Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
ba689267
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ba689267
编写于
12月 04, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add tf ops
上级
18cc4a40
变更
2
展开全部
隐藏空白更改
内联
并排
Showing
2 changed file
with
520 addition
and
108 deletion
+520
-108
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
+196
-21
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
+324
-87
未找到文件。
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
浏览文件 @
ba689267
...
...
@@ -69,13 +69,19 @@ class TFOpMapper(OpMapper):
'Add'
:
'paddle.add'
,
'AddV2'
:
'paddle.add'
,
'RealDiv'
:
'paddle.divide'
,
'DivNoNan'
:
'paddle.divide'
,
'Sub'
:
'fluid.layers.elementwise_sub'
,
'Maximum'
:
'paddle.maximum'
,
'Minimum'
:
'paddle.minimum'
,
'LessEqual'
:
'paddle.less_equal'
,
'GreaterEqual'
:
'paddle.greater_equal'
,
'Greater'
:
'paddle.greater_than'
,
'NotEqual'
:
'paddle.not_equal'
,
'Equal'
:
'paddle.equal'
,
'Mul'
:
'paddle.multiply'
,
'FloorDiv'
:
'paddle.floor_divide'
'FloorDiv'
:
'paddle.floor_divide'
,
'FloorMod'
:
'paddle.floor_mod'
,
'LogicalAnd'
:
'logical_and'
,
}
def
__init__
(
self
,
decoder
):
...
...
@@ -185,16 +191,6 @@ class TFOpMapper(OpMapper):
outputs
=
[
node
.
name
])
self
.
paddle_graph
.
layers
[
layer_id
].
input_shapes
=
{
"x"
:
x_shape
,
"y"
:
y_shape
}
def
NotEqual
(
self
,
node
):
x
=
self
.
graph
.
get_input_node
(
node
,
0
)
y
=
self
.
graph
.
get_input_node
(
node
,
1
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.not_equal"
,
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
},
outputs
=
[
node
.
name
])
def
Placeholder
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
assert
len
(
shape
)
!=
0
,
"Unknown shape of input nodes[{}]."
.
format
(
...
...
@@ -249,6 +245,24 @@ class TFOpMapper(OpMapper):
outputs
=
[
node
.
name
],
perm
=
perm
)
def
Where
(
self
,
node
):
if
len
(
node
.
layer
.
input
)
==
1
:
cond
=
self
.
graph
.
get_input_node
(
node
,
0
)
self
.
paddle_graph
.
add_layer
(
"paddle.nonzero"
,
inputs
=
{
"x"
:
cond
.
name
},
outputs
=
[
node
.
name
])
else
:
cond
=
self
.
graph
.
get_input_node
(
node
,
0
)
x
=
self
.
graph
.
get_input_node
(
node
,
1
)
y
=
self
.
graph
.
get_input_node
(
node
,
2
)
self
.
paddle_graph
.
add_layer
(
"paddle.where"
,
inputs
=
{
"condition"
:
cond
.
name
,
"x"
:
x
.
name
,
"y"
:
y
.
name
},
outputs
=
[
node
.
name
])
def
Neg
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
...
...
@@ -437,6 +451,71 @@ class TFOpMapper(OpMapper):
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Conv3D
(
self
,
node
):
op_name
=
name_generator
(
"conv"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
kernel
=
self
.
graph
.
get_input_node
(
node
,
1
)
k_size
=
kernel
.
out_shapes
[
0
]
strides
=
node
.
get_attr
(
"strides"
)
dilations
=
node
.
get_attr
(
"dilations"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
if
data_format
==
"NDHWC"
:
n
,
d
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
d
,
h
,
w
=
input
.
out_shapes
[
0
]
if
kernel
.
layer_type
==
'Const'
:
kernel_value
=
kernel
.
value
else
:
kernel_value
=
self
.
decoder
.
infer_tensor
(
kernel
,
use_diff_inputs
=
False
)
kernel_weight_name
=
op_name
+
".weight"
self
.
params
[
kernel_weight_name
]
=
numpy
.
transpose
(
kernel_value
,
(
4
,
3
,
0
,
1
,
2
))
input_name
=
input
.
