tf_op_mapper.py 46.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19 20
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
21
import inspect
J
jiangjiajun 已提交
22
import numpy
J
jiangjiajun 已提交
23
import sys
24

J
jiangjiajun 已提交
25 26 27 28 29 30 31 32 33 34 35 36
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
37

J
jiangjiajun 已提交
38 39 40 41
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
42 43
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
44 45 46 47
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
48

J
jiangjiajun 已提交
49
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
50 51 52 53 54 55
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
56
        'Rsqrt': ['rsqrt'],
J
jiangjiajun 已提交
57
        'Sqrt': ['sqrt'],
58
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
59
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
60
        'Softplus': ['softplus'],
61 62
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
J
jiangjiajun 已提交
63 64 65 66
        }],
        'Floor': ['floor'],
        'Erf': ['erf'],
        'Square': ['square']
J
jiangjiajun 已提交
67 68 69
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun 已提交
70
        'AddV2': 'elementwise_add',
J
jiangjiajun 已提交
71 72 73
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
J
jiangjiajun 已提交
74 75 76
        'Minimum': 'elementwise_min',
        'LessEqual': 'less_equal',
        'GreaterEqual': 'greater_equal',
77 78
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
79 80
    }

J
jiangjiajun 已提交
81 82
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
83
        self.decoder = decoder
J
jiangjiajun 已提交
84 85
        self.graph = decoder.tf_graph
        self.weights = dict()
J
jiangjiajun 已提交
86
        self.omit_nodes = list()
J
jiangjiajun 已提交
87
        self.used_custom_layers = dict()
J
jiangjiajun 已提交
88
        program.clear()
89

J
jiangjiajun 已提交
90 91
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
92 93 94 95 96
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
97 98 99 100
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
101

J
jiangjiajun 已提交
102 103 104
        program.inputs = self.graph.input_nodes
        program.outputs = self.graph.output_nodes

J
jiangjiajun 已提交
105
        unsupported_ops = set()
J
jiangjiajun 已提交
106
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
107
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
108
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
109 110
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
111
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
112 113
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
114 115
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
116 117
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
118 119
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
120 121
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
122
                func = getattr(self, op)
J
jiangjiajun 已提交
123 124 125 126 127
                try:
                    func(node)
                except Exception as e:
                    unsupported_ops.add(op)
                    print("\n{}\n".format(traceback.format_exc()))
J
jiangjiajun 已提交
128
            else:
J
jiangjiajun 已提交
129 130
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
131 132
            print("\n========= {} OPs are not supported yet ===========".format(
                len(unsupported_ops)))
J
jiangjiajun 已提交
133
            for op in unsupported_ops:
J
jiangjiajun 已提交
134
                print("========== {} ============".format(op))
J
jiangjiajun 已提交
135
            sys.exit(-1)
J
jiangjiajun 已提交
136
        sys.stderr.write("\nDone!\n")
J
jiangjiajun 已提交
137

J
jiangjiajun 已提交
138 139 140
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
141
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
142 143 144 145 146 147
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
148 149 150 151 152 153

        program.add_layer(
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
154 155 156 157

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
158 159
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
160 161
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
J
jiangjiajun 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        layer_id = program.add_layer(
            kernel="fluid.layers.{}".format(op_type),
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
        program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}

    def NotEqual(self, node):
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])

        program.add_layer(
            kernel="fluid.layers.not_equal",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
J
jiangjiajun 已提交
178

179 180
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
181 182
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
183
        dtype = node.dtype
J
jiangjiajun 已提交
184 185 186 187 188 189 190
        program.add_layer(
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
191

J
jiangjiajun 已提交
192 193 194 195 196 197 198 199
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
200 201
            if value == float('inf'):
                value = "float('inf')"
C
channingss 已提交
202 203 204 205 206 207 208 209
            program.add_layer(
                kernel="fluid.layers.fill_constant",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                value=value)
            return
J
jiangjiajun 已提交
210

J
jiangjiajun 已提交
211 212 213 214 215 216 217 218 219
        program.parameters[node.name] = node.value
        program.add_layer(
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
J
jiangjiajun 已提交
220 221

    def Transpose(self, node):
J
jiangjiajun 已提交
222 223
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
224
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
225 226
        perm = perm.value.tolist()

J
jiangjiajun 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
241
        else:
J
jiangjiajun 已提交
242 243 244
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
        attr["value"] = input_value.value
J
jiangjiajun 已提交
245

J
jiangjiajun 已提交
246 247 248 249 250
        program.add_layer(
            "fluid.layers.fill_constant",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
251

J
jiangjiajun 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        program.add_layer(
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
309

J
jiangjiajun 已提交
310 311 312 313 314
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
315 316 317 318 319 320 321 322
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
323
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
324
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
342 343

    def Conv2D(self, node):
J
jiangjiajun 已提交
344 345
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
346

J
jiangjiajun 已提交
347 348 349 350 351
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
352 353 354 355
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
356

