tf_op_mapper.py 56.6 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
J
jiangjiajun 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph 
J
jiangjiajun 已提交
17
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19 20 21
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
22
import inspect
J
jiangjiajun 已提交
23
import numpy
J
jiangjiajun 已提交
24
import sys
25

J
jiangjiajun 已提交
26 27 28 29 30 31 32 33 34 35 36 37
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
38

J
jiangjiajun 已提交
39 40 41 42
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
43 44
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
45 46 47 48
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
49

J
jiangjiajun 已提交
50
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
51 52 53 54 55 56
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
57
        'Rsqrt': ['rsqrt'],
J
jiangjiajun 已提交
58
        'Sqrt': ['sqrt'],
59
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
60
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
61
        'Softplus': ['softplus'],
62 63
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
J
jiangjiajun 已提交
64 65 66 67
        }],
        'Floor': ['floor'],
        'Erf': ['erf'],
        'Square': ['square']
J
jiangjiajun 已提交
68 69
    }
    elementwise_ops = {
S
SunAhong1993 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
        'DivNoNan': 'paddle.divide',
        'Sub': 'fluid.layers.elementwise_sub',
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
J
jiangjiajun 已提交
86 87
    }

J
jiangjiajun 已提交
88 89
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
90
        self.decoder = decoder
J
jiangjiajun 已提交
91
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
92 93
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
94 95
        self.params = dict()
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="static", source_type="tf")
96

J
jiangjiajun 已提交
97 98
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
99 100 101 102 103
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
104 105 106 107
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
108

S
SunAhong1993 已提交
109 110
        self.paddle_graph.inputs = self.graph.input_nodes
        self.paddle_graph.outputs = self.graph.output_nodes
J
jiangjiajun 已提交
111

S
SunAhong1993 已提交
112 113 114 115 116 117
        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
118
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
119
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
120 121
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
122 123 124 125 126
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
127
                func = getattr(self, op)
S
SunAhong1993 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
                func(node)
        print("\nNodes converted.")
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
                op not in self.elementwise_ops:
J
jiangjiajun 已提交
141
                unsupported_ops.add(op)
S
SunAhong1993 已提交
142 143 144 145 146 147
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
148
            for op in unsupported_ops:
J
jiangjiajun 已提交
149
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
150
            return False
J
jiangjiajun 已提交
151

J
jiangjiajun 已提交
152 153 154
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
155
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
156 157 158 159 160 161
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
162

S
SunAhong1993 已提交
163
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
164 165 166 167
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
168 169 170 171

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
172 173
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
174 175
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
176
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
177
            kernel=op_type,
J
jiangjiajun 已提交
178 179 180
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
181
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
182

183 184
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
185 186
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
187
        dtype = node.dtype
S
SunAhong1993 已提交
188
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
189 190 191 192 193 194
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
195

J
jiangjiajun 已提交
196 197 198 199 200 201 202 203
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
204 205
            if value == float('inf'):
                value = "float('inf')"
S
SunAhong1993 已提交
206
            self.paddle_graph.add_layer(
C
channingss 已提交
207 208 209 210 211 212 213
                kernel="fluid.layers.fill_constant",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                value=value)
            return
J
jiangjiajun 已提交
214

S
SunAhong1993 已提交
215 216
        self.params[node.name] = node.value
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
217 218 219 220 221 222 223
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
J
jiangjiajun 已提交
224 225

    def Transpose(self, node):
J
jiangjiajun 已提交
226 227
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
228
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
229 230
        perm = perm.value.tolist()

S
SunAhong1993 已提交
231
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
245
        else:
J
jiangjiajun 已提交
246 247 248
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
        attr["value"] = input_value.value
J
jiangjiajun 已提交
249

S
SunAhong1993 已提交
250
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
251 252 253 254
            "fluid.layers.fill_constant",
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
255 256 257 258 259 260
        if dims.layer_type != "Const":
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
261

J
jiangjiajun 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
275
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
276 277 278 279 280 281 282 283
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
284
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
285 286 287 288 289 290
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
291
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
292 293 294 295 296 297
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
298
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
299 300 301 302 303
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

S
SunAhong1993 已提交
304
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
305 306 307 308 309 310
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
S
SunAhong1993 已提交
311
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
312 313 314 315
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
add beg  
SunAhong1993 已提交
316
            
S
SunAhong1993 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
                "paddle.nonzero",
                inputs={"x": cond.name},
                outputs=[node.name])
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
            
S
add beg  
SunAhong1993 已提交
335 336 337 338 339 340 341 342
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
        
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
J
jiangjiajun 已提交
343 344 345

