activation.py 44.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

Z
zhiboniu 已提交
17 18
from ...framework import ParamAttr
from ..initializer import Constant
Q
Qi Li 已提交
19
from paddle.framework import get_default_dtype
20
from .. import functional as F
Z
zhiboniu 已提交
21
from paddle.nn import Layer
22

23 24
__all__ = []

25

26 27 28 29 30
class CELU(Layer):
    r"""
    CELU Activation.

    .. math::
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        CELU(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
            m = paddle.nn.CELU(0.2)
            out = m(x)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(CELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.celu(x, self._alpha, self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)


Z
zhiboniu 已提交
68
class ELU(Layer):
69
    r"""
70 71
    ELU Activation.

72
    .. math::
73

Z
zhupengyang 已提交
74 75 76 77 78 79 80
        ELU(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
81 82 83 84 85

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
86

87 88 89
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
90

91 92 93
    Examples:
        .. code-block:: python

94
            import paddle
95

Z
zhupengyang 已提交
96
            x = paddle.to_tensor([[-1. ,6.], [1., 15.6]])
97 98 99 100
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
101 102 103 104 105 106 107 108 109 110
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)

111 112 113 114
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'alpha={}{}'.format(self._alpha, name_str)

115

Z
zhiboniu 已提交
116
class GELU(Layer):
117
    r"""
118 119 120 121
    GELU Activation.

    If approximate is True

122
    .. math::
123

124
        GELU(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
125 126 127

    else

128
    .. math::
129

130
        GELU(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
131 132 133 134 135

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
136

137 138 139
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
140

141 142
    Examples:
        .. code-block:: python
143

144
            import paddle
145

146
            x = paddle.to_tensor([[-1, 0.5],[1, 1.5]])
147

148 149
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
150

151 152
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
153 154 155 156 157 158 159 160 161 162
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)

163 164 165 166
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'approximate={}{}'.format(self._approximate, name_str)

167

Z
zhiboniu 已提交
168
class Hardshrink(Layer):
169
    r"""
170 171 172 173 174
    Hardshrink Activation

    .. math::

        hardshrink(x)=
175 176 177 178 179 180 181
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x > threshold \\
                    x, & & if \ x < -threshold \\
                    0, & & if \ others
            \end{array}
            \right.
182 183 184 185 186 187 188 189 190 191 192 193 194 195

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

196
            import paddle
197

Z
zhupengyang 已提交
198
            x = paddle.to_tensor([-1, 0.3, 2.5])
199 200
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
201 202 203 204 205 206 207 208
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
209
        return F.hardshrink(x, self._threshold, self._name)
210

211 212 213 214
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

215

Z
zhiboniu 已提交
216
class Hardswish(Layer):
217
    r"""
218 219
    Hardswish activation. Create a callable object of `Hardswish`. Hardswish
    is proposed in MobileNetV3, and performs better in computational stability
220 221 222 223 224 225
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
226 227 228 229 230 231 232
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
233

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)

261 262 263 264
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

265

Z
zhiboniu 已提交
266
class Tanh(Layer):
267
    r"""
W
WangXi 已提交
268 269 270
    Tanh Activation.

    .. math::
271
        Tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
W
WangXi 已提交
291
            print(out)
W
WangXi 已提交
292 293 294 295 296 297 298 299 300 301
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)

302 303 304 305
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

W
WangXi 已提交
306

Z
zhiboniu 已提交
307
class Hardtanh(Layer):
308
    r"""
309
    Hardtanh Activation. Create a callable object of `Hardtanh`.
310 311 312

    .. math::

313 314 315 316 317 318 319 320 321
        Hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.

