activation.py 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

Z
zhiboniu 已提交
17
from ..initializer import Constant
Q
Qi Li 已提交
18
from paddle.framework import get_default_dtype
19
from .. import functional as F
Z
zhiboniu 已提交
20
from paddle.nn import Layer
21

22 23
__all__ = []

24

25 26 27 28 29
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
67
class ELU(Layer):
68
    r"""
69 70
    ELU Activation.

71
    .. math::
72

Z
zhupengyang 已提交
73 74 75 76 77 78 79
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
80 81 82 83 84

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
85

86 87 88
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
89

90 91 92
    Examples:
        .. code-block:: python

93
            import paddle
94

Z
zhupengyang 已提交
95
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
96 97 98 99
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
100 101 102 103 104 105 106 107 108 109
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

110 111 112 113
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

114

Z
zhiboniu 已提交
115
class GELU(Layer):
116
    r"""
117 118 119 120
    GELU Activation.

    If approximate is True

121
    .. math::
122

123
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
124 125 126

    else

127
    .. math::
128

129
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
130 131 132 133 134

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
135

136 137 138
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
139

140 141
    Examples:
        .. code-block:: python
142

143
            import paddle
144

145
            x = paddle.to_tensor([[-1, 0.5],[1, 1.5]])
146

147 148
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
149

150 151
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
152 153 154 155 156 157 158 159 160 161
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

162 163 164 165
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

166

Z
zhiboniu 已提交
167
class Hardshrink(Layer):
168
    r"""
169 170 171 172 173
    Hardshrink Activation

    .. math::

        hardshrink(x)=
174 175 176 177 178 179 180
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
181 182 183 184 185 186 187 188 189 190 191 192 193 194

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

195
            import paddle
196

Z
zhupengyang 已提交
197
            x = paddle.to_tensor([-1, 0.3, 2.5])
198 199
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
200 201 202 203 204 205 206 207
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
208
        return F.hardshrink(x, self._threshold, self._name)
209

210 211 212 213
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

214

Z
zhiboniu 已提交
215
class Hardswish(Layer):
216
    r"""
217 218
    Hardswish activation. Create a callable object of `Hardswish`. Hardswish
    is proposed in MobileNetV3, and performs better in computational stability
219 220 221 222 223 224
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
225 226 227 228 229 230 231
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

260 261 262 263
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

264

Z
zhiboniu 已提交
265
class Tanh(Layer):
266
    r"""
W
WangXi 已提交
267 268 269
    Tanh Activation.

    .. math::
270
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
290
            print(out)
W
WangXi 已提交
291 292 293 294 295 296 297 298 299 300
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

301 302 303 304
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
305

Z
zhiboniu 已提交
306
class Hardtanh(Layer):
307
    r"""
308
    Hardtanh Activation. Create a callable object of `Hardtanh`.
309 310 311

    .. math::

312 313 314 315 316 317 318 319 320
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

321 322 323 324 325 326

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
327

328 329 330
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
331

332 333 334 335 336
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
337
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
338
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
339
            out = m(x) # [-1., 0.3, 1.]
340 341 342 343 344 345 346 347 348 349 350
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

351 352 353 354
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

355

Z
zhiboniu 已提交
356
class PReLU(Layer):
357 358 359 360 361 362 363 364 365
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
366
            1 - a single parameter `alpha` is used for all input channels;
367
            Number of channels - a separate `alpha` is used for each input channel.
368 369
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
370
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
371
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
372 373
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
374 375
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
376

377
    Shape:
Q
Qi Li 已提交
378
        - input: Tensor with any shape. Default dtype is float32.
379
        - output: Tensor with the same shape as input.
380

381 382 383 384
    Examples:
        .. code-block:: python

            import paddle
Q
Qi Li 已提交
385
            paddle.set_default_dtype("float64")
386

387 388 389 390 391 392 393
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                    [ 3.0, -4.0,  5.0, -6.0],
                                    [-7.0, -8.0,  8.0,  9.0]],
                                    [[ 1.0, -2.0, -3.0,  4.0],
                                    [-5.0,  6.0,  7.0, -8.0],
                                    [ 6.0,  7.0,  8.0,  9.0]]]])

394
            m = paddle.nn.PReLU(1, 0.25)
395 396
            out = m(data)
            print(out)
397 398 399 400 401 402 403 404
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