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
346

J
jiangjiajun 已提交
347 348 349 350 351
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
352 353 354
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
S
SunAhong1993 已提交
355
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
356 357 358 359
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
360
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
361
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
362 363
            input_name = transpose_name

S
SunAhong1993 已提交
364
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
365 366 367 368 369 370 371 372 373
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
374
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
375 376 377 378
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
379 380

    def Conv2D(self, node):
J
jiangjiajun 已提交
381 382
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
383

J
jiangjiajun 已提交
384 385 386 387 388
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
389 390 391 392
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
393

J
jiangjiajun 已提交
394 395 396 397
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
S
SunAhong1993 已提交
398
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
J
jiangjiajun 已提交
399 400 401 402 403
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
404
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
J
jiangjiajun 已提交
405
                                                                 (3, 2, 0, 1))
J
jiangjiajun 已提交
406

J
jiangjiajun 已提交
407 408
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
409 410
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
411
            transpose_name = gen_name("conv2d", "transpose")
S
SunAhong1993 已提交
412
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
413 414 415 416 417 418 419 420 421 422
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
S
SunAhong1993 已提交
423
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
424 425 426 427 428
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

S
SunAhong1993 已提交
429
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
430 431 432 433 434 435 436 437 438 439 440 441
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
442
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
443 444 445 446
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
            
    def Conv3D(self, node):
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
            self.paddle_graph.add_layer(
                kernel="paddle.static.nn.create_parameter",
                inputs={},
                outputs=[kernel_weight_name],
                shape=self.params[kernel_weight_name].shape,
                dtype=string(str(self.params[kernel_weight_name].dtype)),
                name=string(kernel_weight_name))
            self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))
        else:
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": kernel_weight_name},
                outputs=[kernel_weight_name],
                perm=[4, 3, 0, 1, 2])
            
        
        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])        
            
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv3d",
            inputs={"x": input_name},
            outputs=[node.name],
            weight=kernel_weight_name,
            bias=None,
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
J
jiangjiajun 已提交
524

J
jiangjiajun 已提交
525
    def BiasAdd(self, node):
J
jiangjiajun 已提交
526 527
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
S
SunAhong1993 已提交
528
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
529 530 531 532
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
533 534

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
535 536 537 538 539
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
540
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
541 542 543 544 545

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
546 547 548 549

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
S
SunAhong1993 已提交
550
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
551 552 553 554 555 556
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
557
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
558 559 560 561 562 563 564 565 566 567 568
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)

        if data_format == "NHWC":
S
SunAhong1993 已提交
569
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
570 571 572 573 574 575 576 577 578 579 580 581
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

S
SunAhong1993 已提交
582
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
583 584
            kernel="paddle.mean",
            inputs={"x": input.name},
J
jiangjiajun 已提交
585
            outputs=[node.name],
S
SunAhong1993 已提交
586 587
            axis=dims,
            keepdim=keep_dims)
J
jiangjiajun 已提交
588 589

    def Reshape(self, node):
S
SunAhong1993 已提交
590 591
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
592 593 594 595 596

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
S
SunAhong1993 已提交
597
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
598
                kernel="paddle.reshape",
J
jiangjiajun 已提交
599 600 601 602
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
S
SunAhong1993 已提交
603
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
604
                kernel="paddle.reshape",
J
jiangjiajun 已提交
605 606 607 608 609 610 611
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
S
SunAhong1993 已提交
612
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
613
                    kernel="paddle.reshape",
J
jiangjiajun 已提交
614 615 616
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())
S
SunAhong1993 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
#         input = self.graph.get_node(node.layer.input[0])
#         param = self.graph.get_node(node.layer.input[1])

#         input_name = input.name
#         if input.dtype == 'bool':
#             cast_name = gen_name('reshape', 'cast')
#             self.paddle_graph.add_layer(
#                 kernel="fluid.layers.cast",
#                 inputs={"x": input_name},
#                 outputs=[cast_name],
#                 dtype="'int32'")
#             input_name = cast_name

#         if param.layer_type == "Const":
#             shape = param.value.tolist()
#             self.paddle_graph.add_layer(
#                 kernel="fluid.layers.reshape",
#                 inputs={"x": input_name},
#                 outputs=[node.name],
#                 shape=shape)
#         else:
#             self.paddle_graph.add_layer(
#                 kernel="fluid.layers.reshape",
#                 inputs={"x": input_name,
#                         "shape": param.name},
#                 outputs=[node.name])
#         if param.layer_type != "Const":
#             out_shape = numpy.array(node.out_shapes[0])
#             if (out_shape > 0).any():
#                 out_shape[out_shape < 0] = 0
#                 self.paddle_graph.add_layer(
#                     kernel="fluid.layers.reshape",
#                     inputs={"x": node.name},
#                     outputs=[node.name],
#                     shape=out_shape.tolist())