322 323 324 325 326 327

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
328

329 330 331
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
332

333 334 335 336 337
    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
338
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
339
            m = paddle.nn.Hardtanh()
Z
zhupengyang 已提交
340
            out = m(x) # [-1., 0.3, 1.]
341 342 343 344 345 346 347 348 349 350 351
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)

352 353 354 355
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'min={}, max={}{}'.format(self._min, self._max, name_str)

356

Z
zhiboniu 已提交
357
class PReLU(Layer):
358 359 360 361 362 363 364 365 366
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
367
            1 - a single parameter `alpha` is used for all input channels;
368
            Number of channels - a separate `alpha` is used for each input channel.
369 370
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
371
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
372
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
373 374
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
375 376
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
377

378
    Shape:
Q
Qi Li 已提交
379
        - input: Tensor with any shape. Default dtype is float32.
380
        - output: Tensor with the same shape as input.
381

382 383 384 385
    Examples:
        .. code-block:: python

            import paddle
Q
Qi Li 已提交
386
            paddle.set_default_dtype("float64")
387

388 389 390 391 392 393 394
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                    [ 3.0, -4.0,  5.0, -6.0],
                                    [-7.0, -8.0,  8.0,  9.0]],
                                    [[ 1.0, -2.0, -3.0,  4.0],
                                    [-5.0,  6.0,  7.0, -8.0],
                                    [ 6.0,  7.0,  8.0,  9.0]]]])

395
            m = paddle.nn.PReLU(1, 0.25)
396 397
            out = m(data)
            print(out)
398 399 400 401 402 403 404 405
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

406 407 408 409 410
    def __init__(self,
                 num_parameters=1,
                 init=0.25,
                 weight_attr=None,
                 data_format="NCHW",
411 412 413 414 415 416
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name
417
        self._data_format = data_format
418

419 420 421 422 423 424
        self._weight = self.create_parameter(attr=self._weight_attr,
                                             shape=[self._num_parameters],
                                             dtype=get_default_dtype(),
                                             is_bias=False,
                                             default_initializer=Constant(
                                                 self._init))
425 426

    def forward(self, x):
427
        return F.prelu(x, self._weight, data_format=self._data_format)
428

429 430
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
431 432 433
        return 'num_parameters={}, data_format={}, init={}, dtype={}{}'.format(
            self._num_parameters, self._data_format, self._init, self._dtype,
            name_str)
434

435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
class RReLU(Layer):
    r"""
    RReLU activation layer.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        RReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape. Default dtype is float32.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            rrelu_layer = paddle.nn.RReLU(0.1, 0.3)
497 498
            out = rrelu_layer(input_tensor)
            print(out)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
            #[[[[-0.20000899  3.         -0.88108218  5.        ]
            #   [ 3.         -0.55175185  5.         -1.07761011]
            #   [-1.06806871 -1.98962009  8.          9.        ]]
            #  [[ 1.         -0.52382672 -0.65515128  4.        ]
            #   [-1.37663394  6.          7.         -2.34657836]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    def __init__(self, lower=1. / 8., upper=1. / 3., name=None):
        super(RReLU, self).__init__()
        self._lower = lower
        self._upper = upper
        self._name = name

    def forward(self, x):
514 515 516 517
        return F.rrelu(x,
                       lower=self._lower,
                       upper=self._upper,
                       training=self.training)
518 519 520 521 522 523 524

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'lower={}, upper={}, training={}, dtype={}{}'.format(
            self._lower, self._upper, self.training, self._dtype, name_str)


Z
zhiboniu 已提交
525
class ReLU(Layer):
526 527 528
    """
    ReLU Activation.

529
    .. math::
530

531
        ReLU(x) = max(x, 0)
532 533

    Parameters:
534 535 536 537 538 539
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
540

541 542 543
    Examples:
        .. code-block:: python

544
            import paddle
545

Z
zhupengyang 已提交
546
            x = paddle.to_tensor([-2., 0., 1.])
547
            m = paddle.nn.ReLU()
548 549 550
            out = m(x)
            print(out)
            # [0., 0., 1.]
551 552
    """

553
    def __init__(self, name=None):
554
        super(ReLU, self).__init__()
555
        self._name = name
556