405 406 407 408 409
    def __init__(self,
                 num_parameters=1,
                 init=0.25,
                 weight_attr=None,
                 data_format="NCHW",
410 411 412 413 414 415
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
416
        self._data_format = data_format
417

418 419 420 421 422 423
        self._weight = self.create_parameter(attr=self._weight_attr,
                                             shape=[self._num_parameters],
                                             dtype=get_default_dtype(),
                                             is_bias=False,
                                             default_initializer=Constant(
                                                 self._init))
424 425

    def forward(self, x):
426
        return F.prelu(x, self._weight, data_format=self._data_format)
427

428 429
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
430 431 432
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._data_format, self._init, self._dtype,
            name_str)
433

434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
class RReLU(Layer):
    r"""
    RReLU activation layer.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape. Default dtype is float32.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            rrelu_layer = paddle.nn.RReLU(0.1, 0.3)
496 497
            out = rrelu_layer(input_tensor)
            print(out)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
            #[[[[-0.20000899  3.         -0.88108218  5.        ]
            #   [ 3.         -0.55175185  5.         -1.07761011]
            #   [-1.06806871 -1.98962009  8.          9.        ]]
            #  [[ 1.         -0.52382672 -0.65515128  4.        ]
            #   [-1.37663394  6.          7.         -2.34657836]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    def __init__(self, lower=1. / 8., upper=1. / 3., name=None):
        super(RReLU, self).__init__()
        self._lower = lower
        self._upper = upper
        self._name = name

    def forward(self, x):
513 514 515 516
        return F.rrelu(x,
                       lower=self._lower,
                       upper=self._upper,
                       training=self.training)
517 518 519 520 521 522 523

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'lower={}, upper={}, training={}, dtype={}{}'.format(
            self._lower, self._upper, self.training, self._dtype, name_str)


Z
zhiboniu 已提交
524
class ReLU(Layer):
525 526 527
    """
    ReLU Activation.

528
    .. math::
529

530
        ReLU(x) = max(x, 0)
531 532

    Parameters:
533 534 535 536 537 538
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
539

540 541 542
    Examples:
        .. code-block:: python

543
            import paddle
544

Z
zhupengyang 已提交
545
            x = paddle.to_tensor([-2., 0., 1.])
546
            m = paddle.nn.ReLU()
547 548 549
            out = m(x)
            print(out)
            # [0., 0., 1.]
550 551
    """

552
    def __init__(self, name=None):
553
        super(ReLU, self).__init__()
554
        self._name = name
555

556 557
    def forward(self, x):
        return F.relu(x, self._name)
558

559 560 561 562
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

563

Z
zhiboniu 已提交
564
class ReLU6(Layer):
565 566 567 568 569
    """
    ReLU6 Activation

    .. math::

570
        ReLU6(x) = min(max(0,x), 6)
571 572 573 574 575 576 577 578 579 580 581 582

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

583
            import paddle
584

585
            x = paddle.to_tensor([-1., 0.3, 6.5])
586
            m = paddle.nn.ReLU6()
587 588 589
            out = m(x)
            print(out)
            # [0, 0.3, 6]
590 591 592 593 594 595 596 597 598
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

599 600 601 602
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

603

Z
zhiboniu 已提交
604
class SELU(Layer):
605
    r"""
606 607 608 609
    SELU Activation

    .. math::

610
        SELU(x)= scale *
611 612 613 614 615 616
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
617 618

    Parameters:
619 620
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
621 622 623 624 625 626 627 628 629 630
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

631
            import paddle
632

633
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
634
            m = paddle.nn.SELU()
635 636 637
            out = m(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
638 639 640 641 642 643 644 645 646 647 648 649 650 651
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

652 653 654 655 656
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

657

Z
zhiboniu 已提交
658
class LeakyReLU(Layer):
659
    r"""
660 661
    Leaky ReLU Activation. Create a callable object of `LeakyReLU` to calculate
    the `LeakyReLU` of input `x`.
C
ceci3 已提交
662

663
    .. math::
C
ceci3 已提交
664

665
        LeakyReLU(x)=
666 667 668 669 670 671 672
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
673 674

    Parameters:
675 676
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
677 678
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
679

680 681 682
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
683

C
ceci3 已提交
684 685 686
    Examples:
        .. code-block:: python

687
            import paddle
688

689
            m = paddle.nn.LeakyReLU()
690
            x = paddle.to_tensor([-2.0, 0, 1])
691
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
692 693
    """

