tensor.py 64.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16 17

import numpy
18
import six
19
import warnings
20
from six.moves import reduce
21

Y
Yu Yang 已提交
22
from ..layer_helper import LayerHelper
23
from ..param_attr import ParamAttr
24
from ..initializer import Initializer
25
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
26
from ..framework import Variable
27
from ..initializer import Constant
28
from ..core import VarDesc
29
from .. import core
30
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
31
from . import utils
32
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from paddle.utils import deprecated
34

35
from .utils import check_shape
Y
Yu Yang 已提交
36 37

__all__ = [
L
li099 已提交
38 39 40
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
41
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
42
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
43 44 45
]


X
xuwei06 已提交
46
def create_tensor(dtype, name=None, persistable=False):
47
    """
W
wangchaochaohu 已提交
48
    Create a variable, which will hold a Tensor with data type dtype.
49 50

    Args:
W
wangchaochaohu 已提交
51 52 53 54
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
55
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
56
            default value is False.
57 58

    Returns:
W
wangchaochaohu 已提交
59
        Variable: The tensor to be created according to dtype.
60 61 62 63

    Examples:
        .. code-block:: python

64
          import paddle.fluid as fluid
65 66
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
67 68 69 70
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
71
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
72 73
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
74 75


76 77
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
78
                     name=None,
79 80 81 82
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
83
	:api_attr: Static Graph
S
swtkiwi 已提交
84

85
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
86 87 88 89 90
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

91 92 93 94 95 96 97
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
98 99 100
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
101
        default_initializer (Initializer, optional): Initializer for the parameter
102 103

    Returns:
104
        The created parameter.
Y
yuyang18 已提交
105 106

    Examples:
107 108
        .. code-block:: python

109 110 111
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
112
    """
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
132
    helper = LayerHelper("create_parameter", **locals())
133
    if attr is None:
X
xuwei06 已提交
134
        attr = ParamAttr(name=name)
135 136
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
137 138 139
                                   default_initializer)


140 141 142 143 144 145 146
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
147
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
148

149 150 151
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
152
                      variable will be filled with it.
153 154
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
155
                           Default: False
156
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
157
                         Default: False
158 159
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
160 161

    Returns:
162
        Variable: The created Variable
F
fengjiayi 已提交
163 164 165 166

    Examples:
        .. code-block:: python

167 168 169
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
170
                                           persistable=True, force_cpu=True, name='new_var')
171
    """
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
189 190
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
191 192 193 194 195
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
196 197 198
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
199

Q
Qiao Longfei 已提交
200 201 202
    return var


203
def cast(x, dtype):
Y
Yu Yang 已提交
204
    """
S
swtkiwi 已提交
205

206
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
207 208
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211
        x(Tensor): An input N-D Tensor with data type bool, float16,
212 213
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle
223

224 225
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
226
    """
227 228 229 230 231
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)

232 233
    check_variable_and_dtype(
        x, 'x',
234 235
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
236 237 238 239 240 241
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
242 243
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
244 245 246 247 248 249 250 251 252
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


253
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
254
    """
255
    This OP concatenates the input along the axis.
256 257

    Args:
258 259
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
260 261
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
262
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
263
            as ``axis+R``. Default is 0.
264 265 266
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
267 268

    Returns:
269
        Tensor: A Tensor with the same data type as ``input``.
270 271 272

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
273

274
            import paddle.fluid as fluid
275 276
            import numpy as np

277 278 279 280 281 282
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
283 284 285 286
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
287 288
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
289 290
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
291 292 293 294 295 296 297 298
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
299
    """
300 301

    if in_dygraph_mode():
S
songyouwei 已提交
302 303
        if isinstance(axis, Variable):
            axis = axis.numpy()
304
            axis = axis.item(0)
305
        return core.ops.concat(input, 'axis', axis)
306

307 308 309 310 311 312 313 314 315 316 317
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
318
        input = [input]
319
    check_type(axis, 'axis', (int, Variable), 'concat')
320

321 322 323 324 325
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

326
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
327
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
328 329

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
330 331 332 333
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