557 558
    def forward(self, x):
        return F.relu(x, self._name)
559

560 561 562 563
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

564

Z
zhiboniu 已提交
565
class ReLU6(Layer):
566 567 568 569 570
    """
    ReLU6 Activation

    .. math::

571
        ReLU6(x) = min(max(0,x), 6)
572 573 574 575 576 577 578 579 580 581 582 583

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

584
            import paddle
585

586
            x = paddle.to_tensor([-1., 0.3, 6.5])
587
            m = paddle.nn.ReLU6()
588 589 590
            out = m(x)
            print(out)
            # [0, 0.3, 6]
591 592 593 594 595 596 597 598 599
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

600 601 602 603
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

604

Z
zhiboniu 已提交
605
class SELU(Layer):
606
    r"""
607 608 609 610
    SELU Activation

    .. math::

611
        SELU(x)= scale *
612 613 614 615 616 617
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
618 619

    Parameters:
620 621
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
622 623 624 625 626 627 628 629 630 631
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

632
            import paddle
633

634
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
635
            m = paddle.nn.SELU()
636 637 638
            out = m(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
639 640 641 642 643 644 645 646 647 648 649 650 651 652
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)

653 654 655 656 657
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'scale={:.16f}, alpha={:.16f}{}'.format(self._scale, self._alpha,
                                                       name_str)

658

Z
zhiboniu 已提交
659
class LeakyReLU(Layer):
660
    r"""
661 662
    Leaky ReLU Activation. Create a callable object of `LeakyReLU` to calculate
    the `LeakyReLU` of input `x`.
C
ceci3 已提交
663

664
    .. math::
C
ceci3 已提交
665

666
        LeakyReLU(x)=
667 668 669 670 671 672 673
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

C
ceci3 已提交
674 675

    Parameters:
676 677
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
678 679
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
680

681 682 683
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
684

C
ceci3 已提交
685 686 687
    Examples:
        .. code-block:: python

688
            import paddle
689

690
            m = paddle.nn.LeakyReLU()
691
            x = paddle.to_tensor([-2.0, 0, 1])
692
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
693 694
    """

695
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
696
        super(LeakyReLU, self).__init__()
697
        self._negative_slope = negative_slope
698
        self._name = name
C
ceci3 已提交
699

700
    def forward(self, x):
701
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
702

703 704 705 706
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'negative_slope={}{}'.format(self._negative_slope, name_str)

C
ceci3 已提交
707

Z
zhiboniu 已提交
708
class Sigmoid(Layer):
709
    """
710
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
711

712
    .. math::
S
swtkiwi 已提交
713

714
        Sigmoid(x) = \\frac{1}{1 + e^{-x}}
715

716 717
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
718

719 720
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
721 722

    Returns:
723
        A callable object of Sigmoid.
724

725
    Examples:
726

727 728
        .. code-block:: python

729 730 731
          import paddle

          m = paddle.nn.Sigmoid()
732 733
          x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
          out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
734 735
    """

736
    def __init__(self, name=None):
737
        super(Sigmoid, self).__init__()
738
        self.name = name
739

740 741
    def forward(self, x):
        return F.sigmoid(x, self.name)
742

743 744 745 746
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

747

Z
zhiboniu 已提交
748
class Hardsigmoid(Layer):
749
    r"""
750 751
    ``Hardsigmoid`` Activiation Layers, Construct a callable object of
    the ``Hardsigmoid`` class. This layer calcluate the `hardsigmoid` of input x.
752 753 754 755 756 757 758

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
759 760 761 762 763 764 765 766
            \left\{
                \begin{array}{rcl}
            0, & & \text{if } \ x \leq -3 \\
            1, & & \text{if } \ x \geq 3 \\
            x/6 + 1/2, & & \text{otherwise}
                \end{array}
            \right.

