tf_op_mapper.py 55.3 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
J
jiangjiajun 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph 
J
jiangjiajun 已提交
17
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19 20 21
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
22
import inspect
J
jiangjiajun 已提交
23
import numpy
J
jiangjiajun 已提交
24
import sys
25

J
jiangjiajun 已提交
26 27 28 29 30 31 32 33 34 35 36 37
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
38

J
jiangjiajun 已提交
39 40 41 42
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
43 44
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
45 46 47 48
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
49

J
jiangjiajun 已提交
50
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
51
    directly_map_ops = {
S
SunAhong1993 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        'Relu': ['paddle.nn.functional.relu'],
        'Relu6': ['paddle.nn.functional.relu6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softmax': ['paddle.nn.functional.softmax'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.functional.swish'],
        'Tanh': ['paddle.tanh'],
        'Softplus': ['paddle.nn.functional.softplus'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                     dict(alpha='negative_slope')],
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
J
jiangjiajun 已提交
68 69
    }
    elementwise_ops = {
S
SunAhong1993 已提交
70 71 72 73
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
74
        # TODO (syf): replace
S
SunAhong1993 已提交
75
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
76 77
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
78 79 80 81 82 83
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
84 85 86 87 88
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
J
jiangjiajun 已提交
89 90
    }

J
jiangjiajun 已提交
91 92
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
93
        self.decoder = decoder
J
jiangjiajun 已提交
94
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
95 96
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
97 98
        self.params = dict()
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="static", source_type="tf")
S
SunAhong1993 已提交
99
        self.params_output2id = dict()
100

J
jiangjiajun 已提交
101 102
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
103 104 105 106 107
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
108 109 110 111
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
112

S
SunAhong1993 已提交
113 114
        self.paddle_graph.inputs = self.graph.input_nodes
        self.paddle_graph.outputs = self.graph.output_nodes
J
jiangjiajun 已提交
115

S
SunAhong1993 已提交
116 117 118 119 120 121
        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
122
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
123
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
124 125
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
126 127 128 129
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
130 131
            elif op in self.bool_ops:
                self.bool_map(node)
J
jiangjiajun 已提交
132
            elif hasattr(self, op):
J
jiangjiajun 已提交
133
                func = getattr(self, op)
S
SunAhong1993 已提交
134 135 136 137 138 139 140 141 142 143 144 145
                func(node)
        print("\nNodes converted.")
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
146 147
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
J
jiangjiajun 已提交
148
                unsupported_ops.add(op)
S
SunAhong1993 已提交
149 150 151 152 153 154
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
155
            for op in unsupported_ops:
J
jiangjiajun 已提交
156
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
157
            return False
J
jiangjiajun 已提交
158

J
jiangjiajun 已提交
159 160 161
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
162
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
163 164 165 166 167 168
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
169

S
SunAhong1993 已提交
170
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
171
            kernel=op_info[0],
J
jiangjiajun 已提交
172 173 174
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
175

S
SunAhong1993 已提交
176 177 178 179
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
180 181
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
182 183
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
184
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
185
            kernel=op_type,
J
jiangjiajun 已提交
186 187 188
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
189
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
190 191 192 193 194
        
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
J
jiangjiajun 已提交
195

196 197
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
198 199
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
200
        dtype = node.dtype
S
SunAhong1993 已提交
201
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
202
            kernel="paddle.static.data",
J
jiangjiajun 已提交
203 204 205 206 207
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
208

J
jiangjiajun 已提交
209 210 211 212 213 214 215
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
216 217
            if value == float('inf'):
                value = "float('inf')"
S
SunAhong1993 已提交
218
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
219
                kernel="paddle.full",
C
channingss 已提交
220 221 222 223
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
S
SunAhong1993 已提交
224
                fill_value=value)
C
channingss 已提交
225
            return
J
jiangjiajun 已提交
226

S
SunAhong1993 已提交
227
        self.params[node.name] = node.value
S
SunAhong1993 已提交
228
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
229
            kernel="paddle.static.create_parameter",
J
jiangjiajun 已提交
230 231 232 233 234
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
S
SunAhong1993 已提交
235
            default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
236
        self.params_output2id[node.name] = layer_id
J
jiangjiajun 已提交
237 238

    def Transpose(self, node):
J
jiangjiajun 已提交
239 240
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
241
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
242 243
        perm = perm.value.tolist()

