infer.py 20.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
G
Guanghua Yu 已提交
18
import glob
Q
qingqing01 已提交
19 20 21 22 23 24 25 26 27
from functools import reduce

from PIL import Image
import cv2
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

G
Guanghua Yu 已提交
28 29 30 31
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride
from visualize import visualize_box_mask
from utils import argsparser, Timer, get_current_memory_mb, LoggerHelper

Q
qingqing01 已提交
32 33 34 35 36
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
F
Feng Ni 已提交
37
    'FCOS',
G
Guanghua Yu 已提交
38
    'SOLOv2',
F
Feng Ni 已提交
39
    'TTFNet',
Q
qingqing01 已提交
40 41 42 43 44 45 46 47 48 49
}


class Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
50 51 52 53 54
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
Q
qingqing01 已提交
55 56 57 58 59 60 61 62
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
63 64 65 66
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
G
Guanghua Yu 已提交
67
                 trt_calib_mode=False):
Q
qingqing01 已提交
68 69 70 71 72
        self.pred_config = pred_config
        self.predictor = load_predictor(
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
73 74 75 76
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
77 78 79 80
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Q
qingqing01 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
        im, im_info = preprocess(im, preprocess_ops,
                                 self.pred_config.input_shape)
        inputs = create_inputs(im, im_info)
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        results = {}
        if self.pred_config.arch in ['Face']:
            h, w = inputs['im_shape']
            scale_y, scale_x = inputs['scale_factor']
            w, h = float(h) / scale_y, float(w) / scale_x
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        results['boxes'] = np_boxes
        if np_masks is not None:
            results['masks'] = np_masks
        return results

G
Guanghua Yu 已提交
109
    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
Q
qingqing01 已提交
110 111 112 113 114 115 116 117
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
118
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
119
        '''
G
Guanghua Yu 已提交
120
        self.det_times.preprocess_time.start()
Q
qingqing01 已提交
121 122 123 124 125 126
        inputs = self.preprocess(image)
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
G
Guanghua Yu 已提交
127
        self.det_times.preprocess_time.end()
Q
qingqing01 已提交
128 129 130 131 132
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
133
            if self.pred_config.mask:
Q
qingqing01 已提交
134 135 136
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()

G
Guanghua Yu 已提交
137
        self.det_times.inference_time.start()
Q
qingqing01 已提交
138 139 140 141 142
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
143
            if self.pred_config.mask:
Q
qingqing01 已提交
144 145
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
G
Guanghua Yu 已提交
146
        self.det_times.inference_time.end(repeats=repeats)
Q
qingqing01 已提交
147

G
Guanghua Yu 已提交
148
        self.det_times.postprocess_time.start()
Q
qingqing01 已提交
149
        results = []
G
Guanghua Yu 已提交
150 151 152 153 154 155 156 157
        if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
            print('[WARNNING] No object detected.')
            results = {'boxes': np.array([])}
        else:
            results = self.postprocess(
                np_boxes, np_masks, inputs, threshold=threshold)
        self.det_times.postprocess_time.end()
        self.det_times.img_num += 1
Q
qingqing01 已提交
158 159 160
        return results


G
Guanghua Yu 已提交
161 162 163 164 165 166 167
class DetectorSOLOv2(Detector):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
168 169 170 171
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
172 173 174 175 176 177 178 179
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
180 181 182 183
                 use_dynamic_shape=False,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
G
Guanghua Yu 已提交
184
                 trt_calib_mode=False):
G
Guanghua Yu 已提交
185 186 187 188 189
        self.pred_config = pred_config
        self.predictor = load_predictor(
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
190 191 192 193
            use_gpu=use_gpu,
            use_dynamic_shape=use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
194 195 196 197 198
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode)
        self.det_times = Timer()

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
G
Guanghua Yu 已提交
199 200 201 202 203
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
G
Guanghua Yu 已提交
204 205 206
            results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
207
        '''
G
Guanghua Yu 已提交
208
        self.det_times.preprocess_time.start()
G
Guanghua Yu 已提交
209 210 211 212 213 214
        inputs = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
G
Guanghua Yu 已提交
215
        self.det_times.preprocess_time.end()
G
Guanghua Yu 已提交
216 217 218 219 220
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
221
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
222
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
223 224
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
225