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

Z
zhupengyang 已提交
782
          m = paddle.nn.Hardsigmoid()
783 784 785 786 787 788 789 790 791
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
792
        return F.hardsigmoid(x, name=self.name)
793

794 795 796 797
    def extra_repr(self):
        name_str = 'name={}'.format(self.name) if self.name else ''
        return name_str

798

Z
zhiboniu 已提交
799
class Softplus(Layer):
800
    r"""
801 802 803 804
    Softplus Activation

    .. math::

805 806
        Softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
807 808

    Parameters:
809 810
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
811 812 813 814 815 816 817 818 819 820
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

821 822
            import paddle
            import numpy as np
823

824 825 826
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
827 828 829 830 831 832 833 834 835 836 837
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)

838 839 840 841 842
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'beta={}, threshold={}{}'.format(self._beta, self._threshold,
                                                name_str)

843

Z
zhiboniu 已提交
844
class Softshrink(Layer):
845
    r"""
846 847 848 849
    Softshrink Activation

    .. math::

850 851 852 853 854 855 856 857 858
        Softshrink(x)=
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.

859 860

    Parameters:
861
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
862 863 864 865 866 867 868 869 870 871
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

872 873
            import paddle
            import numpy as np
874

875 876 877
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
878 879 880 881 882 883 884 885 886 887
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)

888 889 890 891
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

892

Z
zhiboniu 已提交
893
class Softsign(Layer):
894
    r"""
895 896 897 898
    Softsign Activation

    .. math::

899
        Softsign(x) = \frac{x}{1 + |x|}
900 901 902 903 904 905 906 907 908 909 910 911

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

912 913
            import paddle
            import numpy as np
914

915 916 917
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
918 919 920 921 922 923 924 925 926
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)

927 928 929 930
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

931

Z
zhiboniu 已提交
932
class Swish(Layer):
933
    r"""
934 935 936 937
    Swish Activation.

    .. math::

938
        Swish(x) = \frac{x}{1 + e^{-x}}
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)

966 967 968 969
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

970

971 972 973 974 975 976 977 978 979 980 981 982
class Mish(Layer):
    r"""
    Mish Activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        Mish(x) = x * \tanh(softplus(x))
983

984 985 986 987 988 989 990
    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
991

992 993 994 995 996 997
    Examples:

        .. code-block:: python

            import paddle

W
wangxinxin08 已提交
998
            x = paddle.to_tensor([-5., 0., 5.])
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            m = paddle.nn.Mish()
            out = m(x) # [-0.03357624, 0., 4.99955208]

    """

    def __init__(self, name=None):
        super(Mish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.mish(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1016
class Tanhshrink(Layer):
1017 1018 1019 1020 1021
    """
    Tanhshrink Activation

    .. math::

1022
        Tanhshrink(x) = x - tanh(x)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1035 1036
            import paddle
            import numpy as np
1037

1038 1039 1040
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1041 1042 1043 1044 1045 1046 1047 1048 1049
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)

1050 1051 1052 1053
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1054

Z
zhiboniu 已提交
1055
class ThresholdedReLU(Layer):
1056
    r"""
1057 1058 1059 1060
    Thresholded ReLU Activation

    .. math::

1061 1062 1063 1064 1065 1066 1067 1068
        ThresholdedReLU(x) =
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)

1098 1099 1100 1101
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'threshold={}{}'.format(self._threshold, name_str)

1102

Z
zhiboniu 已提交
1103
class Silu(Layer):
M
minghaoBD 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    """
    Silu Activation.
    .. math::

        Silu(x) = \frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            m = paddle.nn.Silu()
            out = m(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
    """

    def __init__(self, name=None):
        super(Silu, self).__init__()
        self._name = name

    def forward(self, x):
        return F.silu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


Z
zhiboniu 已提交
1141
class LogSigmoid(Layer):
1142
    r"""
1143
    LogSigmoid Activation.
1144

1145
    .. math::
1146

1147
        LogSigmoid(x) = log \frac{1}{1 + e^{-x}}
1148 1149 1150 1151 1152

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1153

1154 1155 1156
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1157

1158 1159 1160
    Examples:
        .. code-block:: python

1161
            import paddle
1162

1163
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
1164 1165
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
1166 1167 1168 1169 1170 1171 1172
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
1173
        return F.log_sigmoid(x, self._name)
1174

