tf_op_mapper.py 55.7 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
J
jiangjiajun 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph 
J
jiangjiajun 已提交
17
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19 20 21
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
22
import inspect
J
jiangjiajun 已提交
23
import numpy
J
jiangjiajun 已提交
24
import sys
25

J
jiangjiajun 已提交
26 27 28 29 30 31 32 33 34 35 36 37
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
38

J
jiangjiajun 已提交
39 40 41 42
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
43 44
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
45 46 47 48
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
49

J
jiangjiajun 已提交
50
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
51
    directly_map_ops = {
S
SunAhong1993 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        'Relu': ['paddle.nn.functional.relu'],
        'Relu6': ['paddle.nn.functional.relu6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softmax': ['paddle.nn.functional.softmax'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.functional.swish'],
        'Tanh': ['paddle.tanh'],
        'Softplus': ['paddle.nn.functional.softplus'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                     dict(alpha='negative_slope')],
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
J
jiangjiajun 已提交
68 69
    }
    elementwise_ops = {
S
SunAhong1993 已提交
70 71 72 73
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
74
        # TODO (syf): replace
S
SunAhong1993 已提交
75
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
76 77
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
78 79 80 81 82 83
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
84 85 86 87 88
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
J
jiangjiajun 已提交
89 90
    }

J
jiangjiajun 已提交
91 92
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
93
        self.decoder = decoder
J
jiangjiajun 已提交
94
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
95 96
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
97 98
        self.params = dict()
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="static", source_type="tf")
S
SunAhong1993 已提交
99
        self.params_output2id = dict()
100

J
jiangjiajun 已提交
101 102
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
103 104 105 106 107
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
108 109 110 111
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
112

S
SunAhong1993 已提交
113 114
        self.paddle_graph.inputs = self.graph.input_nodes
        self.paddle_graph.outputs = self.graph.output_nodes
J
jiangjiajun 已提交
115

S
SunAhong1993 已提交
116 117 118 119 120 121
        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
122
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
123
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
124 125
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
126 127 128 129
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
130 131
            elif op in self.bool_ops:
                self.bool_map(node)
J
jiangjiajun 已提交
132
            elif hasattr(self, op):
J
jiangjiajun 已提交
133
                func = getattr(self, op)
S
SunAhong1993 已提交
134 135 136 137 138 139 140 141 142 143 144 145
                func(node)
        print("\nNodes converted.")
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
146 147
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
J
jiangjiajun 已提交
148
                unsupported_ops.add(op)
S
SunAhong1993 已提交
149 150 151 152 153 154
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
155
            for op in unsupported_ops:
J
jiangjiajun 已提交
156
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
157
            return False
J
jiangjiajun 已提交
158

J
jiangjiajun 已提交
159 160 161
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
162
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
163 164 165 166 167 168
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
169

S
SunAhong1993 已提交
170
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
171
            kernel=op_info[0],
J
jiangjiajun 已提交
172 173 174
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
175

S
SunAhong1993 已提交
176 177 178 179
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
180 181
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
182 183
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
184
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
185
            kernel=op_type,
J
jiangjiajun 已提交
186 187 188
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
189
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
190 191 192 193 194
        
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
J
jiangjiajun 已提交
195

196 197
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
198 199
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
200
        dtype = node.dtype
S
SunAhong1993 已提交
201
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
202
            kernel="paddle.static.data",
J
jiangjiajun 已提交
203 204 205 206 207
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
208

J
jiangjiajun 已提交
209 210 211 212 213 214 215
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
216 217
            if value == float('inf'):
                value = "float('inf')"
S
SunAhong1993 已提交
218
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
219
                kernel="paddle.full",
C
channingss 已提交
220 221 222 223
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
S
SunAhong1993 已提交
224
                fill_value=value)
C
channingss 已提交
225
            return
J
jiangjiajun 已提交
226

S
SunAhong1993 已提交
227
        self.params[node.name] = node.value
S
SunAhong1993 已提交
228
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
229
            kernel="paddle.static.create_parameter",
J
jiangjiajun 已提交
230 231 232 233 234
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
S
SunAhong1993 已提交
235
            default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
236
        self.params_output2id[node.name] = layer_id
J
jiangjiajun 已提交
237 238

    def Transpose(self, node):
J
jiangjiajun 已提交
239 240
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
241
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
242 243
        perm = perm.value.tolist()