#         if input.dtype == 'bool':
#             self.paddle_graph.add_layer(
#                 kernel="fluid.layers.cast",
#                 inputs={"x": node.name},
#                 outputs=[node.name],
#                 dtype="'bool'")
J
jiangjiajun 已提交
659 660 661 662 663 664 665 666 667 668 669

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
S
SunAhong1993 已提交
670
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
671 672 673 674
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
675
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
676 677 678 679
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
S
SunAhong1993 已提交
680
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
681 682 683 684 685 686
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
                return

S
SunAhong1993 已提交
687
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
688
            kernel="fluid.layers.pad",
S
SunAhong1993 已提交
689
            inputs={"x": input.name},
J
jiangjiajun 已提交
690 691
            outputs=[node.name],
            paddings=paddings)
S
SunAhong1993 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        
    def MirrorPad(self, node):
        op_name = name_generator("pad", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = np.flip(paddings.value, 0).flatten().tolist()
        dim = int(len(paddings) / 2)
        transpose_name = gen_name("pad", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": input.name},
            outputs=[transpose_name],
            perm=[0, 3, 1, 2])
        self.paddle_graph.add_layer(
            kernel="paddle.nn.Pad{}D".format(dim),
            inputs={"x": transpose_name},
            outputs=layer_outputs,
            pad=new_padding)
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
718 719 720 721

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
S
SunAhong1993 已提交
722
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
723 724 725 726 727 728 729 730
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
731
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
732 733 734 735 736 737
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
S
SunAhong1993 已提交
738
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
739
        input_name = input.name
S
SunAhong1993 已提交
740
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
741
            kernel="paddle.shape",
J
jiangjiajun 已提交
742 743 744
            inputs={"input": input_name},
            outputs=[node.name])

S
SunAhong1993 已提交
745 746 747 748
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
749
            kernel="paddle.shape",
S
SunAhong1993 已提交
750 751
            inputs={"input": input_name},
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
752 753 754 755
        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
S
SunAhong1993 已提交
756 757 758 759 760 761 762 763
        
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
            kernel="paddle.ceil",
            inputs={"x": input.name},
            outputs=[node.name])

J
jiangjiajun 已提交
764 765 766 767 768
    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
S
SunAhong1993 已提交
769
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
770 771 772 773
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786
        
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
J
jiangjiajun 已提交
787 788 789 790 791 792 793 794 795 796

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
S
SunAhong1993 已提交
797
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
798 799 800 801 802 803 804 805 806 807 808 809
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
810

J
jiangjiajun 已提交
811
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
812 813
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
814
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
815

J
jiangjiajun 已提交
816 817 818 819 820 821
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
822

S
SunAhong1993 已提交
823
        self.params[kernel.layer_name.replace(
J
jiangjiajun 已提交
824
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
825

J
jiangjiajun 已提交
826 827
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
828 829 830
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
831
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
S
SunAhong1993 已提交
832
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
833 834 835 836 837 838
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
839
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)

        if data_format == "NHWC":
S
SunAhong1993 已提交
853
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
854 855 856 857
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
858 859

    def AvgPool(self, node):
J
jiangjiajun 已提交
860
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
861

J
jiangjiajun 已提交
862 863 864 865 866
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
867 868 869
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
S
SunAhong1993 已提交
870
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
871 872 873 874
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
875
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
876
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
877 878
            input_name = transpose_name

S
SunAhong1993 已提交
879
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
880 881 882 883 884 885 886 887 888
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
889
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
890 891 892 893
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
894 895

    def Pack(self, node):
J
jiangjiajun 已提交
896 897
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        input_names = [i.name for i in inputs]
J
jiangjiajun 已提交
898
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
899
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
900 901 902 903 904
            kernel="fluid.layers.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
S
SunAhong1993 已提交
905
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
S
SunAhong1993 已提交
919
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
920 921 922 923 924 925 926 927
                    kernel="fluid.layers.unsqueeze",
                    inputs={"input": input.name},
                    outputs=[node.name],
                    axes=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
SunAhong1993 已提交
928 929 930
        layer_outputs = ["{}_p{}".format(node.layer_name, i) for i in range(num)]
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
931
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
932 933
            kernel="fluid.layers.unstack",
            inputs={"x": input_name},
S
SunAhong1993 已提交
934
            outputs=layer_outputs,
J
jiangjiajun 已提交
935 936
            axis=axis,
            num=num)
J
jiangjiajun 已提交
937