334
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
335
                "number of the elements must be 1, but received %s." % len(input)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
355 356 357
    return out


G
Guo Sheng 已提交
358
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
359
    r"""
G
Guo Sheng 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
410 411

    Args:
G
Guo Sheng 已提交
412 413 414 415 416 417 418
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
419 420

    Returns:
G
Guo Sheng 已提交
421 422 423
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
424 425 426 427

    Examples:
        .. code-block:: python

428
            import paddle.fluid as fluid
429
            import numpy as np
G
Guo Sheng 已提交
430 431 432 433 434 435 436
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
437
    """
438 439 440 441 442 443 444 445 446 447 448
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

449 450 451 452 453
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
454
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
455 456 457
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
458
        type='tensor_array_to_tensor',
L
li099 已提交
459 460 461
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
462 463
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
464 465 466
    return out, out_index


467
def sums(input, out=None):
468
    r"""
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
490 491

    Args:
492 493 494 495
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
496 497

    Returns:
498 499
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
500 501

    Examples:
F
fengjiayi 已提交
502
        .. code-block:: python
K
kavyasrinet 已提交
503

504 505 506 507 508 509 510 511 512
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
513

514 515
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
516
    """
517 518 519 520 521 522 523 524 525
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
526 527
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
528 529
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
530 531 532 533
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
534 535 536 537 538
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
539 540 541
    return out


F
fengjiayi 已提交
542
def assign(input, output=None):
543
    """
S
swtkiwi 已提交
544

545
    The OP copies the :attr:`input` to the :attr:`output`.
546

547
    Parameters:
548
        input (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
549
            float16, float32, float64, int32 and int64.
550
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
551
            be created as :attr:`output`. Default: None.
552 553

    Returns:
554
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
555 556 557

    Examples:
        .. code-block:: python
558

559
          import paddle
560
          import numpy as np
561
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
562 563 564 565 566 567 568
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.nn.functional.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.nn.functional.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.nn.functional.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
569
    """
Y
Yu Yang 已提交
570
    helper = LayerHelper('assign', **locals())
571
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
572 573
    is_inplace = True if output is not None else False

X
xuwei06 已提交
574
    if isinstance(input, Variable):
575 576 577 578
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
579 580 581
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
582
        helper.append_op(
R
robot 已提交
583
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
584 585
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
586 587 588 589
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
590
            value_name = "fp32_values"
591
            values = [float(v) for v in input.flat]
592
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
593
            value_name = "int32_values"
594
            values = [int(v) for v in input.flat]
595 596 597
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
598
        else:
599 600
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
601
                "the data type of 'input' must be bool, float32, int32 or int64, but "
602
                "received %s." % convert_dtype(dtype))
603 604 605
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
606 607 608
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
609 610 611 612 613 614
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
615
                value_name: values
X
xuwei06 已提交
616 617
            })

618 619 620
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
621 622 623
    return output


624
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
625
    """
S
swtkiwi 已提交
626

W
wangchaochaohu 已提交
627
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
628
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
629

T
tianshuo78520a 已提交
630
    The attribute `stop_gradient` of the created Tensor is set to True.
631 632

    Args:
633 634 635
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
636
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
637
            be float16, float32, float64, int32, int64.
638 639 640 641 642 643
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
644 645
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
646 647

    Returns:
648
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
649

650 651 652
    Examples:
        .. code-block:: python

653
          import paddle.fluid as fluid
654
          # attr shape is a list which doesn't contain  Tensor.
655 656
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
657
          # data1=[[5], [5]] data2=[[5], [5]]
658

659
          # attr shape is a list which contains Tensor.
660
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
661
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
662

663
          # attr shape is a Tensor.
664
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
665
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
666
          
667
          # attr value is a Tensor.
W
wangchaochaohu 已提交
668 669
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
670
    """
671

W
wangchaochaohu 已提交
672
    attrs = {'force_cpu': force_cpu}
673
    dtype = convert_dtype(dtype)
674
    if not isinstance(value, Variable):
675
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
676
            attrs['str_value'] = str(int(value))
677
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
678 679
        else:
            attrs['str_value'] = str(float(value))
680
            attrs['value'] = float(value)
681 682

    if in_dygraph_mode():
683
        shape = utils.convert_shape_to_list(shape)
684 685
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
686 687

        if isinstance(value, Variable):
688
            if dtype in ['int64', 'int32']:
689
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
690
            else:
691
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
692