S
SunAhong1993 已提交
244
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
245
            kernel="paddle.transpose",
J
jiangjiajun 已提交
246 247 248 249 250 251 252 253 254 255 256 257
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
258
        else:
J
jiangjiajun 已提交
259 260
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
261
        attr["fill_value"] = input_value.value
J
jiangjiajun 已提交
262

S
SunAhong1993 已提交
263
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
264
            "paddle.full",
J
jiangjiajun 已提交
265 266 267
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
268 269 270 271 272 273
        if dims.layer_type != "Const":
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
274

J
jiangjiajun 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
288
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
289
                kernel="paddle.transpose",
J
jiangjiajun 已提交
290 291 292 293 294 295 296
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
297
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
298
            kernel="paddle.reshape",
J
jiangjiajun 已提交
299 300 301 302 303
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
304
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
305
            kernel="paddle.transpose",
J
jiangjiajun 已提交
306 307 308 309 310
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
311
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
312
            kernel="paddle.reshape",
J
jiangjiajun 已提交
313 314 315 316
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

S
SunAhong1993 已提交
317
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
318
            kernel="paddle.nn.functional.pixel_shuffle",
J
jiangjiajun 已提交
319 320 321 322 323
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
S
SunAhong1993 已提交
324
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
325
                kernel="paddle.transpose",
J
jiangjiajun 已提交
326 327 328
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
add beg  
SunAhong1993 已提交
329
            
S
SunAhong1993 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
                "paddle.nonzero",
                inputs={"x": cond.name},
                outputs=[node.name])
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
            
S
add beg  
SunAhong1993 已提交
348 349 350 351 352 353 354 355
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
        
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
J
jiangjiajun 已提交
356 357 358

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
359

J
jiangjiajun 已提交
360 361 362 363 364
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
365 366 367
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
S
SunAhong1993 已提交
368
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
369
                kernel="paddle.transpose",
J
jiangjiajun 已提交
370 371 372
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
373
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
374
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
375 376
            input_name = transpose_name

S
SunAhong1993 已提交
377
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
378 379
            kernel="paddle.nn.functional.max_pool2d",
            inputs={"x": input_name},
J
jiangjiajun 已提交
380
            outputs=[node.name],
S
SunAhong1993 已提交
381 382 383
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
J
jiangjiajun 已提交
384 385

        if data_format == "NHWC":
S
SunAhong1993 已提交
386
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
387
                kernel="paddle.transpose",
J
jiangjiajun 已提交
388 389 390
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
391 392

    def Conv2D(self, node):
J
jiangjiajun 已提交
393 394
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
395

J
jiangjiajun 已提交
396 397 398 399 400
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
401 402 403 404
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
405

J
jiangjiajun 已提交
406 407 408 409
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
S
SunAhong1993 已提交
410
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
J
jiangjiajun 已提交
411 412 413 414 415
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
416
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
S
SunAhong1993 已提交
417 418 419 420 421 422 423 424 425
                                                          (3, 2, 0, 1))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
        
J
jiangjiajun 已提交
426 427
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
428 429
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
430
            transpose_name = gen_name("conv2d", "transpose")
S
SunAhong1993 已提交
431
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
432
                kernel="paddle.transpose",
J
jiangjiajun 已提交
433 434 435 436 437 438 439
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
S
SunAhong1993 已提交
440
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
441
                kernel="paddle.reshape",
J
jiangjiajun 已提交
442 443 444 445
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

S
SunAhong1993 已提交
446
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
447 448
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name, "weight": kernel_weight_name},
J
jiangjiajun 已提交
449
            outputs=[node.name],
S
SunAhong1993 已提交
450
            bias=None,
J
jiangjiajun 已提交
451 452 453 454 455
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
456
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
457
                kernel="paddle.transpose",
J
jiangjiajun 已提交
458 459 460
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            
    def Conv3D(self, node):
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
486 487 488 489 490 491 492 493 494
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
S
SunAhong1993 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        
        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])        
            
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv3d",
S
SunAhong1993 已提交
518
            inputs={"x": input_name,  "weight": kernel_weight_name},
S
SunAhong1993 已提交
519 520 521 522 523 524 525 526 527 528 529 530
            outputs=[node.name],
            bias=None,
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
J
jiangjiajun 已提交
531