S
SunAhong1993 已提交
244
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
245
            kernel="paddle.transpose",
J
jiangjiajun 已提交
246 247 248 249 250 251 252 253 254 255 256 257
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
258
        else:
J
jiangjiajun 已提交
259 260
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
261
        attr["fill_value"] = input_value.value
J
jiangjiajun 已提交
262

S
SunAhong1993 已提交
263
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
264
            "paddle.full",
J
jiangjiajun 已提交
265 266 267
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
268 269 270 271 272 273
        if dims.layer_type != "Const":
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
274

J
jiangjiajun 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
288
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
289
                kernel="paddle.transpose",
J
jiangjiajun 已提交
290 291 292 293 294 295 296
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
297
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
298
            kernel="paddle.reshape",
J
jiangjiajun 已提交
299 300 301 302 303
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
304
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
305
            kernel="paddle.transpose",
J
jiangjiajun 已提交
306 307 308 309 310
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
311
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
312
            kernel="paddle.reshape",
J
jiangjiajun 已提交
313 314 315 316
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

S
SunAhong1993 已提交
317
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
318
            kernel="paddle.nn.functional.pixel_shuffle",
J
jiangjiajun 已提交
319 320 321 322 323
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
S
SunAhong1993 已提交
324
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
325
                kernel="paddle.transpose",
J
jiangjiajun 已提交
326 327 328
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
add beg  
SunAhong1993 已提交
329
            
S
SunAhong1993 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
                "paddle.nonzero",
                inputs={"x": cond.name},
                outputs=[node.name])
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
            
S
add beg  
SunAhong1993 已提交
348 349 350 351 352 353 354 355
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
        
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
J
jiangjiajun 已提交
356 357 358

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
359

J
jiangjiajun 已提交
360 361 362 363 364
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
365 366 367
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
S
SunAhong1993 已提交
368
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
369
                kernel="paddle.transpose",
J
jiangjiajun 已提交
370 371 372
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
373
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
374
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
375 376
            input_name = transpose_name

S
SunAhong1993 已提交
377
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
378 379
            kernel="paddle.nn.functional.max_pool2d",
            inputs={"x": input_name},
J
jiangjiajun 已提交
380
            outputs=[node.name],
S
SunAhong1993 已提交
381 382 383
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
J
jiangjiajun 已提交
384 385

        if data_format == "NHWC":
S
SunAhong1993 已提交
386
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
387
                kernel="paddle.transpose",
J
jiangjiajun 已提交
388 389 390
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
391 392

    def Conv2D(self, node):
J
jiangjiajun 已提交
393 394
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
395

J
jiangjiajun 已提交
396 397 398 399 400
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
401 402 403 404
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
405

J
jiangjiajun 已提交
406 407 408 409
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
S
SunAhong1993 已提交
410
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
J
jiangjiajun 已提交
411 412 413 414 415
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
416
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
S
SunAhong1993 已提交
417 418 419 420 421 422 423 424 425
                                                          (3, 2, 0, 1))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
        
J
jiangjiajun 已提交
426 427
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
428 429
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
430
            transpose_name = gen_name("conv2d", "transpose")
S
SunAhong1993 已提交
431
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
432
                kernel="paddle.transpose",
J
jiangjiajun 已提交
433 434 435 436 437 438 439
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
S
SunAhong1993 已提交
440
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
441
                kernel="paddle.reshape",
J
jiangjiajun 已提交
442 443 444 445
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

S
SunAhong1993 已提交
446
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
447 448
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name, "weight": kernel_weight_name},
J
jiangjiajun 已提交
449
            outputs=[node.name],
S
SunAhong1993 已提交
450
            bias=None,
J
jiangjiajun 已提交
451 452 453 454 455
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
456
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
457
                kernel="paddle.transpose",
J
jiangjiajun 已提交
458 459 460
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            
    def Conv3D(self, node):
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
486 487 488 489 490 491 492 493 494
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
S
SunAhong1993 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        
        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])        
            
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv3d",
S
SunAhong1993 已提交
518
            inputs={"x": input_name,  "weight": kernel_weight_name},
S
SunAhong1993 已提交
519 520 521 522 523 524 525 526 527 528 529 530
            outputs=[node.name],
            bias=None,
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
J
jiangjiajun 已提交
531

