tf_op_mapper.py 47.4 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
J
jiangjiajun 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph 
J
jiangjiajun 已提交
17
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19 20 21
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
22
import inspect
J
jiangjiajun 已提交
23
import numpy
J
jiangjiajun 已提交
24
import sys
25

J
jiangjiajun 已提交
26 27 28 29 30 31 32 33 34 35 36 37
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
38

J
jiangjiajun 已提交
39 40 41 42
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
43 44
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
45 46 47 48
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
49

J
jiangjiajun 已提交
50
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
51 52 53 54 55 56
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
57
        'Rsqrt': ['rsqrt'],
J
jiangjiajun 已提交
58
        'Sqrt': ['sqrt'],
59
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
60
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
61
        'Softplus': ['softplus'],
62 63
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
J
jiangjiajun 已提交
64 65 66 67
        }],
        'Floor': ['floor'],
        'Erf': ['erf'],
        'Square': ['square']
J
jiangjiajun 已提交
68 69 70
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun 已提交
71
        'AddV2': 'elementwise_add',
J
jiangjiajun 已提交
72 73 74
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
J
jiangjiajun 已提交
75 76 77
        'Minimum': 'elementwise_min',
        'LessEqual': 'less_equal',
        'GreaterEqual': 'greater_equal',
78 79
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
80 81
    }

J
jiangjiajun 已提交
82 83
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
84
        self.decoder = decoder
J
jiangjiajun 已提交
85
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
86 87
        self.params = dict()
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="static", source_type="tf")
88

J
jiangjiajun 已提交
89 90
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
91 92 93 94 95
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
96 97 98 99
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
100

S
SunAhong1993 已提交
101 102
        self.paddle_graph.inputs = self.graph.input_nodes
        self.paddle_graph.outputs = self.graph.output_nodes
J
jiangjiajun 已提交
103

J
jiangjiajun 已提交
104
        unsupported_ops = set()
J
jiangjiajun 已提交
105
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
106
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
107
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
108 109
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
110
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
111 112
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
113 114
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
115 116
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
117 118
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
119 120
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
121
                func = getattr(self, op)
J
jiangjiajun 已提交
122 123 124 125 126
                try:
                    func(node)
                except Exception as e:
                    unsupported_ops.add(op)
                    print("\n{}\n".format(traceback.format_exc()))
J
jiangjiajun 已提交
127
            else:
J
jiangjiajun 已提交
128 129
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
130 131
            print("\n========= {} OPs are not supported yet ===========".format(
                len(unsupported_ops)))
J
jiangjiajun 已提交
132
            for op in unsupported_ops:
J
jiangjiajun 已提交
133
                print("========== {} ============".format(op))
J
jiangjiajun 已提交
134
            sys.exit(-1)
J
jiangjiajun 已提交
135
        sys.stderr.write("\nDone!\n")
S
SunAhong1993 已提交
136 137
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
J
jiangjiajun 已提交
138

J
jiangjiajun 已提交
139 140 141
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
142
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
143 144 145 146 147 148
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
149

S
SunAhong1993 已提交
150
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
151 152 153 154
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
155 156 157 158

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
159 160
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
161 162
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
163
        layer_id = self.paddle_graph.add_layer(
J
jiangjiajun 已提交
164 165 166 167
            kernel="fluid.layers.{}".format(op_type),
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
168
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
169 170 171 172 173

    def NotEqual(self, node):
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])

S
SunAhong1993 已提交
174
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
175 176 177 178
            kernel="fluid.layers.not_equal",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
J
jiangjiajun 已提交
179

180 181
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
182 183
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
184
        dtype = node.dtype
S
SunAhong1993 已提交
185
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
186 187 188 189 190 191
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
192

J
jiangjiajun 已提交
193 194 195 196 197 198 199 200
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
201 202
            if value == float('inf'):
                value = "float('inf')"
S
SunAhong1993 已提交
203
            self.paddle_graph.add_layer(
C
channingss 已提交
204 205 206 207 208 209 210
                kernel="fluid.layers.fill_constant",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                value=value)
            return
J
jiangjiajun 已提交
211

