
            if not var.is_data:
                continue
            assert var_name not in raw_name_new_name_map, (
                "{} has already been processed.".format(var_name))
            new_name = unique_name.generate(var_name)
            raw_name_new_name_map[var_name] = new_name
            new_var = self._create_var(block, var, new_name)
            new_var.is_data = False

        # map of data to devices that that data on
        data_devices_map = dict()
        for op in block.ops:
            dev_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                if var_name not in raw_name_new_name_map:
                    continue
                if not var_name in data_devices_map:
                    data_devices_map[var_name] = []
                if not dev_spec in data_devices_map[var_name]:
                    data_devices_map[var_name].append(dev_spec)
                new_name = raw_name_new_name_map[var_name]
                #self._rename_arg(op, var_name, new_name)
        return data_devices_map, raw_name_new_name_map

    def _rename_var_in_block(self, block, raw_name_new_name_map):
        """
        Rename vars whose names in raw_name_new_name_map to the corresponding
        new names.
        """
        for op in block.ops:
            if op.type == "enqueue" or op.type == "dequeue":
                continue
            for var_name in op.input_arg_names:
                if var_name in raw_name_new_name_map:
                    new_name = raw_name_new_name_map[var_name]
                    self._rename_arg(op, var_name, new_name)
H
hutuxian 已提交
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
    def _insert_enq_deq_for_data_var(self, main_block, programs, startup,
                                     devices):
        """
        Insert enqueue and dequeue ops for data var

        Args:
            main_block (Block): Global block for main program
            programs (dict): Dictionary for section params
            startup (Program): Startup program
            devices (list): List of devices in the format (dev:dev_index)
        """
        main_program = main_block.program
        data_devices_map, raw_name_new_name_map = self._get_data_var_info(
            main_block)

        first_prog = programs[0]['program']
        first_block = first_prog.block(0)
        enqueue_index = 0
        if first_block.ops[0].type == "create_py_reader" or (
                first_block.ops[1].type == "create_py_reader"):
            for op in first_block.ops:
                if op.type == "read":
                    enqueue_index += 1
                    break
                enqueue_index += 1
        first_dev_spec = devices[0]
        for var_name in data_devices_map.keys():
            for device in data_devices_map[var_name]:
                # step1: generate queue for each pair of data var and device
                # that that data on
                queue_name = var_name + "_blocking_queue"
                queue_name = unique_name.generate(queue_name)
                queue_var = startup.block(0).create_var(
                    name=queue_name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup.block(0).append_op(
                    type='queue_generator',
                    attrs={
                        'names': [queue_name],
                        'capacity': self._num_microbatches
                    })
                main_var = main_block.var(var_name)
                assert main_var.is_data
                if not var_name in first_block.vars:
                    self._create_var(first_block, main_var, var_name)
                first_block._insert_op(
                    index=enqueue_index,
                    type='enqueue',
                    inputs={'X': first_block.var(var_name)},
                    attrs={
                        'queue_name': queue_name,
                        self._op_device_key: first_dev_spec,
                        self._op_role_key: self._op_role.Forward
                    })
                # Get the device that that data on
                assert device in devices
                prog_index = devices.index(device)
                prog = programs[prog_index]['program']
                block = prog.block(0)
                index = 0
                if device == first_dev_spec:
                    index = enqueue_index + 1
                new_name = raw_name_new_name_map[var_name]
                source_var = main_program.block(0).var(var_name)
                new_var = self._create_var(block, source_var, new_name)
                block._insert_op(
                    index=index,
                    type='dequeue',
                    outputs={'Out': [new_var]},
                    attrs={
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Forward,
                        'queue_name': queue_name,
                    })
                self._rename_var_in_block(block, raw_name_new_name_map)

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4051

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

    def _update_param_device_map(self, params_grads, block):
        for param_grad in params_grads:
            if not param_grad[0].trainable: continue
            param_name = param_grad[0].name
            ops = block.ops
            for op in ops:
                input_arg_names = op.input_arg_names
                if param_name in input_arg_names:
                    self._param_device_map[param_name] = op.attr(
                        self._op_device_key)
                    break

    def _add_opdevice_attr_for_regularization_clip(self, block):
H
hutuxian 已提交
4071
        """
4072
        Add op_device attribute for regulization and clip ops.
H
hutuxian 已提交
4073
        """
4074 4075 4076
        for op in block.ops:
            # role for regularization and clip ops is optimize
            if int(op.attr(self._op_role_key)) != int(self._op_role.Optimize):
H
hutuxian 已提交
4077
                continue
4078 4079 4080 4081 4082 4083 4084 4085 4086
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
            param_name = block.vars[op_role_var[0]].name
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
H
hutuxian 已提交
4087