G
Guanghua Yu 已提交
226
        self.det_times.inference_time.start()
G
Guanghua Yu 已提交
227 228 229 230 231
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
232
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
233
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
234 235
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
236 237
        self.det_times.inference_time.end(repeats=repeats)
        self.det_times.img_num += 1
G
Guanghua Yu 已提交
238

G
Guanghua Yu 已提交
239
        return dict(segm=np_segms, label=np_label, score=np_score)
G
Guanghua Yu 已提交
240 241


Q
qingqing01 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def create_inputs(im, im_info):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = np.array((im, )).astype('float32')
    inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')
    inputs['scale_factor'] = np.array(
        (im_info['scale_factor'], )).astype('float32')

    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
276 277 278
        self.mask = False
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
Q
qingqing01 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        self.input_shape = yml_conf['image_shape']
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
306 307 308 309
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
310 311
                   trt_opt_shape=640,
                   trt_calib_mode=False):
Q
qingqing01 已提交
312 313 314 315
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
316
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
317 318 319 320
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
321 322
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
        ValueError: predict by TensorRT need use_gpu == True.
    """
    if not use_gpu and not run_mode == 'fluid':
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
344
        config.switch_ir_optim(True)
Q
qingqing01 已提交
345 346
    else:
        config.disable_gpu()
G
Guanghua Yu 已提交
347 348 349 350 351 352 353 354 355 356 357
        config.set_cpu_math_library_num_threads(FLAGS.cpu_threads)
        if FLAGS.enable_mkldnn:
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
358 359 360 361 362 363 364 365

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
366
            use_calib_mode=trt_calib_mode)
367 368 369 370 371 372 373 374

        if use_dynamic_shape:
            min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
375 376 377 378 379 380 381 382 383 384 385

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
    return predictor


G
Guanghua Yu 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


G
Guanghua Yu 已提交
417
def visualize(image_file, results, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
418
    # visualize the predict result
G
Guanghua Yu 已提交
419
    im = visualize_box_mask(image_file, results, labels, threshold=threshold)
Q
qingqing01 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


G
Guanghua Yu 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
def predict_image(detector, image_list):
    for i, img_file in enumerate(image_list):
        if FLAGS.run_benchmark:
            detector.predict(img_file, FLAGS.threshold, warmup=10, repeats=10)
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            results = detector.predict(img_file, FLAGS.threshold)
            visualize(
                img_file,
                results,
                detector.pred_config.labels,
                output_dir=FLAGS.output_dir,
                threshold=FLAGS.threshold)
Q
qingqing01 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.pred_config.labels,
            threshold=FLAGS.threshold)
        im = np.array(im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
        use_gpu=FLAGS.use_gpu,
499 500 501 502
        run_mode=FLAGS.run_mode,
        use_dynamic_shape=FLAGS.use_dynamic_shape,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
503 504
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode)
G
Guanghua Yu 已提交
505 506 507 508 509
    if pred_config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            pred_config,
            FLAGS.model_dir,
            use_gpu=FLAGS.use_gpu,
510 511 512 513
            run_mode=FLAGS.run_mode,
            use_dynamic_shape=FLAGS.use_dynamic_shape,
            trt_min_shape=FLAGS.trt_min_shape,
            trt_max_shape=FLAGS.trt_max_shape,
G
Guanghua Yu 已提交
514 515 516
            trt_opt_shape=FLAGS.trt_opt_shape,
            trt_calib_mode=FLAGS.trt_calib_mode)

Q
qingqing01 已提交
517
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
518
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
Q
qingqing01 已提交
519
        predict_video(detector, FLAGS.camera_id)
G
Guanghua Yu 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss': detector.cpu_mem / len(img_list),
                'gpu_rss': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            det_logger = LoggerHelper(
                FLAGS, detector.det_times.report(average=True), mems)
            det_logger.report()
Q
qingqing01 已提交
535 536 537 538


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
539
    parser = argsparser()
Q
qingqing01 已提交
540 541 542 543
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)

    main()