J
jiangjiajun 已提交
532
    def BiasAdd(self, node):
J
jiangjiajun 已提交
533 534
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
S
SunAhong1993 已提交
535
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
536
            kernel="paddle.add",
J
jiangjiajun 已提交
537 538 539
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
540 541

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
542 543 544 545 546
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
547
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
548 549 550 551 552

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
553 554 555 556

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
S
SunAhong1993 已提交
557
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
558
                kernel="paddle.transpose",
J
jiangjiajun 已提交
559 560 561 562 563
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
564
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
565 566 567 568 569 570
            kernel="paddle.nn.functional.batch_norm",
            inputs={"x": input_name,
                    "running_mean": moving_mean.name,
                    "running_var": moving_var.name,
                    "weight": gamma.name,
                    "bias": beta.name},
J
jiangjiajun 已提交
571
            outputs=[node.name],
S
SunAhong1993 已提交
572
            epsilon=node.get_attr("epsilon"))
J
jiangjiajun 已提交
573 574

        if data_format == "NHWC":
S
SunAhong1993 已提交
575
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
576
                kernel="paddle.transpose",
J
jiangjiajun 已提交
577 578 579
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
580 581 582
            
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
J
jiangjiajun 已提交
583 584 585 586 587 588 589 590

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

S
SunAhong1993 已提交
591
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
592 593
            kernel="paddle.mean",
            inputs={"x": input.name},
J
jiangjiajun 已提交
594
            outputs=[node.name],
S
SunAhong1993 已提交
595 596
            axis=dims,
            keepdim=keep_dims)
J
jiangjiajun 已提交
597 598

    def Reshape(self, node):
S
SunAhong1993 已提交
599 600
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
601 602 603 604 605

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
S
SunAhong1993 已提交
606
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
607
                kernel="paddle.reshape",
J
jiangjiajun 已提交
608 609 610 611
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
S
SunAhong1993 已提交
612
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
613
                kernel="paddle.reshape",
J
jiangjiajun 已提交
614 615 616 617 618 619 620
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
S
SunAhong1993 已提交
621
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
622
                    kernel="paddle.reshape",
J
jiangjiajun 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
S
SunAhong1993 已提交
637
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
638
                    kernel="paddle.transpose",
J
jiangjiajun 已提交
639 640 641
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
642
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
643 644
                    kernel="paddle.nn.functional.pad",
                    inputs={"x": transpose_name},
J
jiangjiajun 已提交
645
                    outputs=[node.name],
S
SunAhong1993 已提交
646
                    pad=new_padding)
S
SunAhong1993 已提交
647
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
648
                    kernel="paddle.transpose",
J
jiangjiajun 已提交
649 650 651 652 653
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
                return

S
SunAhong1993 已提交
654
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
655
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
656
            inputs={"x": input.name},
J
jiangjiajun 已提交
657
            outputs=[node.name],
S
SunAhong1993 已提交
658
            pad=paddings)
S
SunAhong1993 已提交
659 660 661 662 663
        
    def MirrorPad(self, node):
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
        assert paddings.layer_type == "Const", "Padding should be Const"
S
fix  
SunAhong1993 已提交
664
        new_paddings = numpy.flip(paddings.value, 0).flatten().tolist()
S
SunAhong1993 已提交
665 666 667 668 669 670 671
        transpose_name = gen_name("pad", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": input.name},
            outputs=[transpose_name],
            perm=[0, 3, 1, 2])
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
672
            kernel="paddle.nn.functional.pad".format(dim),
S
SunAhong1993 已提交
673
            inputs={"x": transpose_name},
S
SunAhong1993 已提交
674
            outputs=[node.name],
S
fix  
SunAhong1993 已提交
675
            pad=new_paddings)
S
SunAhong1993 已提交
676 677 678 679 680
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
681 682

    def Squeeze(self, node):
S
SunAhong1993 已提交
683
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
684
        squeeze_dims = node.get_attr('squeeze_dims')
S
SunAhong1993 已提交
685
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
686 687
            kernel="paddle.squeeze",
            inputs={"x": input.name},
J
jiangjiajun 已提交
688
            outputs=[node.name],
S
SunAhong1993 已提交
689
            axis=squeeze_dims)
J
jiangjiajun 已提交
690 691

    def Shape(self, node):
S
SunAhong1993 已提交
692
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
693
        input_name = input.name
S
SunAhong1993 已提交
694
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
695
            kernel="paddle.shape",
J
jiangjiajun 已提交
696 697 698
            inputs={"input": input_name},
            outputs=[node.name])