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
    def _add_default_opdevice_attr(self, block):
        """
        1. Add default op_device attribute for lr-related ops.
           The default value is the one that of the first place.
        2. Add default op_device attribute for sum ops added during
           backward. For these ops, we set the op_device attribute
           as the one of its post op, i.e, which op has the output of the
           sum op as an input.
        """
        first_devcie = ""

        # Get the device spec of the first place.
        # device_spec: 'cpu' for cpu device and 'gpu:id' for gpu device,
        # e.g. 'gpu:0', 'gpu:1', etc.
        for op in block.ops:
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                first_device = op.attr(self._op_device_key)
                break
        assert first_device

        # set op_device attr for lr-related ops
        lrsched_role = int(self._op_role.LRSched)
        for op in block.ops:
            if not op.has_attr(self._op_device_key) or (
                    op.attr(self._op_device_key) == ""):
                if op.type == "sum":
                    # For sum ops that compute the sum of @RENAMED@ vars
                    for name in op.desc.input_arg_names():
                        assert '@RENAME@' in name
                    assert len(op.desc.output_arg_names()) == 1
                    out_name = op.desc.output_arg_names()[0]
                    post_op = self._find_post_op(block.ops, op, out_name)
                    device = post_op.attr(self._op_device_key)
                    assert device
                    op._set_attr(self._op_device_key, device)
                    continue
H
hutuxian 已提交
4125

4126 4127 4128 4129
                assert op.attr(self._op_role_key) == lrsched_role, (
                    "Op whose op_device attr has not been set for pipeline"
                    " must be of the role LRSched.")
                op._set_attr(self._op_device_key, first_device)
H
hutuxian 已提交
4130

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
    def _check_validation(self, block):
        """
        Check whether ops in a block are all validate (i.e., the 
        op_device attribute has been set).
        Then, return all device specifications in order.
        """
        device_specs = []
        for op in block.ops:
            type = op.type
            if not op._has_kernel(type):
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
            dev_spec = op.attr(self._op_device_key)
            assert dev_spec, ("op_device attribute for op "
                              "{} has not been set.".format(op.type))
            if not dev_spec in device_specs:
                device_specs.append(dev_spec)
        return device_specs

    def _insert_enq_deq_ops_for_boundaries(self, block, origin_block,
                                           startup_program):
        """
        Insert a pair of enqueue and dequeue ops for every two
        consecutive ops on different devices.
        """
        startup_block = startup_program.global_block()
        extra_index = 0

        # A map from var to device spec where op takes it as input,
        # avoiding multiple enqueue and dequeue ops.
        var_devspec = dict()

        for index, op in list(enumerate(origin_block.ops)):
            cur_device_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                # i.e., lod_tensor_blocking_queue created by DataLoader,
                # which only exists in startup program.
                if not var_name in origin_block.vars: continue
                var = block.var(var_name)
                # skip data, because we will process it later
                if var.is_data: continue
                prev_op = self._find_real_prev_op(origin_block.ops, op,
                                                  var_name)
                if prev_op is None:
                    continue
                prev_device_spec = prev_op.attr(self._op_device_key)

                if prev_device_spec != cur_device_spec:
                    if var_name not in var_devspec:
                        var_devspec[var_name] = []
                    if cur_device_spec in var_devspec[var_name]: continue
                    var_devspec[var_name].append(cur_device_spec)

