tf_op_mapper.py 55.4 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
J
jiangjiajun 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph 
J
jiangjiajun 已提交
17
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19 20 21
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
22
import inspect
J
jiangjiajun 已提交
23
import numpy
J
jiangjiajun 已提交
24
import sys
25

J
jiangjiajun 已提交
26 27 28 29 30 31 32 33 34 35 36 37
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
38

J
jiangjiajun 已提交
39 40 41 42
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
43 44
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
45 46 47 48
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
49

J
jiangjiajun 已提交
50
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
51
    directly_map_ops = {
S
SunAhong1993 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        'Relu': ['paddle.nn.functional.relu'],
        'Relu6': ['paddle.nn.functional.relu6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softmax': ['paddle.nn.functional.softmax'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.functional.swish'],
        'Tanh': ['paddle.tanh'],
        'Softplus': ['paddle.nn.functional.softplus'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                     dict(alpha='negative_slope')],
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
J
jiangjiajun 已提交
68 69
    }
    elementwise_ops = {
S
SunAhong1993 已提交
70 71 72 73
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
74
        # TODO (syf): replace
S
SunAhong1993 已提交
75 76 77
        'Sub': 'fluid.layers.elementwise_sub',
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
78 79 80 81 82 83
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
84 85 86 87 88
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
J
jiangjiajun 已提交
89 90
    }

J
jiangjiajun 已提交
91 92
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
93
        self.decoder = decoder
J
jiangjiajun 已提交
94
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
95 96
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
97 98
        self.params = dict()
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="static", source_type="tf")
99

J
jiangjiajun 已提交
100 101
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
102 103 104 105 106
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
107 108 109 110
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
111

S
SunAhong1993 已提交
112 113
        self.paddle_graph.inputs = self.graph.input_nodes
        self.paddle_graph.outputs = self.graph.output_nodes
J
jiangjiajun 已提交
114

S
SunAhong1993 已提交
115 116 117 118 119 120
        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
121
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
122
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
123 124
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
125 126 127 128
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
129 130
            elif op in self.bool_ops:
                self.bool_map(node)
J
jiangjiajun 已提交
131
            elif hasattr(self, op):
J
jiangjiajun 已提交
132
                func = getattr(self, op)
S
SunAhong1993 已提交
133 134 135 136 137 138 139 140 141 142 143 144
                func(node)
        print("\nNodes converted.")
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
145 146
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
J
jiangjiajun 已提交
147
                unsupported_ops.add(op)
S
SunAhong1993 已提交
148 149 150 151 152 153
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
154
            for op in unsupported_ops:
J
jiangjiajun 已提交
155
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
156
            return False
J
jiangjiajun 已提交
157

J
jiangjiajun 已提交
158 159 160
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
161
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
162 163 164 165 166 167
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
168

S
SunAhong1993 已提交
169
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
170
            kernel=op_info[0],
J
jiangjiajun 已提交
171 172 173
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
174

S
SunAhong1993 已提交
175 176 177 178
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
179 180
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
181 182
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
183
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
184
            kernel=op_type,
J
jiangjiajun 已提交
185 186 187
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
188
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
189 190 191 192 193
        
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
J
jiangjiajun 已提交
194

195 196
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
197 198
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
199
        dtype = node.dtype
S
SunAhong1993 已提交
200
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
201
            kernel="paddle.static.data",
J
jiangjiajun 已提交
202 203 204 205 206
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
207

J
jiangjiajun 已提交
208 209 210 211 212 213 214
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
215 216
            if value == float('inf'):
                value = "float('inf')"
S
SunAhong1993 已提交
217
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
218
                kernel="paddle.full",
C
channingss 已提交
219 220 221 222
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
S
SunAhong1993 已提交
223
                fill_value=value)
C
channingss 已提交
224
            return
J
jiangjiajun 已提交
225

S
SunAhong1993 已提交
226 227
        self.params[node.name] = node.value
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
228
            kernel="paddle.static.create_parameter",
J
jiangjiajun 已提交
229 230 231 232 233
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
S
SunAhong1993 已提交
234
            default_initializer="paddle.nn.initializer.Constant(value=0.0)")
J
jiangjiajun 已提交
235 236

    def Transpose(self, node):
J
jiangjiajun 已提交
237 238
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
239
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
240 241
        perm = perm.value.tolist()