J
jiangjiajun 已提交
532
    def BiasAdd(self, node):
J
jiangjiajun 已提交
533 534
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
S
SunAhong1993 已提交
535
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
536
            kernel="paddle.add",
J
jiangjiajun 已提交
537 538 539
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
540 541

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
542 543 544 545 546
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
547
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
548 549 550 551 552

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
553 554 555 556

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
S
SunAhong1993 已提交
557
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
558
                kernel="paddle.transpose",
J
jiangjiajun 已提交
559 560 561 562 563
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
564
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
565 566 567 568 569 570
            kernel="paddle.nn.functional.batch_norm",
            inputs={"x": input_name,
                    "running_mean": moving_mean.name,
                    "running_var": moving_var.name,
                    "weight": gamma.name,
                    "bias": beta.name},
J
jiangjiajun 已提交
571
            outputs=[node.name],
S
SunAhong1993 已提交
572
            epsilon=node.get_attr("epsilon"))
J
jiangjiajun 已提交
573 574

        if data_format == "NHWC":
S
SunAhong1993 已提交
575
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
576
                kernel="paddle.transpose",
J
jiangjiajun 已提交
577 578 579
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
580 581 582
            
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
J
jiangjiajun 已提交
583 584 585 586 587 588 589 590

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

S
SunAhong1993 已提交
591
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
592 593
            kernel="paddle.mean",
            inputs={"x": input.name},
J
jiangjiajun 已提交
594
            outputs=[node.name],
S
SunAhong1993 已提交
595 596
            axis=dims,
            keepdim=keep_dims)
J
jiangjiajun 已提交
597 598

    def Reshape(self, node):
S
SunAhong1993 已提交
599 600
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
601 602 603 604 605

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
S
SunAhong1993 已提交
606
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
607
                kernel="paddle.reshape",
J
jiangjiajun 已提交
608 609 610 611
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
S
SunAhong1993 已提交
612
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
613
                kernel="paddle.reshape",
J
jiangjiajun 已提交
614 615 616 617 618 619 620
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
S
SunAhong1993 已提交
621
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
622
                    kernel="paddle.reshape",
J
jiangjiajun 已提交
623 624 625 626 627
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
S
SunAhong1993 已提交
628 629
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
630 631 632
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

S
SunAhong1993 已提交
633
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
634
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
635
            inputs={"x": input.name},
J
jiangjiajun 已提交
636
            outputs=[node.name],
S
SunAhong1993 已提交
637
            pad=paddings)
S
SunAhong1993 已提交
638 639
        
    def MirrorPad(self, node):
S
SunAhong1993 已提交
640 641 642 643 644
        self.Pad(node)
        
        
    def PadV2(self, node):
        self.Pad(node)
J
jiangjiajun 已提交
645 646

    def Squeeze(self, node):
S
SunAhong1993 已提交
647
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
648
        squeeze_dims = node.get_attr('squeeze_dims')
S
SunAhong1993 已提交
649
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
650 651
            kernel="paddle.squeeze",
            inputs={"x": input.name},
J
jiangjiajun 已提交
652
            outputs=[node.name],
S
SunAhong1993 已提交
653
            axis=squeeze_dims)
J
jiangjiajun 已提交
654 655

    def Shape(self, node):
S
SunAhong1993 已提交
656
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
657
        input_name = input.name
S
SunAhong1993 已提交
658
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
659
            kernel="paddle.shape",
J
jiangjiajun 已提交
660 661 662
            inputs={"input": input_name},
            outputs=[node.name])

S
SunAhong1993 已提交
663 664 665 666
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
667
            kernel="paddle.shape",
S
SunAhong1993 已提交
668 669
            inputs={"input": input_name},
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
670 671 672 673
        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
S
SunAhong1993 已提交
674 675 676 677 678 679 680 681
        
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
            kernel="paddle.ceil",
            inputs={"x": input.name},
            outputs=[node.name])

J
jiangjiajun 已提交
682
    def ArgMax(self, node):
S
SunAhong1993 已提交
683 684
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
685 686
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
S
SunAhong1993 已提交
687
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
688
            kernel="paddle.argmax",
J
jiangjiajun 已提交
689 690 691
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704
        