S
SunAhong1993 已提交
699 700 701 702
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
703
            kernel="paddle.shape",
S
SunAhong1993 已提交
704 705
            inputs={"input": input_name},
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
706 707 708 709
        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
S
SunAhong1993 已提交
710 711 712 713 714 715 716 717
        
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
            kernel="paddle.ceil",
            inputs={"x": input.name},
            outputs=[node.name])

J
jiangjiajun 已提交
718
    def ArgMax(self, node):
S
SunAhong1993 已提交
719 720
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
721 722
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
S
SunAhong1993 已提交
723
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
724
            kernel="paddle.argmax",
J
jiangjiajun 已提交
725 726 727
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740
        
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
J
jiangjiajun 已提交
741 742

    def MatMul(self, node):
S
SunAhong1993 已提交
743 744
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
745 746 747 748 749 750
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
S
SunAhong1993 已提交
751
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
752
            kernel="paddle.matmul",
J
jiangjiajun 已提交
753 754 755 756 757 758 759 760 761 762 763
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
764

J
jiangjiajun 已提交
765
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
766 767
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
768
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
769

J
jiangjiajun 已提交
770 771 772 773 774 775
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
776

S
SunAhong1993 已提交
777 778 779 780 781 782 783 784 785 786 787
        if len(kernel.outputs) == 1:
            self.params[kernel.name] = numpy.transpose(self.params[kernel.name],
                                                          (2, 3, 0, 1))
            layer = self.paddle_graph.layers[self.params_output2id[kernel.name]] 
            layer.attrs["shape"] = self.params[kernel.name].shape
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": kernel.name},
                outputs=[kernel.name],
                perm=[2, 3, 0, 1])
J
jiangjiajun 已提交
788

J
jiangjiajun 已提交
789 790
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
791 792 793
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
794
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
S
SunAhong1993 已提交
795
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
796
                kernel="paddle.transpose",
J
jiangjiajun 已提交
797 798 799 800 801
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
802
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
803 804 805
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name,
                    "weight": kernel.name},
J
jiangjiajun 已提交
806 807 808 809 810
            outputs=[node.name],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
S
SunAhong1993 已提交
811
            bias=None)
J
jiangjiajun 已提交
812 813

        if data_format == "NHWC":
S
SunAhong1993 已提交
814
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
815
                kernel="paddle.transpose",
J
jiangjiajun 已提交
816 817 818
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
819 820

    def AvgPool(self, node):
S
SunAhong1993 已提交
821
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
822

J
jiangjiajun 已提交
823 824 825 826 827
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
828 829 830
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
S
SunAhong1993 已提交
831
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
832
                kernel="paddle.transpose",
J
jiangjiajun 已提交
833 834 835
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
836
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
837
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
838
            input_name = transpose_name
S
SunAhong1993 已提交
839 840
        
        # TODO(syf): The op has diff.
J
jiangjiajun 已提交
841

S
SunAhong1993 已提交
842
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
843 844
            kernel="paddle.nn.functional.avg_pool2d",
            inputs={"x": input_name},
J
jiangjiajun 已提交
845
            outputs=[node.name],
S
SunAhong1993 已提交
846 847 848
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
J
jiangjiajun 已提交
849 850

        if data_format == "NHWC":
S
SunAhong1993 已提交
851
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
852
                kernel="paddle.transpose",
J
jiangjiajun 已提交
853 854 855
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
856 857

    def Pack(self, node):
S
SunAhong1993 已提交
858 859 860 861
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
J
jiangjiajun 已提交
862
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
863
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
864
            kernel="paddle.stack",
J
jiangjiajun 已提交
865 866 867 868
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
S
SunAhong1993 已提交
869
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
870
                kernel="paddle.reshape",
J
jiangjiajun 已提交
871 872 873 874 875
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
876
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
877 878 879 880 881 882
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
S
SunAhong1993 已提交
883
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
884 885
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
J
jiangjiajun 已提交
886
                    outputs=[node.name],
S
SunAhong1993 已提交
887
                    axis=[0])
J
jiangjiajun 已提交
888 889 890 891
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
SunAhong1993 已提交
892 893 894
        layer_outputs = ["{}_p{}".format(node.layer_name, i) for i in range(num)]
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
895
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
896
            kernel="paddle.unstack",
J
jiangjiajun 已提交
897
            inputs={"x": input_name},
S
SunAhong1993 已提交
898
            outputs=layer_outputs,
J
jiangjiajun 已提交
899 900
            axis=axis,
            num=num)
J
jiangjiajun 已提交
901