name
if
data_format
==
"NDHWC"
:
strides
=
[
strides
[
i
]
for
i
in
[
0
,
4
,
1
,
2
,
3
]]
dilations
=
[
dilations
[
i
]
for
i
in
[
0
,
4
,
1
,
2
,
3
]]
transpose_name
=
gen_name
(
"conv3d"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
4
,
1
,
2
,
3
])
input_name
=
transpose_name
if
c
==
-
1
:
attr
=
{
"shape"
:
[
0
,
k_size
[
2
],
0
,
0
,
0
]}
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
input_name
],
shape
=
[
0
,
k_size
[
2
],
0
,
0
,
0
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.Conv3D"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
layer_outputs
,
weight_attr
=
string
(
kernel_weight_name
),
bias_attr
=
False
,
in_channels
=
k_size
[
3
],
out_channels
=
k_size
[
4
],
kernel_size
=
k_size
[
0
:
3
],
stride
=
strides
[
2
:
5
],
dilation
=
dilations
[
2
:
5
],
padding
=
string
(
pad_mode
))
if
data_format
==
"NDHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
4
,
1
])
def
BiasAdd
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
...
...
@@ -575,6 +654,33 @@ class TFOpMapper(OpMapper):
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
pad
=
paddings
)
def
MirrorPad
(
self
,
node
):
op_name
=
name_generator
(
"pad"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
paddings
=
self
.
graph
.
get_input_node
(
node
,
1
)
assert
paddings
.
layer_type
==
"Const"
,
"Padding should be Const"
paddings
=
np
.
flip
(
paddings
.
value
,
0
).
flatten
().
tolist
()
dim
=
int
(
len
(
paddings
)
/
2
)
transpose_name
=
gen_name
(
"pad"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.Pad{}D"
.
format
(
dim
),
inputs
=
{
"x"
:
transpose_name
},
outputs
=
layer_outputs
,
pad
=
new_padding
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Squeeze
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
...
...
@@ -592,6 +698,25 @@ class TFOpMapper(OpMapper):
kernel
=
"paddle.shape"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
[
node
.
name
])
def
Size
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
input_name
=
input
.
name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.shape"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
[
node
.
name
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.prod"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
])
def
Ceil
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.ceil"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
])
def
ArgMax
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
...
...
@@ -603,6 +728,19 @@ class TFOpMapper(OpMapper):
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
axis
=
axis
)
def
TopKV2
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
k
=
self
.
graph
.
get_input_node
(
node
,
1
)
assert
k
.
layer_type
==
"Const"
,
"ArgMax only support Const parameter"
k
=
k
.
value
sort
=
node
.
get_attr
(
'sorted'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.topk"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
k
=
k
,
sorted
=
sort
)
def
MatMul
(
self
,
node
):
x
=
self
.
graph
.
get_input_node
(
node
,
0
)
...
...
@@ -765,10 +903,13 @@ class TFOpMapper(OpMapper):
axis
=
1
else
:
raise
Exception
(
"Unexpected situation happend in Unpack OP"
)
layer_outputs
=
[
"{}_p{}"
.
format
(
node
.
layer_name
,
i
)
for
i
in
range
(
num
)]
if
len
(
layer_outputs
)
==
1
:
layer_outputs
[
0
]
=
"[{}]"
.
format
(
node
.
layer_name
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.unstack"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
"{}_p{}"
.
format
(
node
.
layer_name
,
i
)
for
i
in
range
(
num
)]
,
outputs
=
layer_outputs
,
axis
=
axis
,
num
=
num
)
...
...
@@ -776,7 +917,6 @@ class TFOpMapper(OpMapper):
inputs_list
=
list
()
for
i
in
range
(
len
(
node
.
inputs
)
-
1
):
inputs_list
.
append
(
self
.
graph
.
get_input_node
(
node
,
i
))
# inputs_list = [self.graph.get_node(name) for name in node.layer.input[:-1]]
axis
=
self
.
graph
.
get_input_node
(
node
,
-
1
)
assert
axis
.
layer_type
==
"Const"
,
"axis for ConcatV2 must be type Const"
axis
=
axis
.
value
...
...