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
J
jiangjiajun 已提交
705 706

    def MatMul(self, node):
S
SunAhong1993 已提交
707 708
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
709 710 711 712 713 714
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
S
SunAhong1993 已提交
715
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
716
            kernel="paddle.matmul",
J
jiangjiajun 已提交
717 718 719 720 721 722 723 724 725 726 727
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
728

J
jiangjiajun 已提交
729
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
730 731
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
732
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
733

J
jiangjiajun 已提交
734 735 736 737 738 739
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
740

S
SunAhong1993 已提交
741 742 743 744 745 746 747 748 749 750 751
        if len(kernel.outputs) == 1:
            self.params[kernel.name] = numpy.transpose(self.params[kernel.name],
                                                          (2, 3, 0, 1))
            layer = self.paddle_graph.layers[self.params_output2id[kernel.name]] 
            layer.attrs["shape"] = self.params[kernel.name].shape
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": kernel.name},
                outputs=[kernel.name],
                perm=[2, 3, 0, 1])
J
jiangjiajun 已提交
752

J
jiangjiajun 已提交
753 754
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
755 756 757
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
758
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
S
SunAhong1993 已提交
759
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
760
                kernel="paddle.transpose",
J
jiangjiajun 已提交
761 762 763 764 765
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
766
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
767 768 769
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name,
                    "weight": kernel.name},
J
jiangjiajun 已提交
770 771 772 773 774
            outputs=[node.name],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
S
SunAhong1993 已提交
775
            bias=None)
J
jiangjiajun 已提交
776 777

        if data_format == "NHWC":
S
SunAhong1993 已提交
778
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
779
                kernel="paddle.transpose",
J
jiangjiajun 已提交
780 781 782
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
783 784

    def AvgPool(self, node):
S
SunAhong1993 已提交
785
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
786

J
jiangjiajun 已提交
787 788 789 790 791
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
792 793 794
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
S
SunAhong1993 已提交
795
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
796
                kernel="paddle.transpose",
J
jiangjiajun 已提交
797 798 799
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
800
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
801
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
802
            input_name = transpose_name
S
SunAhong1993 已提交
803 804
        
        # TODO(syf): The op has diff.
J
jiangjiajun 已提交
805

S
SunAhong1993 已提交
806
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
807 808
            kernel="paddle.nn.functional.avg_pool2d",
            inputs={"x": input_name},
J
jiangjiajun 已提交
809
            outputs=[node.name],
S
SunAhong1993 已提交
810 811 812
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
J
jiangjiajun 已提交
813 814

        if data_format == "NHWC":
S
SunAhong1993 已提交
815
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
816
                kernel="paddle.transpose",
J
jiangjiajun 已提交
817 818 819
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
820 821

    def Pack(self, node):
S
SunAhong1993 已提交
822 823 824 825
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
J
jiangjiajun 已提交
826
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
827
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
828
            kernel="paddle.stack",
J
jiangjiajun 已提交
829 830 831 832
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
S
SunAhong1993 已提交
833
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
834
                kernel="paddle.reshape",
J
jiangjiajun 已提交
835 836 837 838 839
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
840
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
841 842 843 844 845 846
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
S
SunAhong1993 已提交
847
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
848 849
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
J
jiangjiajun 已提交
850
                    outputs=[node.name],
S
SunAhong1993 已提交
851
                    axis=[0])
J
jiangjiajun 已提交
852 853 854 855
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
SunAhong1993 已提交
856 857 858
        layer_outputs = ["{}_p{}".format(node.layer_name, i) for i in range(num)]
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
859
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
860
            kernel="paddle.unstack",
J
jiangjiajun 已提交
861
            inputs={"x": input_name},
S
SunAhong1993 已提交
862
            outputs=layer_outputs,
J
jiangjiajun 已提交
863 864
            axis=axis,
            num=num)
J
jiangjiajun 已提交
865

J
jiangjiajun 已提交
866
    def ConcatV2(self, node):
S
SunAhong1993 已提交
867 868 869 870
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
J
jiangjiajun 已提交
871 872 873
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
SunAhong1993 已提交
874
            axis += len(inputs_list[0].out_shapes[0])
J
jiangjiajun 已提交
875

S
SunAhong1993 已提交
876
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
877
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
            
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
J
jiangjiajun 已提交
897 898
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
899 900 901 902 903 904 905 906 907 908 909
            