J
jiangjiajun 已提交
902
    def ConcatV2(self, node):
S
SunAhong1993 已提交
903 904 905 906
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
J
jiangjiajun 已提交
907 908 909
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
SunAhong1993 已提交
910
            axis += len(inputs_list[0].out_shapes[0])
J
jiangjiajun 已提交
911

S
SunAhong1993 已提交
912
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
913
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
            
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
J
jiangjiajun 已提交
933 934
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
935 936 937 938 939 940 941 942 943 944 945
            
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
J
jiangjiajun 已提交
946

J
jiangjiajun 已提交
947
    def StridedSlice(self, node):
S
SunAhong1993 已提交
948 949 950 951
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
952

J
jiangjiajun 已提交
953 954
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
955
        else:
S
SunAhong1993 已提交
956
            strides = self.decoder.infer_tensor(strides)
J
jiangjiajun 已提交
957 958
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
959
        else:
S
SunAhong1993 已提交
960
            begin = self.decoder.infer_tensor(begin)
J
jiangjiajun 已提交
961 962
        if end.layer_type == "Const":
            end = end.value.tolist()
963
        else:
S
SunAhong1993 已提交
964
            end = self.decoder.infer_tensor(end)
965

J
jiangjiajun 已提交
966 967
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
968

J
jiangjiajun 已提交
969 970 971 972
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
973 974 975 976
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
977 978 979 980
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
981
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
SunAhong1993 已提交
1013 1014 1015 1016 1017 1018 1019
            
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
J
jiangjiajun 已提交
1020

S
SunAhong1993 已提交
1021
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1022
            kernel="paddle.slice",
J
jiangjiajun 已提交
1023 1024 1025 1026 1027
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
SunAhong1993 已提交
1028 1029 1030 1031 1032 1033 1034 1035
        
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

J
jiangjiajun 已提交
1036
        if len(new_axes) > 0:
S
SunAhong1993 已提交
1037
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1038 1039
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
J
jiangjiajun 已提交
1040
                outputs=[node.name],
S
SunAhong1993 已提交
1041
                axis=new_axes)
J
jiangjiajun 已提交
1042 1043 1044 1045
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
S
SunAhong1993 已提交
1046
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1047 1048
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
J
jiangjiajun 已提交
1049
                    outputs=[node.name],
S
SunAhong1993 已提交
1050
                    axis=shrink_axes)
S
SunAhong1993 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
J
jiangjiajun 已提交
1065 1066

    def Split(self, node):
S
SunAhong1993 已提交
1067 1068
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1069 1070 1071 1072
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

S
SunAhong1993 已提交
1073
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1074 1075
            kernel="paddle.split",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1076 1077 1078 1079
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1080
            axis=dim)
1081 1082

    def Slice(self, node):
S
SunAhong1993 已提交
1083 1084 1085
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1086 1087 1088

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
1089 1090
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
1091
            attrs['offsets'] = begin
J
jiangjiajun 已提交
1092
        else:
J
jiangjiajun 已提交
1093 1094
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1095
            #             self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1096 1097 1098 1099 1100
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
S
SunAhong1993 已提交
1101
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
J
jiangjiajun 已提交
1102 1103
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
1104
            size = size.value.tolist()
J
jiangjiajun 已提交
1105 1106 1107 1108
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1109
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1110
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1111 1112 1113 1114
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
S
SunAhong1993 已提交
1115
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1116
            kernel="paddle.crop",
J
jiangjiajun 已提交
1117 1118 1119 1120 1121
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1122 1123
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1124
        data_format = "NHWC"
S
SunAhong1993 已提交
1125 1126 1127 1128
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("nearest"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1129 1130 1131

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1132
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1133
        else:
J
jiangjiajun 已提交
1134 1135
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1136
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1137
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1138 1139 1140
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1141
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1142 1143 1144