S
SunAhong1993 已提交
212 213
        self.params[node.name] = node.value
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
214 215 216 217 218 219 220
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
J
jiangjiajun 已提交
221 222

    def Transpose(self, node):
J
jiangjiajun 已提交
223 224
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
225
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
226 227
        perm = perm.value.tolist()

S
SunAhong1993 已提交
228
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
242
        else:
J
jiangjiajun 已提交
243 244 245
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
        attr["value"] = input_value.value
J
jiangjiajun 已提交
246

S
SunAhong1993 已提交
247
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
248 249 250 251
            "fluid.layers.fill_constant",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
252

J
jiangjiajun 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
266
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
267 268 269 270 271 272 273 274
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
275
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
276 277 278 279 280 281
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
282
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
283 284 285 286 287 288
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
289
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
290 291 292 293 294
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

S
SunAhong1993 已提交
295
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
296 297 298 299 300 301
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
S
SunAhong1993 已提交
302
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
303 304 305 306 307 308 309
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
310

J
jiangjiajun 已提交
311 312 313 314 315
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
316 317 318
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
S
SunAhong1993 已提交
319
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
320 321 322 323
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
324
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
325
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
326 327
            input_name = transpose_name

S
SunAhong1993 已提交
328
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
329 330 331 332 333 334 335 336 337
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
338
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
339 340 341 342
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
343 344

    def Conv2D(self, node):
J
jiangjiajun 已提交
345 346
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
347

J
jiangjiajun 已提交
348 349 350 351 352
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
353 354 355 356
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
357

J
jiangjiajun 已提交
358 359 360 361 362 363 364 365 366 367
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
368
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
J
jiangjiajun 已提交
369
                                                                 (3, 2, 0, 1))
J
jiangjiajun 已提交
370

J
jiangjiajun 已提交
371 372
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
373 374
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
375
            transpose_name = gen_name("conv2d", "transpose")
S
SunAhong1993 已提交
376
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
377 378 379 380 381 382 383 384 385 386
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
S
SunAhong1993 已提交
387
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
388 389 390 391 392
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

S
SunAhong1993 已提交
393
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
394 395 396 397 398 399 400 401 402 403 404 405
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
406
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
407 408 409 410
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
411

J
jiangjiajun 已提交
412
    def BiasAdd(self, node):
J
jiangjiajun 已提交
413 414
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
S
SunAhong1993 已提交
415
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
416 417 418 419
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
420 421

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
422 423 424 425 426
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
427
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
428 429 430 431 432

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
433 434 435 436

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
S
SunAhong1993 已提交
437
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
438 439 440 441 442 443
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
444
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
445 446 447 448 449 450 451 452 453 454 455
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)

        if data_format == "NHWC":
S
SunAhong1993 已提交
456
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
457 458 459 460 461 462 463 464 465 466 467 468
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

S
SunAhong1993 已提交
469
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482
            kernel="fluid.layers.reduce_mean",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dims,
            keep_dim=keep_dims)

    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        param = self.graph.get_node(node.layer.input[1])

        input_name = input.name
        if input.dtype == 'bool':
            cast_name = gen_name('reshape', 'cast')
S
SunAhong1993 已提交
483
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
484 485 486 487 488 489 490 491
                kernel="fluid.layers.cast",
                inputs={"x": input_name},
                outputs=[cast_name],
                dtype="'int32'")
            input_name = cast_name

        if param.layer_type == "Const":
            shape = param.value.tolist()
S
SunAhong1993 已提交
492
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
493 494 495 496 497
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
S
SunAhong1993 已提交
498
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
499 500 501 502 503 504 505 506
                kernel="fluid.layers.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
S
SunAhong1993 已提交
507
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
508 509 510 511 512 513
                    kernel="fluid.layers.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

        if input.dtype == 'bool':
S
SunAhong1993 已提交
514
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
                kernel="fluid.layers.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype="'bool'")