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
J
jiangjiajun 已提交
910

J
jiangjiajun 已提交
911
    def StridedSlice(self, node):
S
SunAhong1993 已提交
912 913 914 915
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
916

J
jiangjiajun 已提交
917 918
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
919
        else:
S
SunAhong1993 已提交
920
            strides = self.decoder.infer_tensor(strides)
J
jiangjiajun 已提交
921 922
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
923
        else:
S
SunAhong1993 已提交
924
            begin = self.decoder.infer_tensor(begin)
J
jiangjiajun 已提交
925 926
        if end.layer_type == "Const":
            end = end.value.tolist()
927
        else:
S
SunAhong1993 已提交
928
            end = self.decoder.infer_tensor(end)
929

J
jiangjiajun 已提交
930 931
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
932

J
jiangjiajun 已提交
933 934 935 936
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
937 938 939 940
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
941 942 943 944
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
945
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
SunAhong1993 已提交
977 978 979 980 981 982 983
            
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
J
jiangjiajun 已提交
984

S
SunAhong1993 已提交
985
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
986
            kernel="paddle.slice",
J
jiangjiajun 已提交
987 988 989 990 991
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
SunAhong1993 已提交
992 993 994 995 996 997 998 999
        
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

J
jiangjiajun 已提交
1000
        if len(new_axes) > 0:
S
SunAhong1993 已提交
1001
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1002 1003
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
J
jiangjiajun 已提交
1004
                outputs=[node.name],
S
SunAhong1993 已提交
1005
                axis=new_axes)
J
jiangjiajun 已提交
1006 1007 1008 1009
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
S
SunAhong1993 已提交
1010
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1011 1012
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
J
jiangjiajun 已提交
1013
                    outputs=[node.name],
S
SunAhong1993 已提交
1014
                    axis=shrink_axes)
S
SunAhong1993 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
                
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
J
jiangjiajun 已提交
1029 1030

    def Split(self, node):
S
SunAhong1993 已提交
1031 1032
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1033 1034 1035 1036
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

S
SunAhong1993 已提交
1037
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1038 1039
            kernel="paddle.split",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1040 1041 1042 1043
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1044
            axis=dim)
S
SunAhong1993 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        
    def SplitV(self, node):
        input = self.graph.get_input_node(node, 0)
        size_splits = self.graph.get_input_node(node, 1)
        assert size_splits.layer_type == "Const", "size_splits of SplitV OP should be Const"
        size_splits = size_splits.value.tolist()
        dim = self.graph.get_input_node(node, 2)
        assert dim.layer_type == "Const", "dim of SplitV OP should be Const"
        dim = dim.value
        
        self.paddle_graph.add_layer(
            kernel="paddle.split",
            inputs={"x": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(len(size_splits))
            ],
            num_or_sections=size_splits,
            axis=dim)
1063 1064

    def Slice(self, node):
S
SunAhong1993 已提交
1065 1066 1067
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1068 1069 1070

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
1071 1072
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
1073
            attrs['offsets'] = begin
J
jiangjiajun 已提交
1074
        else:
J
jiangjiajun 已提交
1075 1076
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1077
            #             self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1078 1079 1080 1081 1082
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
S
SunAhong1993 已提交
1083
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
J
jiangjiajun 已提交
1084 1085
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
1086
            size = size.value.tolist()
J
jiangjiajun 已提交
1087 1088 1089 1090
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1091
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1092
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1093 1094 1095 1096
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
S
SunAhong1993 已提交
1097
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1098
            kernel="paddle.crop",
J
jiangjiajun 已提交
1099 1100 1101 1102 1103
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1104 1105
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1106
        data_format = "NHWC"
S
SunAhong1993 已提交
1107 1108 1109 1110
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("nearest"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1111 1112 1113

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1114
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1115
        else:
J
jiangjiajun 已提交
1116 1117
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1118
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1119
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1120 1121 1122
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1123
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1124 1125 1126

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1127
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1128
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1129 1130 1131
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1132
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1133

S
SunAhong1993 已提交
1134
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1135
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1136 1137 1138 1139 1140
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1141
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1142
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1143 1144 1145
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1146

J
jiangjiajun 已提交
1147
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1148 1149
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1150
        data_format = "NHWC"
S
SunAhong1993 已提交
1151 1152 1153 1154
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("bilinear"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1155