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1145
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1146
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1147 1148 1149
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1150
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1151

S
SunAhong1993 已提交
1152
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1153
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1154 1155 1156 1157 1158
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1159
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1160
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1161 1162 1163
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1164

J
jiangjiajun 已提交
1165
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1166 1167
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1168
        data_format = "NHWC"
S
SunAhong1993 已提交
1169 1170 1171 1172
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("bilinear"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1173

J
jiangjiajun 已提交
1174 1175
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1176
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1177 1178 1179
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1180
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1181
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1182 1183 1184
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1185
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1186 1187 1188

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1189
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1190
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1191 1192 1193
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1194
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1195

S
SunAhong1993 已提交
1196
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1197
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1198 1199 1200 1201 1202
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1203
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1204
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1205 1206 1207 1208 1209
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1210
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1211
        dtype = node.dtype
S
SunAhong1993 已提交
1212
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1213
            kernel="paddle.cast",
J
jiangjiajun 已提交
1214 1215 1216 1217 1218
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1219 1220
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1221 1222 1223 1224
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

S
SunAhong1993 已提交
1225
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1226 1227
            kernel="paddle.sum",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1228
            outputs=[node.name],
S
SunAhong1993 已提交
1229 1230
            axis=dim,
            keepdim=keep_dims)
J
jiangjiajun 已提交
1231 1232

    def Max(self, node):
S
SunAhong1993 已提交
1233 1234
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1235 1236 1237
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
S
SunAhong1993 已提交
1238
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1239 1240
            kernel="paddle.max",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1241
            outputs=[node.name],
S
SunAhong1993 已提交
1242 1243
            axis=dim,
            keepdim=keep_dims)
1244

J
jiangjiajun 已提交
1245
    def RandomUniform(self, node):
S
SunAhong1993 已提交
1246
        shape = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1247 1248
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
S
SunAhong1993 已提交
1249
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1250
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1251 1252 1253 1254 1255 1256
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
S
SunAhong1993 已提交
1257
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1258
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1259 1260 1261 1262
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1263 1264

    def Conv2DBackpropInput(self, node):
S
SunAhong1993 已提交
1265 1266 1267
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
1268

1269
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1270

J
jiangjiajun 已提交
1271 1272 1273
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
SunAhong1993 已提交
1274 1275
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
J
jiangjiajun 已提交
1276

1277
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1278
        if in_shape.count(-1) > 2:
S
SunAhong1993 已提交
1279
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
1280
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1281
        if k_size.count(-1) > 2:
S
SunAhong1993 已提交
1282
            k_size = self.decoder.infer_tensor(kernel, use_diff_inputs=False).shape
J
jiangjiajun 已提交
1283

J
jiangjiajun 已提交
1284
        pad_mode = node.get_attr("padding").decode()
1285 1286 1287
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1288

S
SunAhong1993 已提交
1289 1290
        kernel_name = node.name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
1291 1292 1293

        input_name = input.name
        if data_format == "NHWC":
1294 1295 1296
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1297
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
S
SunAhong1993 已提交
1298
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1299
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1300 1301 1302 1303 1304
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1305
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            kernel="paddle.static.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            dtype=string(str(self.params[kernel_name].dtype)),
            shape=self.params[kernel_name].shape,
            name=string(kernel_name))
    
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
            inputs={"x": input_name,
                    "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_")},
J
jiangjiajun 已提交
1317
            outputs=[node.name],
S
SunAhong1993 已提交
1318
            bias=None,
J
jiangjiajun 已提交
1319 1320 1321 1322 1323 1324
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
S
SunAhong1993 已提交
1325
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1326
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1327 1328 1329
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1330

J
jiangjiajun 已提交
1331 1332
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
S
SunAhong1993 已提交
1333
        repeat_times = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
1334 1335
        inputs = {"x": input.name}
        attr = dict()
S
SunAhong1993 已提交
1336 1337 1338
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
J
jiangjiajun 已提交
1339
        else:
S
SunAhong1993 已提交
1340 1341
            inputs["repeat_times"] = repeat_times.name
            
S
SunAhong1993 已提交
1342
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1343
            kernel="paddle.tile",
J
jiangjiajun 已提交
1344 1345 1346
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1347 1348 1349 1350 1351 1352 1353
        
        if not isinstance(repeat_times, list) and repeat_times.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1354