1175 1176 1177 1178
    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str

1179

Z
zhiboniu 已提交
1180
class Softmax(Layer):
1181
    r"""
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1209
        Softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)

1302 1303 1304 1305
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1306

Z
zhiboniu 已提交
1307
class LogSoftmax(Layer):
1308
    r"""
1309 1310 1311 1312
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1313 1314 1315 1316
        \begin{array} {rcl}
            Out[i, j] &= &log(softmax(x)) \\
            &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{array}
1317 1318

    Parameters:
1319 1320 1321 1322 1323 1324
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1325

1326 1327 1328
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1329 1330 1331 1332

    Examples:
        .. code-block:: python

1333 1334
            import paddle

Z
zhupengyang 已提交
1335 1336 1337 1338 1339 1340
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1341 1342 1343 1344 1345 1346 1347 1348 1349
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1350 1351
    """

1352
    def __init__(self, axis=-1, name=None):
1353 1354
        super(LogSoftmax, self).__init__()
        self._axis = axis
1355
        self._name = name
1356

1357 1358
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1359

1360 1361 1362 1363
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'axis={}{}'.format(self._axis, name_str)

1364

Z
zhiboniu 已提交
1365
class Maxout(Layer):
1366
    r"""
1367
    Maxout Activation. Create a callable object of `Maxout`.
1368 1369 1370 1371 1372 1373 1374

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

1375 1376 1377 1378 1379 1380 1381 1382
        \begin{array}{l}
            &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
            &g = groups \\
            &s = \frac{input.size}{num\_channels} \\
            &0 \le i < \frac{num\_channels}{groups} \\
            &0 \le j < s \\
            &0 \le k < groups
        \end{array}
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)
1426 1427 1428 1429

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'groups={}, axis={}{}'.format(self._groups, self._axis, name_str)
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481


class Softmax2D(Layer):
    r"""
    Softmax2D Activation.
    Given a Tensor with shape (B, C, H, W) or (C, H, W), it will apply Softmax to each location (C, h_i, w_j).
    The sum of result in each location (C, H_i, W_j) will be one.

    Shape:
        - Input: :math:`(B, C, H, W)` or :math:`(C, H, W)`
        - Output: :math:`(B, C, H, W)` or :math:`(C, H, W)`(same as input)

    Return:
        A Tensor of the same shape and dtype as input with value in range [0, 1].

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.42496058 0.1172187  0.14664008 0.8151267 ]
            #    [0.24430142 0.42052492 0.60372984 0.79307914]
            #    [0.4539401  0.90458065 0.10235776 0.62009853]]

            #   [[0.11731581 0.16053623 0.05667042 0.91876775]
            #    [0.9413854  0.30770817 0.6788164  0.9543593 ]
            #    [0.4145064  0.75909156 0.11598814 0.73599935]]]]
            m = paddle.nn.Softmax2D()
            out = m(x)
            # [[[[0.5763103  0.48917228 0.5224772  0.4741129 ]
            #    [0.3324591  0.5281743  0.48123717 0.45976716]
            #    [0.5098571  0.5363083  0.49659243 0.4710572 ]]

            #   [[0.42368975 0.51082766 0.47752273 0.5258871 ]
            #    [0.66754097 0.47182566 0.5187628  0.5402329 ]
            #    [0.49014282 0.46369177 0.50340754 0.5289428 ]]]]
    """

    def __init__(self, name=None):
        super(Softmax2D, self).__init__()
        self._dtype = None
        self._name = name

    def forward(self, x):
        assert x.ndim == 3 or x.ndim == 4, "Softmax2D requires a 3D or 4D tensor as input. Received: {}D.".format(
            x.ndim)
        return F.softmax(x, axis=-3, dtype=self._dtype, name=self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str