S
SunAhong1993 已提交
242
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
243
            kernel="paddle.transpose",
J
jiangjiajun 已提交
244 245 246 247 248 249 250 251 252 253 254 255
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
256
        else:
J
jiangjiajun 已提交
257 258
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
259
        attr["fill_value"] = input_value.value
J
jiangjiajun 已提交
260

S
SunAhong1993 已提交
261
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
262
            "paddle.full",
J
jiangjiajun 已提交
263 264 265
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
266 267 268 269 270 271
        if dims.layer_type != "Const":
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
272

J
jiangjiajun 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
286
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
287
                kernel="paddle.transpose",
J
jiangjiajun 已提交
288 289 290 291 292 293 294
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
295
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
296
            kernel="paddle.reshape",
J
jiangjiajun 已提交
297 298 299 300 301
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
302
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
303
            kernel="paddle.transpose",
J
jiangjiajun 已提交
304 305 306 307 308
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
309
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
310
            kernel="paddle.reshape",
J
jiangjiajun 已提交
311 312 313 314
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

S
SunAhong1993 已提交
315
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
316 317 318 319 320 321
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
S
SunAhong1993 已提交
322
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
323
                kernel="paddle.transpose",
J
jiangjiajun 已提交
324 325 326
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
add beg  
SunAhong1993 已提交
327
            
S
SunAhong1993 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
                "paddle.nonzero",
                inputs={"x": cond.name},
                outputs=[node.name])
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
            
S
add beg  
SunAhong1993 已提交
346 347 348 349 350 351 352 353
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
        
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
J
jiangjiajun 已提交
354 355 356

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
357

J
jiangjiajun 已提交
358 359 360 361 362
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
363 364 365
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
S
SunAhong1993 已提交
366
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
367
                kernel="paddle.transpose",
J
jiangjiajun 已提交
368 369 370
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
371
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
372
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
373 374
            input_name = transpose_name

S
SunAhong1993 已提交
375
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
376 377
            kernel="paddle.nn.functional.max_pool2d",
            inputs={"x": input_name},
J
jiangjiajun 已提交
378
            outputs=[node.name],
S
SunAhong1993 已提交
379 380 381
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
J
jiangjiajun 已提交
382 383

        if data_format == "NHWC":
S
SunAhong1993 已提交
384
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
385
                kernel="paddle.transpose",
J
jiangjiajun 已提交
386 387 388
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
389 390

    def Conv2D(self, node):
J
jiangjiajun 已提交
391 392
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
393

J
jiangjiajun 已提交
394 395 396 397 398
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
399 400 401 402
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
403

J
jiangjiajun 已提交
404 405 406 407
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
S
SunAhong1993 已提交
408
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
J
jiangjiajun 已提交
409 410 411 412 413
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
414
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
S
SunAhong1993 已提交
415 416 417 418 419 420 421 422 423
                                                          (3, 2, 0, 1))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
        
J
jiangjiajun 已提交
424 425
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
426 427
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
428
            transpose_name = gen_name("conv2d", "transpose")
S
SunAhong1993 已提交
429
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
430
                kernel="paddle.transpose",
J
jiangjiajun 已提交
431 432 433 434 435 436 437 438 439
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
S
SunAhong1993 已提交
440
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
441
                kernel="paddle.reshape",
J
jiangjiajun 已提交
442 443 444 445
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

S
SunAhong1993 已提交
446
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
447 448
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name, "weight": kernel_weight_name},
J
jiangjiajun 已提交
449
            outputs=[node.name],
S
SunAhong1993 已提交
450
            bias=None,
J
jiangjiajun 已提交
451 452 453 454 455
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
456
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
457
                kernel="paddle.transpose",
J
jiangjiajun 已提交
458 459 460
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            
    def Conv3D(self, node):
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
486 487 488 489 490 491 492 493 494
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
S
SunAhong1993 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        
        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])        
            