J
jiangjiajun 已提交
1355 1356 1357 1358 1359 1360
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1361

C
channingss 已提交
1362 1363 1364
        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
J
jiangjiajun 已提交
1365 1366
        if start.layer_type == "Const":
            attr["start"] = start.value
1367
        else:
J
jiangjiajun 已提交
1368
            inputs["start"] = start.name
C
channingss 已提交
1369 1370
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
J
jiangjiajun 已提交
1371 1372
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1373
        else:
J
jiangjiajun 已提交
1374
            inputs["end"] = limit.name
C
channingss 已提交
1375 1376
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
J
jiangjiajun 已提交
1377 1378
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1379
        else:
J
jiangjiajun 已提交
1380
            inputs["step"] = delta.name
C
channingss 已提交
1381
        node.set_dtype(dtype)
J
jiangjiajun 已提交
1382 1383
        attr["dtype"] = string(node.dtype)

S
SunAhong1993 已提交
1384
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1385
            kernel="paddle.arange",
J
jiangjiajun 已提交
1386 1387 1388
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1389 1390 1391 1392 1393 1394 1395 1396
        if start.layer_type != "Const" or \
                limit.layer_type != "Const" or \
                delta.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1397 1398

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1399 1400
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1401 1402 1403
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1404
        # TODO(syf)
S
SunAhong1993 已提交
1405
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1406
            "paddle.subtract", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1407
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1408 1409 1410 1411

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1412
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1413
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1414
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1415 1416

    def OneHot(self, node):
S
SunAhong1993 已提交
1417 1418 1419 1420
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

S
SunAhong1993 已提交
1433
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1434 1435
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1436
            outputs=[node.name],
S
SunAhong1993 已提交
1437
            num_classes=depth.value)
J
jiangjiajun 已提交
1438 1439

    def Pow(self, node):
S
SunAhong1993 已提交
1440 1441
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1442 1443 1444
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
S
SunAhong1993 已提交
1445
            attr["y"] = factor.value.tolist()
J
jiangjiajun 已提交
1446
        else:
S
SunAhong1993 已提交
1447
            inputs["y"] = factor.name
S
SunAhong1993 已提交
1448
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1449
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)
J
jiangjiajun 已提交
1450 1451

    def All(self, node):
S
SunAhong1993 已提交
1452 1453
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1454 1455
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
S
SunAhong1993 已提交
1456 1457
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1458

J
jiangjiajun 已提交
1459 1460 1461
        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
S
SunAhong1993 已提交
1462
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1463
                "paddle.cast",
J
jiangjiajun 已提交
1464 1465 1466
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
S
SunAhong1993 已提交
1467
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1468 1469
            "paddle.all",
            inputs={"x": input_name},
J
jiangjiajun 已提交
1470 1471 1472 1473 1474 1475
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1476 1477 1478
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1479
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1480
        axis = axis.value
J
jiangjiajun 已提交
1481 1482 1483 1484
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
S
SunAhong1993 已提交
1485
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1486
                "paddle.reshape",
J
jiangjiajun 已提交
1487 1488 1489
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
S
SunAhong1993 已提交
1490
        inputs = {'x': embeddings.name, 'index': index_name}
S
SunAhong1993 已提交
1491
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1492
            "paddle.gather",
J
jiangjiajun 已提交
1493 1494
            inputs=inputs,
            outputs=[node.name],
S
SunAhong1993 已提交
1495
            axis=axis)
J
jiangjiajun 已提交
1496 1497
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1498
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1499
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1500 1501 1502
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
SunAhong1993 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511
            
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs=inputs,
            outputs=[node.name])
J
jiangjiajun 已提交
1512 1513

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1514 1515 1516
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
        inputs = {"x": x.name}
J
jiangjiajun 已提交
1517 1518 1519 1520 1521
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
S
SunAhong1993 已提交
1522
            attr['axis'] = dim
J
jiangjiajun 已提交
1523
        else:
S
SunAhong1993 已提交
1524
            inputs['axis'] = y.name
S
SunAhong1993 已提交
1525
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1526
            "paddle.unsqueeze",
J
jiangjiajun 已提交
1527 1528 1529
            inputs=inputs,
            outputs=[node.name],
            **attr)