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
S
SunAhong1993 已提交
530
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
531 532 533 534
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
535
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
536 537 538 539
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
S
SunAhong1993 已提交
540
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
541 542 543 544 545 546
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
                return

S
SunAhong1993 已提交
547
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
548 549 550 551 552 553 554 555
            kernel="fluid.layers.pad",
            inputs={"input": input.name},
            outputs=[node.name],
            paddings=paddings)

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
S
SunAhong1993 已提交
556
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
557 558 559 560 561 562 563 564
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
565
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
566 567 568 569 570 571 572 573 574 575
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        input_name = input.name
        if input.dtype == 'bool':
            cast_name = gen_name('shape', 'cast')
S
SunAhong1993 已提交
576
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
577 578 579 580 581
                kernel="fluid.layers.cast",
                inputs={"x": input.name},
                outputs=[cast_name],
                dtype="'int32'")
            input_name = cast_name
S
SunAhong1993 已提交
582
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
583 584 585 586 587 588 589 590 591
            kernel="fluid.layers.shape",
            inputs={"input": input_name},
            outputs=[node.name])

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
S
SunAhong1993 已提交
592
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
S
SunAhong1993 已提交
607
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
608 609 610 611 612 613 614 615 616 617 618 619
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
620

J
jiangjiajun 已提交
621
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
622 623
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
624
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
625

J
jiangjiajun 已提交
626 627 628 629 630 631
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
632

S
SunAhong1993 已提交
633
        self.params[kernel.layer_name.replace(
J
jiangjiajun 已提交
634
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
635

J
jiangjiajun 已提交
636 637
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
638 639 640
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
641
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
S
SunAhong1993 已提交
642
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
643 644 645 646 647 648
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
649
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)

        if data_format == "NHWC":
S
SunAhong1993 已提交
663
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
664 665 666 667
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
668 669

    def AvgPool(self, node):
J
jiangjiajun 已提交
670
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
671

J
jiangjiajun 已提交
672 673 674 675 676
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
677 678 679
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
S
SunAhong1993 已提交
680
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
681 682 683 684
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
685
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
686
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
687 688
            input_name = transpose_name

S
SunAhong1993 已提交
689
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
690 691 692 693 694 695 696 697 698
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
699
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
700 701 702 703
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
704 705

    def Pack(self, node):
J
jiangjiajun 已提交
706 707
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        input_names = [i.name for i in inputs]
J
jiangjiajun 已提交
708
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
709
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
710 711 712 713 714
            kernel="fluid.layers.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
S
SunAhong1993 已提交
715
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
S
SunAhong1993 已提交
729
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
730 731 732 733 734 735 736 737
                    kernel="fluid.layers.unsqueeze",
                    inputs={"input": input.name},
                    outputs=[node.name],
                    axes=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
SunAhong1993 已提交
738
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
739 740 741 742 743
            kernel="fluid.layers.unstack",
            inputs={"x": input_name},
            outputs=["{}_p{}".format(node.layer_name, i) for i in range(num)],
            axis=axis,
            num=num)
J
jiangjiajun 已提交
744

J
jiangjiajun 已提交
745 746 747 748 749 750 751 752 753 754
    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])

        input_names = [i.name for i in inputs]
        for i, ipt in enumerate(inputs):
J
jiangjiajun 已提交
755
            if ipt.dtype == 'bool':
J
jiangjiajun 已提交
756
                cast_name = gen_name('concat', 'cast')
S
SunAhong1993 已提交
757
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
758 759 760 761 762
                    kernel="fluid.layers.cast",
                    inputs={"x": ipt.name},
                    outputs=[cast_name],
                    dtype="'int32'")
                input_names[i] = cast_name
S
SunAhong1993 已提交
763
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
764 765 766 767 768
            kernel="fluid.layers.concat",
            inputs={"input": input_names},
            outputs=[node.name],
            axis=axis)
        if node.dtype == 'bool':
S
SunAhong1993 已提交
769
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
770 771 772 773
                kernel="fluid.layers.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype="'bool'")
J
jiangjiajun 已提交
774