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv3d",
S
SunAhong1993 已提交
518
            inputs={"x": input_name,  "weight": kernel_weight_name},
S
SunAhong1993 已提交
519 520 521 522 523 524 525 526 527 528 529 530
            outputs=[node.name],
            bias=None,
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
J
jiangjiajun 已提交
531

J
jiangjiajun 已提交
532
    def BiasAdd(self, node):
J
jiangjiajun 已提交
533 534
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
S
SunAhong1993 已提交
535
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
536
            kernel="paddle.add",
J
jiangjiajun 已提交
537 538 539
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
540 541

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
542 543 544 545 546
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
547
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
548 549 550 551 552

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
553 554 555 556

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
S
SunAhong1993 已提交
557
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
558
                kernel="paddle.transpose",
J
jiangjiajun 已提交
559 560 561 562 563
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
564
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
565 566 567 568 569 570
            kernel="paddle.nn.functional.batch_norm",
            inputs={"x": input_name,
                    "running_mean": moving_mean.name,
                    "running_var": moving_var.name,
                    "weight": gamma.name,
                    "bias": beta.name},
J
jiangjiajun 已提交
571
            outputs=[node.name],
S
SunAhong1993 已提交
572
            epsilon=node.get_attr("epsilon"))
J
jiangjiajun 已提交
573 574

        if data_format == "NHWC":
S
SunAhong1993 已提交
575
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
576
                kernel="paddle.transpose",
J
jiangjiajun 已提交
577 578 579
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
580 581 582
            
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
J
jiangjiajun 已提交
583 584 585 586 587 588 589 590

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

S
SunAhong1993 已提交
591
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
592 593
            kernel="paddle.mean",
            inputs={"x": input.name},
J
jiangjiajun 已提交
594
            outputs=[node.name],
S
SunAhong1993 已提交
595 596
            axis=dims,
            keepdim=keep_dims)
J
jiangjiajun 已提交
597 598

    def Reshape(self, node):
S
SunAhong1993 已提交
599 600
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
601 602 603 604 605

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
S
SunAhong1993 已提交
606
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
607
                kernel="paddle.reshape",
J
jiangjiajun 已提交
608 609 610 611
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
S
SunAhong1993 已提交
612
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
613
                kernel="paddle.reshape",
J
jiangjiajun 已提交
614 615 616 617 618 619 620
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
S
SunAhong1993 已提交
621
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
622
                    kernel="paddle.reshape",
J
jiangjiajun 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
S
SunAhong1993 已提交
637
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
638
                    kernel="paddle.transpose",
J
jiangjiajun 已提交
639 640 641
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
642
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
643 644
                    kernel="paddle.nn.functional.pad",
                    inputs={"x": transpose_name},
J
jiangjiajun 已提交
645
                    outputs=[node.name],
S
SunAhong1993 已提交
646
                    pad=new_padding)
S
SunAhong1993 已提交
647
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
648
                    kernel="paddle.transpose",
J
jiangjiajun 已提交
649 650 651 652 653
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
                return

S
SunAhong1993 已提交
654
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
655
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
656
            inputs={"x": input.name},
J
jiangjiajun 已提交
657
            outputs=[node.name],
S
SunAhong1993 已提交
658
            pad=paddings)
S
SunAhong1993 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671
        
    def MirrorPad(self, node):
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = np.flip(paddings.value, 0).flatten().tolist()
        transpose_name = gen_name("pad", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": input.name},
            outputs=[transpose_name],
            perm=[0, 3, 1, 2])
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
672
            kernel="paddle.nn.functional.pad".format(dim),
S
SunAhong1993 已提交
673
            inputs={"x": transpose_name},
S
SunAhong1993 已提交
674
            outputs=[node.name],
S
SunAhong1993 已提交
675 676 677 678 679 680
            pad=new_padding)
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
681 682

    def Squeeze(self, node):
S
SunAhong1993 已提交
683
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
684
        squeeze_dims = node.get_attr('squeeze_dims')
S
SunAhong1993 已提交
685
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
686 687
            kernel="paddle.squeeze",
            inputs={"x": input.name},
J
jiangjiajun 已提交
688
            outputs=[node.name],
S
SunAhong1993 已提交
689
            axis=squeeze_dims)
J
jiangjiajun 已提交
690 691

    def Shape(self, node):
S
SunAhong1993 已提交
692
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
693
        input_name = input.name
S
SunAhong1993 已提交
694
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
695
            kernel="paddle.shape",
J
jiangjiajun 已提交
696 697 698
            inputs={"input": input_name},
            outputs=[node.name])