693 694
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
695 696
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
697 698 699
        out.stop_gradient = True
        return out

700 701 702
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
703 704
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
705 706
        inputs['ValueTensor'] = value

707
    check_shape(shape)
708
    check_dtype(dtype, 'dtype',
709 710 711
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
712

713 714 715 716 717
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
718
    utils.get_shape_tensor_inputs(
719
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
720

Y
Yu Yang 已提交
721
    if out is None:
X
Xin Pan 已提交
722
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
723
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
724 725
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
726
        inputs=inputs,
Y
Yu Yang 已提交
727
        outputs={'Out': [out]},
L
liym27 已提交
728
        attrs=attrs,
M
minqiyang 已提交
729
        stop_gradient=True)
Y
Yu Yang 已提交
730 731 732 733
    out.stop_gradient = True
    return out


734
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
735
@templatedoc()
Y
Yu Yang 已提交
736 737 738 739 740
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
741 742
                                  output_dim_idx=0,
                                  force_cpu=False):
743
    """
T
tianshuo78520a 已提交
744
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
745 746 747 748
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
749 750

    Args:
W
wangchaochaohu 已提交
751 752 753 754 755 756 757 758 759 760 761
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
762
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
763 764

    Returns:
W
wangchaochaohu 已提交
765
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
766 767 768 769 770

    Examples:

        .. code-block:: python

771
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
772
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
773
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
774
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
775

776
    """
Y
Yu Yang 已提交
777
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
778
    out = helper.create_variable_for_type_inference(dtype=dtype)
779 780 781 782 783 784
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
785
        'force_cpu': force_cpu
786 787 788 789 790
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
791 792 793 794
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
795
        attrs=attrs)
Y
Yu Yang 已提交
796 797 798 799
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
800 801
def argmin(x, axis=0):
    """
802 803 804
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
805

S
sneaxiy 已提交
806 807
    **argmin**

808 809
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
810 811

    Args:
812 813 814 815 816
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
817

S
sneaxiy 已提交
818
    Returns:
819
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
820

S
sneaxiy 已提交
821 822
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
823

824
            import paddle.fluid as fluid
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
852
    """
853 854 855
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
856
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
857
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
858 859 860 861 862
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
863
    out.stop_gradient = True
S
sneaxiy 已提交
864 865 866 867 868 869 870
    return out


def argmax(x, axis=0):
    """
    **argmax**

871 872
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
873 874

    Args:
875 876 877 878 879
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
880

S
sneaxiy 已提交
881
    Returns:
882
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
883

S
sneaxiy 已提交
884 885
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
886

887
            import paddle.fluid as fluid
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
915
    """
916 917 918
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
919
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
920
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
921 922 923 924 925
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
926
    out.stop_gradient = True
S
sneaxiy 已提交
927 928 929
    return out


930
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
931
    """
932 933 934
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
935

936 937 938
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
939 940

    Args:
941 942 943 944 945
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
946 947 948
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
949 950 951
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
952 953

    Returns:
954 955 956
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
957 958 959 960

    Examples:
        .. code-block:: python

961
            import paddle.fluid as fluid
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1003
    """
1004 1005 1006
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1007
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1008 1009 1010 1011
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1012 1013 1014 1015
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1016
                 'Indices': ids},
1017 1018
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1019 1020 1021
    return out, ids


Y
Yang Yu 已提交
1022
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1023
    """
1024 1025
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1026

1027
    Parameters:
1028
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1029
        dtype (np.dtype|str): Data type of output Tensor, it supports
1030
            bool, float16, float32, float64, int32 and int64.
1031 1032
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1033
            Default: False.
1034 1035

    Returns:
1036
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1037 1038 1039 1040

    Examples:
        .. code-block:: python

1041
          import paddle.fluid as fluid
1042 1043 1044 1045 1046
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1047 1048 1049 1050
    """
    return fill_constant(value=1.0, **locals())