                    queue_name = var_name + "_blocking_queue"
                    queue_name = unique_name.generate(queue_name)
                    queue_var = startup_block.create_var(
                        name=queue_name,
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
                    startup_block.append_op(
                        type='queue_generator',
                        attrs={
                            'names': [queue_name],
                            'capacity': self._num_microbatches
                        })
                    op_role = op.all_attrs()[self._op_role_key]
                    var = block.vars[var_name]
                    block._insert_op(
                        index=index + extra_index,
                        type='enqueue',
                        inputs={'X': var},
                        attrs={
                            'queue_name': queue_name,
                            self._op_device_key: prev_device_spec,
                            self._op_role_key: op_role
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
                        type='dequeue',
                        outputs={'Out': [var]},
                        attrs={
                            self._op_device_key: cur_device_spec,
                            'queue_name': queue_name,
                            self._op_role_key: op_role
                        })
                    extra_index += 1

    def _add_dequeue_ops_for_optimize(self, block, startup_program):
        startup_block = startup_program.global_block()
        grad_queue_map = dict()
        grad_device_map = dict()
        optimize_index = None
        grad_names_to_dequeue = []

        for index, op in reversed(list(enumerate(block.ops))):
            device = op.attr(self._op_device_key)
            # Optimizer pass
            if not self._is_optimize_op(op):
                optimize_index = index + 1
                break
            if not self._is_update_op(op): continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
            grad_name = op_role_var[1]
            assert grad_name not in grad_device_map
            assert grad_name not in grad_names_to_dequeue
            grad_device_map[grad_name] = device
            grad_names_to_dequeue.append(grad_name)

        for grad_name in grad_names_to_dequeue:
            device = grad_device_map[grad_name]
            grad_names = []
            grads = []
            queue_name = grad_name + "_blocking_queue"
            queue_name = unique_name.generate(queue_name)
            grad_queue_map[grad_name] = queue_name
            ref_var = block.vars[grad_name]
            queue_var = startup_block.create_var(
                name=queue_name,
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            startup_block.append_op(
                type='queue_generator',
                attrs={
                    'names': [queue_name],
                    'capacity': self._num_microbatches
                })
            orig_var_name = self._strip_grad_suffix(grad_name)
            for _ in range(self._num_microbatches):
                u_name = unique_name.generate(orig_var_name)
                u_grad_name = self._append_grad_suffix(u_name)
                grad_var = self._create_var(block, ref_var, u_grad_name)
                grad_names.append(u_grad_name)
                grads.append(grad_var)
            block._insert_op(
                index=optimize_index,
                type='dequeue',
                outputs={'Out': grads},
                attrs={
                    self._op_device_key: device,
                    'queue_name': queue_name,
                    self._op_role_key: self._op_role.Optimize
                })
            block._insert_op(
                index=optimize_index + 1,
                type='sum',
                inputs={'X': grad_names},
                outputs={'Out': ref_var},
                attrs={
                    self._op_device_key: device,
                    self._op_role_key: self._op_role.Optimize
                })
        return grad_queue_map

    def _insert_enq_deq_ops_for_update(self, block, startup_program):
        """
        Insert enqueue and dequeue ops for gradients of parameters.
        """
        startup_block = startup_program.global_block()
        grad_queue_map = self._add_dequeue_ops_for_optimize(block,
                                                            startup_program)

        for index, op in reversed(list(enumerate(block.ops))):
            offset = index
            device = op.attr(self._op_device_key)

            # Backward pass
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                scale_factor = self._num_microbatches
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / scale_factor,
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Backward
                    })
                break
            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.all_attrs()[self._op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
                    assert grad_name in grad_queue_map
                    queue_name = grad_queue_map[grad_name]
                    block._insert_op(
                        index=offset + 1,
                        type='enqueue',
                        inputs={'X': block.vars[grad_name]},
                        attrs={
                            'queue_name': queue_name,
                            self._op_device_key: device,
                            self._op_role_key: self._op_role.Backward
                        })
                    offset += 1

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
        for prog_info in program_list:
            prog = prog_info['program']
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
                for op in origin_sub_block.ops:
                    op_desc = op.desc
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
                op._set_attr('sub_block:', new_sub_block)