S
SunAhong1993 已提交
699 700 701 702
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
703
            kernel="paddle.shape",
S
SunAhong1993 已提交
704 705
            inputs={"input": input_name},
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
706 707 708 709
        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
S
SunAhong1993 已提交
710 711 712 713 714 715 716 717
        
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
            kernel="paddle.ceil",
            inputs={"x": input.name},
            outputs=[node.name])

J
jiangjiajun 已提交
718
    def ArgMax(self, node):
S
SunAhong1993 已提交
719 720
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
721 722
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
S
SunAhong1993 已提交
723
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
724
            kernel="paddle.argmax",
J
jiangjiajun 已提交
725 726 727
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740
        
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
J
jiangjiajun 已提交
741 742

    def MatMul(self, node):
S
SunAhong1993 已提交
743 744
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
745 746 747 748 749 750
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
S
SunAhong1993 已提交
751
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
752
            kernel="paddle.matmul",
J
jiangjiajun 已提交
753 754 755 756 757 758 759 760 761 762 763
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
764

J
jiangjiajun 已提交
765
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
766 767
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
768
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
769

J
jiangjiajun 已提交
770 771 772 773 774 775
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
776

S
SunAhong1993 已提交
777 778 779 780 781
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": kernel.name},
            outputs=[kernel.name],
            perm=[2, 3, 0, 1])
J
jiangjiajun 已提交
782

J
jiangjiajun 已提交
783 784
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
785 786 787
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
788
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
S
SunAhong1993 已提交
789
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
790
                kernel="paddle.transpose",
J
jiangjiajun 已提交
791 792 793 794 795
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
796
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
797 798 799
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name,
                    "weight": kernel.name},
J
jiangjiajun 已提交
800 801 802 803 804
            outputs=[node.name],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
S
SunAhong1993 已提交
805
            bias=None)
J
jiangjiajun 已提交
806 807

        if data_format == "NHWC":
S
SunAhong1993 已提交
808
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
809
                kernel="paddle.transpose",
J
jiangjiajun 已提交
810 811 812
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
813 814

    def AvgPool(self, node):
S
SunAhong1993 已提交
815
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
816

J
jiangjiajun 已提交
817 818 819 820 821
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
822 823 824
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
S
SunAhong1993 已提交
825
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
826
                kernel="paddle.transpose",
J
jiangjiajun 已提交
827 828 829
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
830
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
831
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
832
            input_name = transpose_name
S
SunAhong1993 已提交
833 834
        
        # TODO(syf): The op has diff.
J
jiangjiajun 已提交
835

S
SunAhong1993 已提交
836
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
837 838 839 840 841 842 843 844 845
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
846
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
847
                kernel="paddle.transpose",
J
jiangjiajun 已提交
848 849 850
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
851 852

    def Pack(self, node):
S
SunAhong1993 已提交
853 854 855 856
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
J
jiangjiajun 已提交
857
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
858
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
859
            kernel="paddle.stack",
J
jiangjiajun 已提交
860 861 862 863
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
S
SunAhong1993 已提交
864
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
865
                kernel="paddle.reshape",
J
jiangjiajun 已提交
866 867 868 869 870
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
871
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
872 873 874 875 876 877
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
S
SunAhong1993 已提交
878
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
879 880
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
J
jiangjiajun 已提交
881
                    outputs=[node.name],
S
SunAhong1993 已提交
882
                    axis=[0])
J
jiangjiajun 已提交
883 884 885 886
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
SunAhong1993 已提交
887 888 889
        layer_outputs = ["{}_p{}".format(node.layer_name, i) for i in range(num)]
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
890
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
891
            kernel="paddle.unstack",
J
jiangjiajun 已提交
892
            inputs={"x": input_name},
S
SunAhong1993 已提交
893
            outputs=layer_outputs,
J
jiangjiajun 已提交
894 895
            axis=axis,
            num=num)
J
jiangjiajun 已提交
896