694
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
695
        super(LeakyReLU, self).__init__()
696
        self._negative_slope = negative_slope
697
        self._name = name
C
ceci3 已提交
698

699
    def forward(self, x):
700
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
701

702 703 704 705
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
706

Z
zhiboniu 已提交
707
class Sigmoid(Layer):
708
    r"""
709
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
710

711
    .. math::
S
swtkiwi 已提交
712

713
        sigmoid(x) = \frac{1}{1 + e^{-x}}
714

715
    Parameters:
716
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
717

718 719
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
720 721

    Returns:
722
        A callable object of Sigmoid.
723

724
    Examples:
725

726 727
        .. code-block:: python

728
            import paddle
729

730 731 732
            m = paddle.nn.Sigmoid()
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
733 734
    """

735
    def __init__(self, name=None):
736
        super(Sigmoid, self).__init__()
737
        self.name = name
738

739 740
    def forward(self, x):
        return F.sigmoid(x, self.name)
741

742 743 744 745
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

746

Z
zhiboniu 已提交
747
class Hardsigmoid(Layer):
748
    r"""
749 750
    ``Hardsigmoid`` Activiation Layers, Construct a callable object of
    the ``Hardsigmoid`` class. This layer calcluate the `hardsigmoid` of input x.
751 752 753 754 755 756 757

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
758 759 760 761 762 763 764 765
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
781
          m = paddle.nn.Hardsigmoid()
782 783 784 785 786 787 788 789 790
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
791
        return F.hardsigmoid(x, name=self.name)
792

793 794 795 796
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

797

Z
zhiboniu 已提交
798
class Softplus(Layer):
799
    r"""
800 801 802
    Softplus Activation

    .. math::
803 804 805 806
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
807 808

    Parameters:
809 810 811
        beta (float, optional): The value of :math:`\beta` for Softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for Softplus. Default is 20
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
812 813 814 815 816 817 818 819

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

820
            import paddle
821

822
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
823 824
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
825 826 827 828 829 830 831 832 833 834 835
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

836 837 838 839 840
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

841

Z
zhiboniu 已提交
842
class Softshrink(Layer):
843
    r"""
844 845 846 847
    Softshrink Activation

    .. math::

848 849 850 851 852 853 854 855 856
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

857 858

    Parameters:
859
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
860 861 862 863 864 865 866 867 868 869
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

870 871
            import paddle
            import numpy as np
872

873 874 875
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
876 877 878 879 880 881 882 883 884 885
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

886 887 888 889
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

890

Z
zhiboniu 已提交
891
class Softsign(Layer):
892
    r"""
893 894 895 896
    Softsign Activation

    .. math::

897
        Softsign(x) = \frac{x}{1 + |x|}
898 899 900 901 902 903 904 905 906 907 908 909

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

910 911
            import paddle
            import numpy as np
912

913 914 915
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
916 917 918 919 920 921 922 923 924
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

925 926 927 928
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

929

Z
zhiboniu 已提交
930
class Swish(Layer):
931
    r"""
932 933 934 935
    Swish Activation.

    .. math::

936
        Swish(x) = \frac{x}{1 + e^{-x}}
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

964 965 966 967
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

968

969 970 971 972 973 974 975 976 977 978 979 980
class Mish(Layer):
    r"""
    Mish Activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        Mish(x) = x * \tanh(softplus(x))
981

982 983 984 985 986 987 988
    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
989

990 991 992 993 994 995
    Examples:

        .. code-block:: python

            import paddle

W
wangxinxin08 已提交
996
            x = paddle.to_tensor([-5., 0., 5.])
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
            m = paddle.nn.Mish()
            out = m(x) # [-0.03357624, 0., 4.99955208]

    """

    def __init__(self, name=None):
        super(Mish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.mish(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1014
class Tanhshrink(Layer):
1015 1016 1017 1018 1019
    """
    Tanhshrink Activation

    .. math::

1020
        Tanhshrink(x) = x - tanh(x)
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1033 1034
            import paddle
            import numpy as np
1035

1036 1037 1038
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1039 1040 1041 1042 1043 1044 1045 1046 1047
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

1048 1049 1050 1051
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1052

Z
zhiboniu 已提交
1053
class ThresholdedReLU(Layer):
1054
    r"""
1055 1056 1057 1058
    Thresholded ReLU Activation

    .. math::