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
        for prog_info in program_list:
            prog = prog_info['program']
            block = prog.block(0)
            for var_name in block.vars:
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
                    if op.type == "dequeue": continue
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue

                queue_name = var_name + "_blocking_queue"
                queue_name = unique_name.generate(queue_name)
                queue_var = startup_prog.block(0).create_var(
                    name=queue_name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup_prog.block(0).append_op(
                    type='queue_generator',
                    attrs={
                        'names': [queue_name],
                        'capacity': self._num_microbatches
                    })
                write_block._insert_op(
                    index=0,
                    type='enqueue',
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        'queue_name': queue_name,
                        self._op_device_key: write_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched
                    })
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_block._insert_op(
                    index=0,
                    type='dequeue',
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
                        'queue_name': queue_name,
                    })
H
hutuxian 已提交
4455 4456 4457 4458 4459 4460

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
        main_block = loss.block
        if startup_program is None:
            startup_program = default_startup_program()
        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._update_param_device_map(params_grads, main_block)

        # Step1: add default op_device attribute for regulization and clip ops
        self._add_opdevice_attr_for_regularization_clip(main_block)

        # Step2: add default op_device attribute for ops whose op_device
        # attribute have not been set yet.
        self._add_default_opdevice_attr(main_block)
        device_specs = self._check_validation(main_block)

        # Step3: add enqueue and dequeue ops between section boundaries
        origin_prog = main_block.program.clone(for_test=False)
        origin_main_block = origin_prog.global_block()
        self._insert_enq_deq_ops_for_boundaries(main_block, origin_main_block,
                                                startup_program)

        # Step4: add a pair of enqueue and dequeueN for parameter gradients
        self._insert_enq_deq_ops_for_update(main_block, startup_program)

        main_program = main_block.program

        place_list = []
        place_id_list = []
        for dev_spec in device_specs:
            if dev_spec == "cpu":
                place_list.append(core.CPUPlace())
                place_id_list.append(-1)
            elif "gpu" in dev_spec and ":" in dev_spec:
                dev_index = dev_spec.split(":")[1]
                place_list.append(core.CUDAPlace(int(dev_index)))
                place_id_list.append(int(dev_index))
            else:
                raise ValueError("Unknown device type: %s", dev_spec)

        # Step5: split program into sections and add pairs of
        # enqueue and dequeue ops for data var.
        if len(place_list) == 0:
H
hutuxian 已提交
4503
            program_list = []
4504 4505 4506 4507 4508
            ptmp = {
                "program": main_program,
                "input_set": set(),
                "output_set": set()
            }
H
hutuxian 已提交
4509 4510
            program_list.append(ptmp)
        else:
4511
            program_list = self._split_program(main_program)
H
hutuxian 已提交
4512
            for p in program_list:
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
                self._create_vars(p["program"].block(0), main_program)
        self._insert_enq_deq_for_data_var(main_block, program_list,
                                          startup_program, device_specs)

        # Step6: Special Case: process persistable vars that exist in
        # multiple sections
        self._process_persistable_vars_in_multi_sections(
            main_program, startup_program, program_list)

        # Step7: Add sub blocks for section programs
        self._add_sub_blocks(main_block, program_list)

        main_program._pipeline_opt = {
H
hutuxian 已提交
4526 4527 4528
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
            "section_program_list": program_list,
4529 4530 4531
            "place_list": place_list,
            "place_id_list": place_id_list,
            "sync_steps": -1,
L
lilong12 已提交
4532
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
4533 4534
            "start_cpu_core_id": self._start_cpu_core_id,
        }
4535
        return optimize_ops, params_grads, program_list
M
mapingshuo 已提交
4536 4537


M
mapingshuo 已提交
4538 4539
class RecomputeOptimizer(Optimizer):
    """
4540
	:api_attr: Static Graph
S
swtkiwi 已提交
4541

M
mapingshuo 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
4602 4603
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
4604 4605
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
4606 4607
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
M
mapingshuo 已提交
4608 4609

    def _set_checkpoints(self, checkpoints):
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
4621 4622
        self._checkpoints = checkpoints

4623 4624
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
4625
        """
4626
	    :api_attr: Static Graph
S
swtkiwi 已提交
4627

M
mapingshuo 已提交
4628 4629 4630 4631
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
4632
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
4656 4657
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4695
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4696 4697 4698 4699
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4700
                    no_grad_set=None)
M
mapingshuo 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
4716
                 callbacks=None):
M
mapingshuo 已提交
4717 4718 4719 4720 4721 4722 4723
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
4724 4725
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4750
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4751 4752 4753 4754
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4755
                    no_grad_set=None)
M
mapingshuo 已提交
4756 4757
                print("Finished backward")
        """
4758 4759
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
4760 4761 4762 4763 4764 4765 4766 4767