J
jiangjiajun 已提交
775 776 777 778 779
    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
J
jiangjiajun 已提交
780

J
jiangjiajun 已提交
781 782
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
783
        else:
J
jiangjiajun 已提交
784 785 786
            strides = self.decoder.infer_shape_tensor(strides)
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
787
        else:
J
jiangjiajun 已提交
788 789 790
            begin = self.decoder.infer_shape_tensor(begin)
        if end.layer_type == "Const":
            end = end.value.tolist()
791
        else:
J
jiangjiajun 已提交
792
            end = self.decoder.infer_shape_tensor(end)
793

J
jiangjiajun 已提交
794 795
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
796

J
jiangjiajun 已提交
797 798 799 800
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
801 802 803 804
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
805 806 807 808
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
809
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

S
SunAhong1993 已提交
842
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
843 844 845 846 847 848 849
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
        if len(new_axes) > 0:
S
SunAhong1993 已提交
850
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
851 852 853 854 855 856 857 858
                kernel="fluid.layers.unsqueeze",
                inputs={"input": node.name},
                outputs=[node.name],
                axes=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
S
SunAhong1993 已提交
859
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
860 861 862 863 864 865 866 867 868 869 870 871
                    kernel="fluid.layers.squeeze",
                    inputs={"input": node.name},
                    outputs=[node.name],
                    axes=shrink_axes)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

S
SunAhong1993 已提交
872
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
873 874 875 876 877 878 879
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
880 881

    def Slice(self, node):
J
jiangjiajun 已提交
882 883 884 885 886 887
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
888 889
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
890
            attrs['offsets'] = begin
J
jiangjiajun 已提交
891
        else:
J
jiangjiajun 已提交
892 893
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
894
            #             self.paddle_graph.add_layer(
J
jiangjiajun 已提交
895 896 897 898 899
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
J
jiangjiajun 已提交
900
            begin = self.decoder.infer_tensor(begin).tolist()
J
jiangjiajun 已提交
901 902
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
903
            size = size.value.tolist()
J
jiangjiajun 已提交
904 905 906 907
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
908
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
909 910 911 912 913
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
S
SunAhong1993 已提交
914
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
J
jiangjiajun 已提交
930
        else:
J
jiangjiajun 已提交
931 932
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
933
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
934 935 936 937 938 939 940 941
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
942
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
943 944 945 946 947 948
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

S
SunAhong1993 已提交
949
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
950 951 952 953 954 955
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
956
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
957 958 959 960
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
961

J
jiangjiajun 已提交
962 963 964 965 966 967
    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
J
jiangjiajun 已提交
968

J
jiangjiajun 已提交
969 970 971 972 973 974
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
975
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
976 977 978 979 980 981 982 983
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
984
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
985 986 987 988 989 990
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

S
SunAhong1993 已提交
991
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
992 993 994 995 996 997
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
998
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
999 1000 1001 1002 1003 1004 1005 1006
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
S
SunAhong1993 已提交
1007
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

S
SunAhong1993 已提交
1020
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
S
SunAhong1993 已提交
1033
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1034 1035 1036 1037 1038
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
1039

J
jiangjiajun 已提交
1040 1041 1042 1043
    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0])
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
S
SunAhong1993 已提交
1044
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1045 1046 1047 1048 1049 1050 1051
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
S
SunAhong1993 已提交
1052
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1053 1054 1055 1056 1057
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1058 1059

    def Conv2DBackpropInput(self, node):
J
jiangjiajun 已提交
1060 1061 1062
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])
1063

1064
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1065

J
jiangjiajun 已提交
1066 1067 1068 1069 1070 1071
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

1072
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1073 1074
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
1075
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1076 1077 1078
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
1079
        pad_mode = node.get_attr("padding").decode()
1080 1081 1082
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1083

S
SunAhong1993 已提交
1084
        self.params[kernel.layer_name.replace(
J
jiangjiajun 已提交
1085 1086 1087 1088
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
1089 1090 1091
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1092
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
S
SunAhong1993 已提交
1093
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1094 1095 1096 1097 1098 1099
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1100
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
S
SunAhong1993 已提交
1114
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1115 1116 1117 1118
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1119