1051
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1052
    """
1053 1054
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1055

1056
    Parameters:
1057
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1058
        dtype (np.dtype|str): Data type of output Tensor, it supports
1059
            bool, float16, float32, float64, int32 and int64.
1060 1061
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1062
            Default: False.
1063 1064
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1065 1066

    Returns:
1067
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1068 1069 1070 1071

    Examples:
        .. code-block:: python

1072
          import paddle.fluid as fluid
1073
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1074 1075 1076 1077
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1078 1079
    """
    return fill_constant(value=0.0, **locals())
1080 1081


F
fengjiayi 已提交
1082 1083
def reverse(x, axis):
    """
1084 1085 1086
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1087

1088
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1114
    Parameters:
1115 1116
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1117 1118
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1119 1120
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1121 1122

    Returns:
1123
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1124 1125 1126 1127

    Examples:
        .. code-block:: python

1128
          import paddle.fluid as fluid
1129 1130 1131 1132
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1143
    """
1144 1145 1146
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1147 1148 1149
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1150
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1151 1152
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1153
        inputs={'X': x},
F
fengjiayi 已提交
1154 1155 1156 1157 1158
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1159 1160 1161 1162 1163 1164 1165
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1166 1167 1168
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1184 1185
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1186
        file_path(str): The file path where variables will be saved.
1187
        overwrite(bool): Whether or not cover the given file when it has already
1188 1189
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1190 1191 1192 1193 1194 1195 1196 1197

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1198
            import paddle.fluid as fluid
1199 1200 1201 1202 1203 1204 1205
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1218
    Loads a list of variable from a single file.
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1230 1231 1232 1233 1234 1235 1236


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1237
       x (Tensor): The Tensor to be checked.
1238 1239

    Returns:
S
Steffy-zxf 已提交
1240
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1241 1242 1243 1244
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1245 1246
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1247
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1248
          # [False]
1249

1250
    """
S
Steffy-zxf 已提交
1251 1252 1253
    if in_dygraph_mode():
        return core.ops.isinf(x)

1254
    check_type(x, 'x', (Variable), 'has_inf')
1255
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1257 1258 1259 1260 1261 1262 1263 1264 1265
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1266
       x (Tensor): The Tensor to be checked.
1267 1268

    Returns:
S
Steffy-zxf 已提交
1269
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1270 1271 1272 1273
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1274 1275
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1276
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1277
          # [False]
1278

1279
    """
S
Steffy-zxf 已提交
1280 1281 1282
    if in_dygraph_mode():
        return core.ops.isnan(x)

1283
    check_type(x, 'x', (Variable), 'has_nan')
1284
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1285
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1286 1287 1288 1289 1290 1291
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1292

1293 1294 1295 1296
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1297
        x(Tensor): The Tensor to be checked.
1298 1299

    Returns:
N
Noel 已提交
1300
        Tensor: The tensor storing the output, contains a bool value.
1301 1302 1303 1304 1305

    Examples:

        .. code-block:: python

N
Noel 已提交
1306 1307 1308 1309 1310 1311
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1312
    """
1313 1314
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1315
    helper = LayerHelper("isfinite", **locals())
1316

1317
    out = helper.create_variable_for_type_inference(dtype='bool')
1318 1319
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1320 1321


1322
def range(start, end, step, dtype, name=None):
W
whs 已提交
1323
    """
1324
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1325

1326 1327
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1328

1329 1330
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1331

L
Liufang Sang 已提交
1332
    Parameters:
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1356 1357 1358 1359 1360

    examples:

        .. code-block:: python

1361
            import paddle.fluid as fluid
W
whs 已提交
1362

1363 1364
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1365

1366 1367 1368 1369 1370 1371 1372
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1373

W
whs 已提交
1374
    if not isinstance(start, Variable):
1375 1376
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1377 1378
    elif start.dtype != dtype:
        start = cast(start, dtype)
1379

W
whs 已提交
1380
    if not isinstance(end, Variable):
1381 1382
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1383 1384
    elif end.dtype != dtype:
        end = cast(end, dtype)
1385