J
jiangjiajun 已提交
357 358 359 360 361 362 363 364 365 366 367 368
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
        program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
                                                                 (3, 2, 0, 1))
J
jiangjiajun 已提交
369

J
jiangjiajun 已提交
370 371
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
372 373
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
            transpose_name = gen_name("conv2d", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
410

J
jiangjiajun 已提交
411
    def BiasAdd(self, node):
J
jiangjiajun 已提交
412 413 414 415 416 417 418
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
419 420

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
421 422 423 424 425
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
426
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
427 428 429 430 431

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        program.add_layer(
            kernel="fluid.layers.reduce_mean",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dims,
            keep_dim=keep_dims)

    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        param = self.graph.get_node(node.layer.input[1])

        input_name = input.name
        if input.dtype == 'bool':
            cast_name = gen_name('reshape', 'cast')
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": input_name},
                outputs=[cast_name],
                dtype="'int32'")
            input_name = cast_name

        if param.layer_type == "Const":
            shape = param.value.tolist()
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
                program.add_layer(
                    kernel="fluid.layers.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

        if input.dtype == 'bool':
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype="'bool'")

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
                program.add_layer(
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
                return

        program.add_layer(
            kernel="fluid.layers.pad",
            inputs={"input": input.name},
            outputs=[node.name],
            paddings=paddings)

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
        program.add_layer(
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        input_name = input.name
        if input.dtype == 'bool':
            cast_name = gen_name('shape', 'cast')
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": input.name},
                outputs=[cast_name],
                dtype="'int32'")
            input_name = cast_name
        program.add_layer(
            kernel="fluid.layers.shape",
            inputs={"input": input_name},
            outputs=[node.name])

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        program.add_layer(
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
        program.add_layer(
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
619

J
jiangjiajun 已提交
620
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
621 622
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
623
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
624

J
jiangjiajun 已提交
625 626 627 628 629 630
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
631

J
jiangjiajun 已提交
632 633
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
634

J
jiangjiajun 已提交
635 636
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
637 638 639
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
667 668

    def AvgPool(self, node):
J
jiangjiajun 已提交
669
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
670

J
jiangjiajun 已提交
671 672 673 674 675
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
676 677 678 679 680 681 682 683
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
684
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
685
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
703 704

    def Pack(self, node):
J
jiangjiajun 已提交
705 706
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        input_names = [i.name for i in inputs]
J
jiangjiajun 已提交
707
        axis = node.get_attr("axis")
J
jiangjiajun 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        program.add_layer(
            kernel="fluid.layers.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
                program.add_layer(
                    kernel="fluid.layers.unsqueeze",
                    inputs={"input": input.name},
                    outputs=[node.name],
                    axes=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
        program.add_layer(
            kernel="fluid.layers.unstack",
            inputs={"x": input_name},
            outputs=["{}_p{}".format(node.layer_name, i) for i in range(num)],
            axis=axis,
            num=num)
J
jiangjiajun 已提交
743

J
jiangjiajun 已提交
744 745 746 747 748 749 750 751 752 753
    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])

        input_names = [i.name for i in inputs]
        for i, ipt in enumerate(inputs):
J
jiangjiajun 已提交
754
            if ipt.dtype == 'bool':
J
jiangjiajun 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
                cast_name = gen_name('concat', 'cast')
                program.add_layer(
                    kernel="fluid.layers.cast",
                    inputs={"x": ipt.name},
                    outputs=[cast_name],
                    dtype="'int32'")
                input_names[i] = cast_name
        program.add_layer(
            kernel="fluid.layers.concat",
            inputs={"input": input_names},
            outputs=[node.name],
            axis=axis)
        if node.dtype == 'bool':
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype="'bool'")
J
jiangjiajun 已提交
773

J
jiangjiajun 已提交
774 775 776 777 778
    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
J
jiangjiajun 已提交
779

J
jiangjiajun 已提交
780 781
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
782
        else:
J
jiangjiajun 已提交
783 784 785
            strides = self.decoder.infer_shape_tensor(strides)
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
786
        else:
J
jiangjiajun 已提交
787 788 789
            begin = self.decoder.infer_shape_tensor(begin)
        if end.layer_type == "Const":
            end = end.value.tolist()
790
        else:
J
jiangjiajun 已提交
791
            end = self.decoder.infer_shape_tensor(end)
792

J
jiangjiajun 已提交
793 794
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
795