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
4768 4769 4770 4771 4772 4773 4774
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

M
mapingshuo 已提交
4775
            params_grads = append_backward(
4776
                loss, parameter_list, no_grad_set, checkpoints=checkpoint_vars)
4777 4778
            # Note: since we can't use all_reduce_op now,
            #  dgc_op should be the last op of one grad.
M
mapingshuo 已提交
4779 4780
            if hasattr(self._optimizer, "_append_dgc_ops"):
                self._optimizer._append_dgc_ops(params_grads)
M
mapingshuo 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
4800
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
4801 4802 4803 4804 4805 4806 4807 4808
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4809
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4810 4811 4812 4813
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4814
                    no_grad_set=None)
M
mapingshuo 已提交
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
4829
                 no_grad_set=None):
4830
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
4840
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
4841 4842 4843 4844 4845 4846 4847

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
4848 4849
class LookaheadOptimizer(object):
    """
4850
	:api_attr: Static Graph
S
swtkiwi 已提交
4851

M
mapingshuo 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
4905 4906
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

4958 4959 4960 4961 4962 4963 4964 4965
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
4966

4967 4968 4969 4970 4971 4972 4973
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
4974

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
4993 4994 4995 4996 4997
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
5011
        return mini_out
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg

5085 5086 5087 5088 5089 5090
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):

        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)

        #TODO(mapingshuo) support sparse embedding
        for k, v in params_grads:
            assert (
                v.type != core.VarDesc.VarType.SELECTED_ROWS
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

        param_to_grad = {k.name: v for (k, v) in params_grads}

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program and startup_program
        startup_block = startup_program.global_block()
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

        for param_name in param_names:
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            gradient_merge_k = layers.create_global_var(
                name="gradient_merge_k",
                shape=[1],
                value=int(self.k_steps),
                dtype='int32',
                persistable=True)

            # Add Var step
            gradient_merge_step = layers.create_global_var(
                name="gradient_merge_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=gradient_merge_step, value=1.0, in_place=True)

            # gradient merge
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(gradient_merge_step, gradient_merge_k)
            with layers.control_flow.Switch() as switch:
                with switch.case(mod != zero_var):
                    # 1. update the gradient_merge_vars
                    #  gradient_merge_vars += gradient_vars
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        cur_block.append_op(
                            type="elementwise_add",
                            inputs={'X': grad,
                                    'Y': grad_merge},
                            outputs={'Out': grad_merge},
                            attrs={'axis': -1,
                                   'use_mkldnn': False})

                with switch.default():
                    # 1. update the graient_vars
                    #     gradient_vars += gradient_merge_vars
                    cur_block_idx = main_block.program.current_block_idx
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        if self.avg:
                            tmp_var = layers.elementwise_add(grad, grad_merge)
                            cur_block.append_op(
                                type='scale',
                                inputs={'X': tmp_var},
                                outputs={'Out': grad},
                                attrs={
                                    'scale': 1.0 / self.k_steps,
                                    'bias': 0.0,
                                    'bias_after_scale': False
                                })
                        else:
                            cur_block.append_op(
                                type="elementwise_add",
                                inputs={'X': grad,
                                        'Y': grad_merge},
                                outputs={'Out': grad},
                                attrs={'axis': -1,
                                       'use_mkldnn': False})

                    # 2. apply_optimize
                    target_grad_block = main_block.program._create_block(
                        parent_idx=cur_block.parent_idx)
                    target_grad_block._set_forward_block_idx(cur_block_idx)
                    main_block.program.current_block_idx = cur_block_idx

                    optimize_ops = self.inner_optimizer.apply_optimize(
                        loss,
                        startup_program=startup_program,
                        params_grads=params_grads)

                    # 3. clear gradient_merge_vars
                    for param_name in param_names:
                        grad_merge = param_to_gradient_merge[param_name]
                        layers.fill_constant(
                            shape=grad_merge.shape,
                            dtype=grad_merge.dtype,
                            value=0.0,
                            out=grad_merge)
        return optimize_ops, params_grads