1059 1060 1061 1062 1063 1064 1065 1066
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

1096 1097 1098 1099
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

1100

Z
zhiboniu 已提交
1101
class Silu(Layer):
1102 1103 1104
    r"""
    Silu Activation

M
minghaoBD 已提交
1105 1106
    .. math::

1107 1108 1109
        silu(x) = \frac{x}{1 + \mathrm{e}^{-x}}

    Where :math:`x` is the input Tensor.
M
minghaoBD 已提交
1110 1111

    Parameters:
1112
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
M
minghaoBD 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1140
class LogSigmoid(Layer):
1141
    r"""
1142
    LogSigmoid Activation.
1143

1144
    .. math::
1145

1146
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1147 1148 1149 1150 1151

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1152

1153 1154 1155
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1156

1157 1158 1159
    Examples:
        .. code-block:: python

1160
            import paddle
1161

1162
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1163 1164
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1165 1166 1167 1168 1169 1170 1171
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1172
        return F.log_sigmoid(x, self._name)
1173

1174 1175 1176 1177
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1178

Z
zhiboniu 已提交
1179
class Softmax(Layer):
1180
    r"""
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1208
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

1274
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1275 1276 1277 1278
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1279
                        [6.0, 7.0, 8.0, 9.0]]], dtype='float32')
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1299 1300 1301 1302
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1303

Z
zhiboniu 已提交
1304
class LogSoftmax(Layer):
1305
    r"""
1306 1307 1308 1309
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1310 1311 1312 1313
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1314 1315

    Parameters:
1316 1317 1318 1319 1320 1321
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1322

1323 1324 1325
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1326 1327 1328 1329

    Examples:
        .. code-block:: python

1330 1331
            import paddle

Z
zhupengyang 已提交
1332 1333 1334 1335 1336 1337
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1338 1339 1340 1341 1342 1343 1344 1345 1346
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1347 1348
    """

1349
    def __init__(self, axis=-1, name=None):
1350 1351
        super(LogSoftmax, self).__init__()
        self._axis = axis
1352
        self._name = name
1353

1354 1355
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1356

1357 1358 1359 1360
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1361

Z
zhiboniu 已提交
1362
class Maxout(Layer):
1363
    r"""
1364
    Maxout Activation. Create a callable object of `Maxout`.
1365 1366 1367 1368 1369 1370 1371

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1372 1373 1374 1375 1376 1377 1378 1379
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1423 1424 1425 1426

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478


class Softmax2D(Layer):
    r"""
    Softmax2D Activation.
    Given a Tensor with shape (B, C, H, W) or (C, H, W), it will apply Softmax to each location (C, h_i, w_j).
    The sum of result in each location (C, H_i, W_j) will be one.

    Shape:
        - Input: :math:`(B, C, H, W)` or :math:`(C, H, W)`
        - Output: :math:`(B, C, H, W)` or :math:`(C, H, W)`(same as input)

    Return:
        A Tensor of the same shape and dtype as input with value in range [0, 1].

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.42496058 0.1172187  0.14664008 0.8151267 ]
            #    [0.24430142 0.42052492 0.60372984 0.79307914]
            #    [0.4539401  0.90458065 0.10235776 0.62009853]]

            #   [[0.11731581 0.16053623 0.05667042 0.91876775]
            #    [0.9413854  0.30770817 0.6788164  0.9543593 ]
            #    [0.4145064  0.75909156 0.11598814 0.73599935]]]]
            m = paddle.nn.Softmax2D()
            out = m(x)
            # [[[[0.5763103  0.48917228 0.5224772  0.4741129 ]
            #    [0.3324591  0.5281743  0.48123717 0.45976716]
            #    [0.5098571  0.5363083  0.49659243 0.4710572 ]]

            #   [[0.42368975 0.51082766 0.47752273 0.5258871 ]
            #    [0.66754097 0.47182566 0.5187628  0.5402329 ]
            #    [0.49014282 0.46369177 0.50340754 0.5289428 ]]]]
    """

    def __init__(self, name=None):
        super(Softmax2D, self).__init__()
        self._dtype = None
        self._name = name

    def forward(self, x):
        assert x.ndim == 3 or x.ndim == 4, "Softmax2D requires a 3D or 4D tensor as input. Received: {}D.".format(
            x.ndim)
        return F.softmax(x, axis=-3, dtype=self._dtype, name=self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str