J
jiangjiajun 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
        expand_times = self.graph.get_node(node.layer.input[1])
        inputs = {"x": input.name}
        attr = dict()
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
            attr["expand_times"] = expand_times
        else:
            inputs["expand_times"] = expand_times.name
J
jiangjiajun 已提交
1130

S
SunAhong1993 已提交
1131
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1132 1133 1134 1135
            kernel="fluid.layers.expand",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
1136

J
jiangjiajun 已提交
1137 1138 1139 1140 1141 1142
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1143

C
channingss 已提交
1144 1145 1146
        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
J
jiangjiajun 已提交
1147 1148
        if start.layer_type == "Const":
            attr["start"] = start.value
1149
        else:
J
jiangjiajun 已提交
1150
            inputs["start"] = start.name
C
channingss 已提交
1151 1152
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
J
jiangjiajun 已提交
1153 1154
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1155
        else:
J
jiangjiajun 已提交
1156
            inputs["end"] = limit.name
C
channingss 已提交
1157 1158
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
J
jiangjiajun 已提交
1159 1160
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1161
        else:
J
jiangjiajun 已提交
1162
            inputs["step"] = delta.name
C
channingss 已提交
1163
        node.set_dtype(dtype)
J
jiangjiajun 已提交
1164 1165
        attr["dtype"] = string(node.dtype)

S
SunAhong1993 已提交
1166
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1167 1168 1169 1170
            kernel="fluid.layers.range",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
1171 1172

    def SquaredDifference(self, node):
J
jiangjiajun 已提交
1173 1174 1175 1176 1177
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1178
        layer_id = self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1179
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1180
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1181 1182 1183 1184

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1185
        layer_id = self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1186
            "fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1187
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

    def OneHot(self, node):
        input = self.graph.get_node(node.layer.input[0])
        depth = self.graph.get_node(node.layer.input[1])
        on_value = self.graph.get_node(node.layer.input[2])
        off_value = self.graph.get_node(node.layer.input[3])
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

S
SunAhong1993 已提交
1206
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
            "fluid.one_hot",
            inputs={"input": input.name},
            outputs=[node.name],
            depth=depth.value)

    def Pow(self, node):
        x = self.graph.get_node(node.layer.input[0])
        factor = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["factor"] = factor.value.tolist()
        else:
            inputs["factor"] = factor.name
S
SunAhong1993 已提交
1221
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
            "fluid.layers.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["dim"] = reduce_idx.value.tolist()
        attr["keep_dim"] = node.get_attr("keep_dims")

J
jiangjiajun 已提交
1232 1233 1234
        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
S
SunAhong1993 已提交
1235
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1236 1237 1238 1239
                "fluid.layers.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
S
SunAhong1993 已提交
1240
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1241
            "fluid.layers.reduce_all",
J
jiangjiajun 已提交
1242
            inputs={"input": input_name},
J
jiangjiajun 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
        embeddings = self.graph.get_node(node.layer.input[0])
        index = self.graph.get_node(node.layer.input[1])
        axis = self.graph.get_node(node.layer.input[2])
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
        axis = axis.value.tolist()
        assert axis == 0, "Only support axis=0 in GatherV2 OP"
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
S
SunAhong1993 已提交
1259
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1260 1261 1262 1263 1264
                "fluid.layers.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'input': embeddings.name, 'index': index_name}
S
SunAhong1993 已提交
1265
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1266 1267 1268 1269 1270 1271
            "fluid.layers.gather",
            inputs=inputs,
            outputs=[node.name],
            overwrite=False)
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1272
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1273 1274 1275 1276 1277 1278
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)

    def ExpandDims(self, node):
J
jiangjiajun 已提交
1279 1280
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289
        inputs = {"input": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axes'] = dim
        else:
            inputs['axes'] = y.name
S
SunAhong1993 已提交
1290
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1291 1292 1293 1294
            "fluid.layers.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)