J
jiangjiajun 已提交
897
    def ConcatV2(self, node):
S
SunAhong1993 已提交
898 899 900 901
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
J
jiangjiajun 已提交
902 903 904
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
SunAhong1993 已提交
905
            axis += len(inputs_list[0].out_shapes[0])
J
jiangjiajun 已提交
906

S
SunAhong1993 已提交
907
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
908
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
            
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
J
jiangjiajun 已提交
928 929
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
930 931 932 933 934 935 936 937 938 939 940
            
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
J
jiangjiajun 已提交
941

J
jiangjiajun 已提交
942
    def StridedSlice(self, node):
S
SunAhong1993 已提交
943 944 945 946
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
947

J
jiangjiajun 已提交
948 949
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
950
        else:
S
SunAhong1993 已提交
951
            strides = self.decoder.infer_tensor(strides)
J
jiangjiajun 已提交
952 953
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
954
        else:
S
SunAhong1993 已提交
955
            begin = self.decoder.infer_tensor(begin)
J
jiangjiajun 已提交
956 957
        if end.layer_type == "Const":
            end = end.value.tolist()
958
        else:
S
SunAhong1993 已提交
959
            end = self.decoder.infer_tensor(end)
960

J
jiangjiajun 已提交
961 962
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
963

J
jiangjiajun 已提交
964 965 966 967
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
968 969 970 971
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
972 973 974 975
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
976
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
SunAhong1993 已提交
1008 1009 1010 1011 1012 1013 1014
            
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
J
jiangjiajun 已提交
1015

S
SunAhong1993 已提交
1016
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1017
            kernel="paddle.slice",
J
jiangjiajun 已提交
1018 1019 1020 1021 1022
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
SunAhong1993 已提交
1023 1024 1025 1026 1027 1028 1029 1030
        
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

J
jiangjiajun 已提交
1031
        if len(new_axes) > 0:
S
SunAhong1993 已提交
1032
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1033 1034
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
J
jiangjiajun 已提交
1035
                outputs=[node.name],
S
SunAhong1993 已提交
1036
                axis=new_axes)
J
jiangjiajun 已提交
1037 1038 1039 1040
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
S
SunAhong1993 已提交
1041
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1042 1043
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
J
jiangjiajun 已提交
1044
                    outputs=[node.name],
S
SunAhong1993 已提交
1045
                    axis=shrink_axes)
S
SunAhong1993 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
                
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
J
jiangjiajun 已提交
1060 1061

    def Split(self, node):
S
SunAhong1993 已提交
1062 1063
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1064 1065 1066 1067
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

S
SunAhong1993 已提交
1068
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1069 1070
            kernel="paddle.split",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1071 1072 1073 1074
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1075
            axis=dim)
1076 1077

    def Slice(self, node):
S
SunAhong1993 已提交
1078 1079 1080
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1081 1082 1083

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
1084 1085
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
1086
            attrs['offsets'] = begin
J
jiangjiajun 已提交
1087
        else:
J
jiangjiajun 已提交
1088 1089
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1090
            #             self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1091 1092 1093 1094 1095
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
S
SunAhong1993 已提交
1096
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
J
jiangjiajun 已提交
1097 1098
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
1099
            size = size.value.tolist()
J
jiangjiajun 已提交
1100 1101 1102 1103
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1104
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1105
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1106 1107 1108 1109
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
S
SunAhong1993 已提交
1110
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1111
            kernel="paddle.crop",
J
jiangjiajun 已提交
1112 1113 1114 1115 1116
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1117 1118
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1119
        data_format = "NHWC"
S
SunAhong1993 已提交
1120 1121 1122 1123
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("nearest"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1124 1125 1126

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1127
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1128
        else:
J
jiangjiajun 已提交
1129 1130
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1131
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1132
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1133 1134 1135
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1136
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1137 1138 1139

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1140
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1141
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1142 1143 1144
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1145
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1146

S
SunAhong1993 已提交
1147
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1148
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1149 1150 1151 1152 1153
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1154
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1155
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1156 1157 1158
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1159