W
whs 已提交
1386
    if not isinstance(step, Variable):
1387 1388
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1389 1390
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1391

1392 1393
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1394

1395 1396 1397 1398
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1399 1400 1401 1402 1403
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1404
        outputs={'Out': out})
1405
    out.stop_gradient = True
W
whs 已提交
1406
    return out
Z
zhoukunsheng 已提交
1407 1408


1409
def linspace(start, stop, num, dtype=None, name=None):
1410
    r"""
1411
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1412 1413

    Args:
1414 1415 1416 1417
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1418
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1419
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1420
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1421
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1422 1423
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1424 1425

    Returns:
1426
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1427 1428
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1429

Z
zhoukunsheng 已提交
1430
    Examples:
Z
zhoukunsheng 已提交
1431 1432
        .. code-block:: python

1433 1434 1435
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1436 1437

    """
1438 1439
    if dtype is None:
        dtype = 'float32'
1440 1441 1442
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1443 1444
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1445 1446
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1447
    if not isinstance(start, Variable):
1448 1449
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1450
    if not isinstance(stop, Variable):
1451 1452
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1453
    if not isinstance(num, Variable):
1454 1455
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1456
    if in_dygraph_mode():
1457 1458
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1459 1460 1461

    helper = LayerHelper("linspace", **locals())

1462 1463 1464
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1465
    if isinstance(start, Variable):
1466 1467
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1468 1469
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1470

1471
    if isinstance(stop, Variable):
1472 1473
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1474 1475 1476 1477 1478 1479
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1480 1481 1482 1483 1484 1485 1486 1487
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1488 1489

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1490 1491 1492

    helper.append_op(
        type='linspace',
1493 1494 1495 1496
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1497
        outputs={'Out': [out]})
1498 1499
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1500
    return out
1501 1502


Z
zhoukunsheng 已提交
1503 1504
def zeros_like(x, out=None):
    """
1505
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1506 1507 1508
    with `x`.

    Args:
1509 1510 1511 1512 1513 1514
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1515 1516

    Returns:
1517 1518 1519
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1520 1521 1522 1523

    Examples:
        .. code-block:: python

1524
          import paddle.fluid as fluid
1525
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1526 1527
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1528 1529
    """

1530 1531
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1532 1533 1534
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1535 1536 1537
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1538
            'zeros_like')
1539

Z
zhoukunsheng 已提交
1540 1541 1542 1543
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1544 1545


1546
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1547
def diag(diagonal):
1548
    r"""
1549 1550 1551
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1552

1553
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1554 1555

    Args:
1556 1557
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1558 1559

    Returns:
1560 1561
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1562 1563 1564 1565 1566 1567 1568

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1569 1570 1571

          import paddle.fluid as fluid
          import numpy as np
1572 1573 1574
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1575 1576

    """
1577 1578 1579
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1592 1593


1594 1595 1596 1597 1598
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1599
    """
1600
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1601 1602 1603

    Args:
        num_rows(int): the number of rows in each batch tensor.
1604 1605
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1606 1607
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1608
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1609 1610 1611 1612
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1613 1614

    Returns:
1615
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1616 1617 1618 1619 1620

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1621 1622
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1623
          #  [0, 1, 0]
1624 1625
          #  [0, 0, 1]]

1626
          data = fluid.layers.eye(2, 3, dtype='int32')
1627
          # [[1, 0, 0]
1628
          #  [0, 1, 0]]
1629 1630

          data = fluid.layers.eye(2, batch_shape=[3])
1631 1632 1633 1634 1635
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1636 1637
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1638 1639 1640 1641 1642
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1665 1666

    if batch_shape is not None:
1667 1668 1669 1670 1671 1672 1673
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1674 1675
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1676
        for batch_val in (batch_shape):
1677 1678
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1679 1680 1681 1682 1683 1684

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1685 1686 1687
    return out


Z
zhoukunsheng 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1700
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1711 1712
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1713 1714 1715 1716

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1717 1718 1719 1720
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1721 1722 1723 1724 1725 1726
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1727 1728 1729 1730 1731 1732


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)