J
jiangjiajun 已提交
796 797 798 799
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
800 801 802 803
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
804 805 806 807
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
808
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

        program.add_layer(
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
        if len(new_axes) > 0:
            program.add_layer(
                kernel="fluid.layers.unsqueeze",
                inputs={"input": node.name},
                outputs=[node.name],
                axes=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                program.add_layer(
                    kernel="fluid.layers.squeeze",
                    inputs={"input": node.name},
                    outputs=[node.name],
                    axes=shrink_axes)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        program.add_layer(
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
879 880

    def Slice(self, node):
J
jiangjiajun 已提交
881 882 883 884 885 886
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
887 888
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
889
            attrs['offsets'] = begin
J
jiangjiajun 已提交
890
        else:
J
jiangjiajun 已提交
891 892 893 894 895 896 897 898
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
            #             program.add_layer(
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
J
jiangjiajun 已提交
899
            begin = self.decoder.infer_tensor(begin).tolist()
J
jiangjiajun 已提交
900 901
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
902
            size = size.value.tolist()
J
jiangjiajun 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        program.add_layer(
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
J
jiangjiajun 已提交
929
        else:
J
jiangjiajun 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
960

J
jiangjiajun 已提交
961 962 963 964 965 966
    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
J
jiangjiajun 已提交
967

J
jiangjiajun 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
        program.add_layer(
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        program.add_layer(
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
        program.add_layer(
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
1038

J
jiangjiajun 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0])
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1057 1058

    def Conv2DBackpropInput(self, node):
J
jiangjiajun 已提交
1059 1060 1061
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])
1062

1063
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1064

J
jiangjiajun 已提交
1065 1066 1067 1068 1069 1070
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

1071
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1072 1073
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
1074
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1075 1076 1077
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
1078
        pad_mode = node.get_attr("padding").decode()
1079 1080 1081
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1082

J
jiangjiajun 已提交
1083 1084 1085 1086 1087
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
1088 1089 1090
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1118

J
jiangjiajun 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
        expand_times = self.graph.get_node(node.layer.input[1])
        inputs = {"x": input.name}
        attr = dict()
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
            attr["expand_times"] = expand_times
        else:
            inputs["expand_times"] = expand_times.name
J
jiangjiajun 已提交
1129

J
jiangjiajun 已提交
1130 1131 1132 1133 1134
        program.add_layer(
            kernel="fluid.layers.expand",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
1135

J
jiangjiajun 已提交
1136 1137 1138 1139 1140 1141
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1142

C
channingss 已提交
1143 1144 1145
        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
J
jiangjiajun 已提交
1146 1147
        if start.layer_type == "Const":
            attr["start"] = start.value
1148
        else:
J
jiangjiajun 已提交
1149
            inputs["start"] = start.name
C
channingss 已提交
1150 1151
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
J
jiangjiajun 已提交
1152 1153
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1154
        else:
J
jiangjiajun 已提交
1155
            inputs["end"] = limit.name
C
channingss 已提交
1156 1157
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
J
jiangjiajun 已提交
1158 1159
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1160
        else:
J
jiangjiajun 已提交
1161
            inputs["step"] = delta.name
C
channingss 已提交
1162
        node.set_dtype(dtype)
J
jiangjiajun 已提交
1163 1164 1165 1166 1167 1168 1169
        attr["dtype"] = string(node.dtype)

        program.add_layer(
            kernel="fluid.layers.range",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
1170 1171

    def SquaredDifference(self, node):
J
jiangjiajun 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
        layer_id = program.add_layer(
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
        program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
        layer_id = program.add_layer(
            "fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name])
        program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}

    def OneHot(self, node):
        input = self.graph.get_node(node.layer.input[0])
        depth = self.graph.get_node(node.layer.input[1])
        on_value = self.graph.get_node(node.layer.input[2])
        off_value = self.graph.get_node(node.layer.input[3])
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        program.add_layer(
            "fluid.one_hot",
            inputs={"input": input.name},
            outputs=[node.name],
            depth=depth.value)

    def Pow(self, node):
        x = self.graph.get_node(node.layer.input[0])
        factor = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["factor"] = factor.value.tolist()
        else:
            inputs["factor"] = factor.name
        program.add_layer(
            "fluid.layers.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["dim"] = reduce_idx.value.tolist()
        attr["keep_dim"] = node.get_attr("keep_dims")

J
jiangjiajun 已提交
1231 1232 1233 1234 1235 1236 1237 1238
        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
            program.add_layer(
                "fluid.layers.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
J
jiangjiajun 已提交
1239 1240
        program.add_layer(
            "fluid.layers.reduce_all",
J
jiangjiajun 已提交
1241
            inputs={"input": input_name},
J
jiangjiajun 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
        embeddings = self.graph.get_node(node.layer.input[0])
        index = self.graph.get_node(node.layer.input[1])
        axis = self.graph.get_node(node.layer.input[2])
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
        axis = axis.value.tolist()
        assert axis == 0, "Only support axis=0 in GatherV2 OP"
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            program.add_layer(
                "fluid.layers.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'input': embeddings.name, 'index': index_name}
        program.add_layer(
            "fluid.layers.gather",
            inputs=inputs,
            outputs=[node.name],
            overwrite=False)
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)

    def ExpandDims(self, node):
J
jiangjiajun 已提交
1278 1279
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        inputs = {"input": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axes'] = dim
        else:
            inputs['axes'] = y.name
        program.add_layer(
            "fluid.layers.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)