J
jiangjiajun 已提交
1160
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1161 1162
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1163
        data_format = "NHWC"
S
SunAhong1993 已提交
1164 1165 1166 1167
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("bilinear"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1168

J
jiangjiajun 已提交
1169 1170
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1171
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1172 1173 1174
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1175
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1176
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1177 1178 1179
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1180
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1181 1182 1183

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1184
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1185
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1186 1187 1188
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1189
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1190

S
SunAhong1993 已提交
1191
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1192
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1193 1194 1195 1196 1197
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1198
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1199
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1200 1201 1202 1203 1204
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1205
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1206
        dtype = node.dtype
S
SunAhong1993 已提交
1207
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1208
            kernel="paddle.cast",
J
jiangjiajun 已提交
1209 1210 1211 1212 1213
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1214 1215
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1216 1217 1218 1219
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

S
SunAhong1993 已提交
1220
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1221 1222
            kernel="paddle.sum",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1223
            outputs=[node.name],
S
SunAhong1993 已提交
1224 1225
            axis=dim,
            keepdim=keep_dims)
J
jiangjiajun 已提交
1226 1227

    def Max(self, node):
S
SunAhong1993 已提交
1228 1229
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1230 1231 1232
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
S
SunAhong1993 已提交
1233
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1234 1235
            kernel="paddle.max",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1236
            outputs=[node.name],
S
SunAhong1993 已提交
1237 1238
            axis=dim,
            keepdim=keep_dims)
1239

J
jiangjiajun 已提交
1240
    def RandomUniform(self, node):
S
SunAhong1993 已提交
1241
        shape = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1242 1243
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
S
SunAhong1993 已提交
1244
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1245
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1246 1247 1248 1249 1250 1251
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
S
SunAhong1993 已提交
1252
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1253
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1254 1255 1256 1257
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1258 1259

    def Conv2DBackpropInput(self, node):
S
SunAhong1993 已提交
1260 1261 1262
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
1263

1264
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1265

J
jiangjiajun 已提交
1266 1267 1268
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
SunAhong1993 已提交
1269 1270
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
J
jiangjiajun 已提交
1271

1272
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1273
        if in_shape.count(-1) > 2:
S
SunAhong1993 已提交
1274
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
1275
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1276
        if k_size.count(-1) > 2:
S
SunAhong1993 已提交
1277
            k_size = self.decoder.infer_tensor(kernel, use_diff_inputs=False).shape
J
jiangjiajun 已提交
1278

J
jiangjiajun 已提交
1279
        pad_mode = node.get_attr("padding").decode()
1280 1281 1282
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1283

S
SunAhong1993 已提交
1284 1285
        kernel_name = node.name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
1286 1287 1288

        input_name = input.name
        if data_format == "NHWC":
1289 1290 1291
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1292
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
S
SunAhong1993 已提交
1293
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1294
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1295 1296 1297 1298 1299
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1300
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            kernel="paddle.static.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            dtype=string(str(self.params[kernel_name].dtype)),
            shape=self.params[kernel_name].shape,
            name=string(kernel_name))
    
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
            inputs={"x": input_name,
                    "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_")},
J
jiangjiajun 已提交
1312
            outputs=[node.name],
S
SunAhong1993 已提交
1313
            bias=None,
J
jiangjiajun 已提交
1314 1315 1316 1317 1318 1319
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
S
SunAhong1993 已提交
1320
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1321
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1322 1323 1324
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1325

J
jiangjiajun 已提交
1326 1327
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
S
SunAhong1993 已提交
1328
        repeat_times = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
1329 1330
        inputs = {"x": input.name}
        attr = dict()
S
SunAhong1993 已提交
1331 1332 1333
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
J
jiangjiajun 已提交
1334
        else:
S
SunAhong1993 已提交
1335 1336
            inputs["repeat_times"] = repeat_times.name
            
S
SunAhong1993 已提交
1337
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1338
            kernel="paddle.tile",
J
jiangjiajun 已提交
1339 1340 1341
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1342 1343 1344 1345 1346 1347 1348
        
        if not isinstance(repeat_times, list) and repeat_times.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1349

J
jiangjiajun 已提交
1350 1351 1352 1353 1354 1355
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1356