J
jiangjiajun 已提交
1156 1157
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1158
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1159 1160 1161
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1162
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1163
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1164 1165 1166
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1167
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1168 1169 1170

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1171
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1172
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1173 1174 1175
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1176
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1177

S
SunAhong1993 已提交
1178
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1179
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1180 1181 1182 1183 1184
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1185
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1186
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1187 1188 1189 1190 1191
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1192
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1193
        dtype = node.dtype
S
SunAhong1993 已提交
1194
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1195
            kernel="paddle.cast",
J
jiangjiajun 已提交
1196 1197 1198 1199 1200
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1201 1202
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1203 1204 1205 1206
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

S
SunAhong1993 已提交
1207
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1208 1209
            kernel="paddle.sum",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1210
            outputs=[node.name],
S
SunAhong1993 已提交
1211 1212
            axis=dim,
            keepdim=keep_dims)
J
jiangjiajun 已提交
1213 1214

    def Max(self, node):
S
SunAhong1993 已提交
1215 1216
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1217 1218 1219
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
S
SunAhong1993 已提交
1220
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1221 1222
            kernel="paddle.max",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1223
            outputs=[node.name],
S
SunAhong1993 已提交
1224 1225
            axis=dim,
            keepdim=keep_dims)
1226

J
jiangjiajun 已提交
1227
    def RandomUniform(self, node):
S
SunAhong1993 已提交
1228
        shape = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1229 1230
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
S
SunAhong1993 已提交
1231
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1232
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1233 1234 1235 1236 1237 1238
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
S
SunAhong1993 已提交
1239
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1240
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1241 1242 1243 1244
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1245 1246

    def Conv2DBackpropInput(self, node):
S
SunAhong1993 已提交
1247 1248 1249
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
1250

1251
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1252

J
jiangjiajun 已提交
1253 1254 1255
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
SunAhong1993 已提交
1256 1257
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
J
jiangjiajun 已提交
1258

1259
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1260
        if in_shape.count(-1) > 2:
S
SunAhong1993 已提交
1261
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
1262
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1263
        if k_size.count(-1) > 2:
S
SunAhong1993 已提交
1264
            k_size = self.decoder.infer_tensor(kernel, use_diff_inputs=False).shape
J
jiangjiajun 已提交
1265

J
jiangjiajun 已提交
1266
        pad_mode = node.get_attr("padding").decode()
1267 1268 1269
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1270

S
SunAhong1993 已提交
1271 1272
        kernel_name = node.name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
1273 1274 1275

        input_name = input.name
        if data_format == "NHWC":
1276 1277 1278
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1279
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
S
SunAhong1993 已提交
1280
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1281
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1282 1283 1284 1285 1286
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1287
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
            kernel="paddle.static.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            dtype=string(str(self.params[kernel_name].dtype)),
            shape=self.params[kernel_name].shape,
            name=string(kernel_name))
    
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
            inputs={"x": input_name,
                    "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_")},
J
jiangjiajun 已提交
1299
            outputs=[node.name],
S
SunAhong1993 已提交
1300
            bias=None,
J
jiangjiajun 已提交
1301 1302 1303 1304 1305 1306
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
S
SunAhong1993 已提交
1307
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1308
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1309 1310 1311
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1312

J
jiangjiajun 已提交
1313 1314
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
S
SunAhong1993 已提交
1315
        repeat_times = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
1316 1317
        inputs = {"x": input.name}
        attr = dict()
S
SunAhong1993 已提交
1318 1319 1320
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
J
jiangjiajun 已提交
1321
        else:
S
SunAhong1993 已提交
1322 1323
            inputs["repeat_times"] = repeat_times.name
            
S
SunAhong1993 已提交
1324
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1325
            kernel="paddle.tile",
J
jiangjiajun 已提交
1326 1327 1328
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1329 1330 1331 1332 1333 1334 1335
        
        if not isinstance(repeat_times, list) and repeat_times.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1336

J
jiangjiajun 已提交
1337 1338 1339 1340 1341 1342
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1343