@@ -789,6 +929,17 @@ class TFOpMapper(OpMapper):
inputs
=
{
"x"
:
input_names
},
outputs
=
[
node
.
name
],
axis
=
axis
)
def
AddN
(
self
,
node
):
inputs_list
=
list
()
for
i
in
range
(
len
(
node
.
inputs
)
-
1
):
inputs_list
.
append
(
self
.
graph
.
get_input_node
(
node
,
i
))
input_names
=
[
i
.
name
for
i
in
inputs_list
]
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.add_n"
,
inputs
=
{
"inputs"
:
input_names
},
outputs
=
[
node
.
name
])
def
StridedSlice
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
...
...
@@ -894,6 +1045,20 @@ class TFOpMapper(OpMapper):
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
axis
=
shrink_axes
)
def
Prod
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
reduction_indices
=
self
.
graph
.
get_input_node
(
node
,
1
)
assert
reduction_indices
.
layer_type
==
"Const"
keep_dims
=
node
.
get_attr
(
'keep_dims'
)
axis
=
reduction_indices
.
value
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.prod"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
layer_name
],
keepdim
=
keep_dims
,
axis
=
axis
)
def
Split
(
self
,
node
):
dim
=
self
.
graph
.
get_input_node
(
node
,
0
)
...
...
@@ -1177,15 +1342,15 @@ class TFOpMapper(OpMapper):
def
Tile
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
expand
_times
=
self
.
graph
.
get_input_node
(
node
,
1
)
repeat
_times
=
self
.
graph
.
get_input_node
(
node
,
1
)
inputs
=
{
"x"
:
input
.
name
}
attr
=
dict
()
in_shape
=
input
.
out_shapes
[
0
]
if
expand
_times
.
layer_type
==
"Const"
:
expand_times
=
expand
_times
.
value
.
tolist
()
attr
[
"repeat_times"
]
=
expand
_times
if
repeat
_times
.
layer_type
==
"Const"
:
repeat_times
=
repeat
_times
.
value
.
tolist
()
attr
[
"repeat_times"
]
=
repeat
_times
else
:
inputs
[
"repeat_times"
]
=
expand
_times
.
name
inputs
[
"repeat_times"
]
=
repeat
_times
.
name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.tile"
,
...
...
@@ -1206,6 +1371,7 @@ class TFOpMapper(OpMapper):
if
start
.
layer_type
==
"Const"
:
attr
[
"start"
]
=
start
.
value
else
:
inputs
[
"start"
]
=
start
.
name
if
limit
.
dtype
.
startswith
(
'float'
):
dtype
=
limit
.
dtype
...
...
@@ -1309,8 +1475,7 @@ class TFOpMapper(OpMapper):
index
=
self
.
graph
.
get_input_node
(
node
,
1
)
axis
=
self
.
graph
.
get_input_node
(
node
,
2
)
assert
axis
.
layer_type
==
'Const'
,
"Only support Const parameter[axis]"
axis
=
axis
.
value
.
tolist
()
assert
axis
==
0
,
"Only support axis=0 in GatherV2 OP"
axis
=
axis
.
value
index_name
=
index
.
name
if
len
(
index
.
out_shapes
[
0
])
!=
1
:
reshape_name
=
gen_name
(
"gather"
,
"reshape"
)
...
...
@@ -1324,7 +1489,8 @@ class TFOpMapper(OpMapper):
self
.
paddle_graph
.
add_layer
(
"paddle.gather"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
outputs
=
[
node
.
name
],
axis
=
axis
)
if
len
(
index
.
out_shapes
[
0
])
!=
1
:
out_shape
=
node
.
out_shapes
[
0
]
self
.
paddle_graph
.
add_layer
(
...
...
@@ -1332,6 +1498,15 @@ class TFOpMapper(OpMapper):
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
shape
=
out_shape
)
def
GatherNd
(
self
,
node
):
x
=
self
.
graph
.
get_input_node
(
node
,
0
)
index
=
self
.
graph
.
get_input_node
(
node
,
1
)
inputs
=
{
'x'
:
x
.
name
,
'index'
:
index
.
name
}
self
.
paddle_graph
.
add_layer
(
"paddle.gather_nd"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
def
ExpandDims
(
self
,
node
):
x
=
self
.
graph
.
get_input_node
(
node
,
0
,
copy
=
True
)
...
...
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
浏览文件 @
ba689267
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录