C
channingss 已提交
1357 1358 1359
        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
J
jiangjiajun 已提交
1360 1361
        if start.layer_type == "Const":
            attr["start"] = start.value
1362
        else:
J
jiangjiajun 已提交
1363
            inputs["start"] = start.name
C
channingss 已提交
1364 1365
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
J
jiangjiajun 已提交
1366 1367
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1368
        else:
J
jiangjiajun 已提交
1369
            inputs["end"] = limit.name
C
channingss 已提交
1370 1371
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
J
jiangjiajun 已提交
1372 1373
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1374
        else:
J
jiangjiajun 已提交
1375
            inputs["step"] = delta.name
C
channingss 已提交
1376
        node.set_dtype(dtype)
J
jiangjiajun 已提交
1377 1378
        attr["dtype"] = string(node.dtype)

S
SunAhong1993 已提交
1379
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1380
            kernel="paddle.arange",
J
jiangjiajun 已提交
1381 1382 1383
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1384 1385 1386 1387 1388 1389 1390 1391
        if start.layer_type != "Const" or \
                limit.layer_type != "Const" or \
                delta.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1392 1393

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1394 1395
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1396 1397 1398
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1399
        # TODO(syf)
S
SunAhong1993 已提交
1400
        layer_id = self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1401
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1402
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1403 1404 1405 1406

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1407
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1408
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1409
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1410 1411

    def OneHot(self, node):
S
SunAhong1993 已提交
1412 1413 1414 1415
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

S
SunAhong1993 已提交
1428
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1429 1430
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1431
            outputs=[node.name],
S
SunAhong1993 已提交
1432
            num_classes=depth.value)
J
jiangjiajun 已提交
1433 1434

    def Pow(self, node):
S
SunAhong1993 已提交
1435 1436
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1437 1438 1439
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
S
SunAhong1993 已提交
1440
            attr["y"] = factor.value.tolist()
J
jiangjiajun 已提交
1441
        else:
S
SunAhong1993 已提交
1442
            inputs["y"] = factor.name
S
SunAhong1993 已提交
1443
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1444
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)
J
jiangjiajun 已提交
1445 1446

    def All(self, node):
S
SunAhong1993 已提交
1447 1448
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1449 1450
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
S
SunAhong1993 已提交
1451 1452
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1453

J
jiangjiajun 已提交
1454 1455 1456
        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
S
SunAhong1993 已提交
1457
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1458
                "paddle.cast",
J
jiangjiajun 已提交
1459 1460 1461
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
S
SunAhong1993 已提交
1462
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1463 1464
            "paddle.all",
            inputs={"x": input_name},
J
jiangjiajun 已提交
1465 1466 1467 1468 1469 1470
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1471 1472 1473
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1474
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1475
        axis = axis.value
J
jiangjiajun 已提交
1476 1477 1478 1479
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
S
SunAhong1993 已提交
1480
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1481
                "paddle.reshape",
J
jiangjiajun 已提交
1482 1483 1484
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
S
SunAhong1993 已提交
1485
        inputs = {'x': embeddings.name, 'index': index_name}
S
SunAhong1993 已提交
1486
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1487
            "paddle.gather",
J
jiangjiajun 已提交
1488 1489
            inputs=inputs,
            outputs=[node.name],
S
SunAhong1993 已提交
1490
            axis=axis)
J
jiangjiajun 已提交
1491 1492
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1493
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1494
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1495 1496 1497
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
SunAhong1993 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506
            
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs=inputs,
            outputs=[node.name])
J
jiangjiajun 已提交
1507 1508

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1509 1510 1511
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
        inputs = {"x": x.name}
J
jiangjiajun 已提交
1512 1513 1514 1515 1516
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
S
SunAhong1993 已提交
1517
            attr['axis'] = dim
J
jiangjiajun 已提交
1518
        else:
S
SunAhong1993 已提交
1519
            inputs['axis'] = y.name
S
SunAhong1993 已提交
1520
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1521
            "paddle.unsqueeze",
J
jiangjiajun 已提交
1522 1523 1524
            inputs=inputs,
            outputs=[node.name],
            **attr)