C
channingss 已提交
1344 1345 1346
        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
J
jiangjiajun 已提交
1347 1348
        if start.layer_type == "Const":
            attr["start"] = start.value
1349
        else:
J
jiangjiajun 已提交
1350
            inputs["start"] = start.name
C
channingss 已提交
1351 1352
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
J
jiangjiajun 已提交
1353 1354
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1355
        else:
J
jiangjiajun 已提交
1356
            inputs["end"] = limit.name
C
channingss 已提交
1357 1358
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
J
jiangjiajun 已提交
1359 1360
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1361
        else:
J
jiangjiajun 已提交
1362
            inputs["step"] = delta.name
C
channingss 已提交
1363
        node.set_dtype(dtype)
J
jiangjiajun 已提交
1364 1365
        attr["dtype"] = string(node.dtype)

S
SunAhong1993 已提交
1366
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1367
            kernel="paddle.arange",
J
jiangjiajun 已提交
1368 1369 1370
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1371 1372 1373 1374 1375 1376 1377 1378
        if start.layer_type != "Const" or \
                limit.layer_type != "Const" or \
                delta.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1379 1380

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1381 1382
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1383 1384 1385
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1386
        # TODO(syf)
S
SunAhong1993 已提交
1387
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1388
            "paddle.subtract", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1389
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1390 1391 1392 1393

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1394
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1395
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1396
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1397 1398

    def OneHot(self, node):
S
SunAhong1993 已提交
1399 1400 1401 1402
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

S
SunAhong1993 已提交
1415
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1416 1417
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1418
            outputs=[node.name],
S
SunAhong1993 已提交
1419
            num_classes=depth.value)
J
jiangjiajun 已提交
1420 1421

    def Pow(self, node):
S
SunAhong1993 已提交
1422 1423
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1424 1425 1426
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
S
SunAhong1993 已提交
1427
            attr["y"] = factor.value.tolist()
J
jiangjiajun 已提交
1428
        else:
S
SunAhong1993 已提交
1429
            inputs["y"] = factor.name
S
SunAhong1993 已提交
1430
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1431
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)
J
jiangjiajun 已提交
1432 1433

    def All(self, node):
S
SunAhong1993 已提交
1434 1435
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1436 1437
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
S
SunAhong1993 已提交
1438 1439
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1440

J
jiangjiajun 已提交
1441 1442 1443
        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
S
SunAhong1993 已提交
1444
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1445
                "paddle.cast",
J
jiangjiajun 已提交
1446 1447 1448
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
S
SunAhong1993 已提交
1449
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1450 1451
            "paddle.all",
            inputs={"x": input_name},
J
jiangjiajun 已提交
1452 1453 1454 1455 1456 1457
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1458 1459 1460
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1461
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1462
        axis = axis.value
J
jiangjiajun 已提交
1463 1464 1465 1466
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
S
SunAhong1993 已提交
1467
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1468
                "paddle.reshape",
J
jiangjiajun 已提交
1469 1470 1471
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
S
SunAhong1993 已提交
1472
        inputs = {'x': embeddings.name, 'index': index_name}
S
SunAhong1993 已提交
1473
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1474
            "paddle.gather",
J
jiangjiajun 已提交
1475 1476
            inputs=inputs,
            outputs=[node.name],
S
SunAhong1993 已提交
1477
            axis=axis)
J
jiangjiajun 已提交
1478 1479
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1480
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1481
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1482 1483 1484
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
SunAhong1993 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493
            
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs=inputs,
            outputs=[node.name])
J
jiangjiajun 已提交
1494 1495

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1496 1497 1498
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
        inputs = {"x": x.name}
J
jiangjiajun 已提交
1499 1500 1501 1502 1503
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
S
SunAhong1993 已提交
1504
            attr['axis'] = dim
J
jiangjiajun 已提交
1505
        else:
S
SunAhong1993 已提交
1506
            inputs['axis'] = y.name
S
SunAhong1993 已提交
1507
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1508
            "paddle.unsqueeze",
J
jiangjiajun 已提交
1509 1510 1511
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        
    def ReverseV2(self, node):
        x = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
        inputs = {"x": x.name}
        attr = dict()
        if axis.layer_type == 'Const':
            axis = axis.value.tolist()
            if not isinstance(axis, list):
                axis = [axis]
            attr['axis'] = axis
        else:
            inputs['axis'] = axis.name
        self.paddle_graph.add_layer(
            "paddle.flip",
            inputs=inputs,
            outputs=[node.name],
            **attr)