J
jiangjiajun 已提交
938 939 940 941 942 943 944 945 946 947
    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])

        input_names = [i.name for i in inputs]
        for i, ipt in enumerate(inputs):
J
jiangjiajun 已提交
948
            if ipt.dtype == 'bool':
J
jiangjiajun 已提交
949
                cast_name = gen_name('concat', 'cast')
S
SunAhong1993 已提交
950
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
951 952 953 954 955
                    kernel="fluid.layers.cast",
                    inputs={"x": ipt.name},
                    outputs=[cast_name],
                    dtype="'int32'")
                input_names[i] = cast_name
S
SunAhong1993 已提交
956
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
957 958 959 960 961
            kernel="fluid.layers.concat",
            inputs={"input": input_names},
            outputs=[node.name],
            axis=axis)
        if node.dtype == 'bool':
S
SunAhong1993 已提交
962
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
963 964 965 966
                kernel="fluid.layers.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype="'bool'")
S
SunAhong1993 已提交
967 968 969 970 971 972 973 974 975 976 977
            
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
J
jiangjiajun 已提交
978

J
jiangjiajun 已提交
979 980 981 982 983
    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
J
jiangjiajun 已提交
984

J
jiangjiajun 已提交
985 986
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
987
        else:
S
SunAhong1993 已提交
988
            strides = self.decoder.infer_tensor(strides)
J
jiangjiajun 已提交
989 990
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
991
        else:
S
SunAhong1993 已提交
992
            begin = self.decoder.infer_tensor(begin)
J
jiangjiajun 已提交
993 994
        if end.layer_type == "Const":
            end = end.value.tolist()
995
        else:
S
SunAhong1993 已提交
996
            end = self.decoder.infer_tensor(end)
997

J
jiangjiajun 已提交
998 999
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
1000

J
jiangjiajun 已提交
1001 1002 1003 1004
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
1005 1006 1007 1008
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
1009 1010 1011 1012
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
1013
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

S
SunAhong1993 已提交
1046
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1047 1048 1049 1050 1051 1052 1053
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
        if len(new_axes) > 0:
S
SunAhong1993 已提交
1054
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1055 1056 1057 1058 1059 1060 1061 1062
                kernel="fluid.layers.unsqueeze",
                inputs={"input": node.name},
                outputs=[node.name],
                axes=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
S
SunAhong1993 已提交
1063
                self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1064 1065 1066 1067
                    kernel="fluid.layers.squeeze",
                    inputs={"input": node.name},
                    outputs=[node.name],
                    axes=shrink_axes)
S
SunAhong1993 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
J
jiangjiajun 已提交
1082 1083 1084 1085 1086 1087 1088 1089

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

S
SunAhong1993 已提交
1090
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1091 1092 1093 1094 1095 1096 1097
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
1098 1099

    def Slice(self, node):
J
jiangjiajun 已提交
1100 1101 1102 1103 1104 1105
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
1106 1107
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
1108
            attrs['offsets'] = begin
J
jiangjiajun 已提交
1109
        else:
J
jiangjiajun 已提交
1110 1111
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1112
            #             self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1113 1114 1115 1116 1117
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
S
SunAhong1993 已提交
1118
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
J
jiangjiajun 已提交
1119 1120
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
1121
            size = size.value.tolist()
J
jiangjiajun 已提交
1122 1123 1124 1125
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1126
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1127 1128 1129 1130 1131
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
S
SunAhong1993 已提交
1132
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
J
jiangjiajun 已提交
1148
        else:
J
jiangjiajun 已提交
1149 1150
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1151
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1152 1153 1154 1155 1156 1157 1158 1159
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1160
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1161 1162 1163 1164 1165 1166
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

S
SunAhong1993 已提交
1167
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1168 1169 1170 1171 1172 1173
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1174
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1175 1176 1177 1178
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1179

J
jiangjiajun 已提交
1180 1181 1182 1183 1184 1185
    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
J
jiangjiajun 已提交
1186

J
jiangjiajun 已提交
1187 1188 1189 1190 1191 1192
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1193
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1194 1195 1196 1197 1198 1199 1200 1201
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1202
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1203 1204 1205 1206 1207 1208
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

S
SunAhong1993 已提交
1209
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1210 1211 1212 1213 1214 1215
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1216
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1217 1218 1219 1220 1221 1222 1223 1224
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
S
SunAhong1993 已提交
1225
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

S
SunAhong1993 已提交
1238
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
S
SunAhong1993 已提交
1251
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1252 1253 1254 1255 1256
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
1257

J
jiangjiajun 已提交
1258 1259 1260 1261
    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0])
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
S
SunAhong1993 已提交
1262
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1263 1264 1265 1266 1267 1268 1269
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
S
SunAhong1993 已提交
1270
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1271 1272 1273 1274 1275
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1276 1277

    def Conv2DBackpropInput(self, node):
J
jiangjiajun 已提交
1278 1279 1280
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])
1281

1282
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1283

J
jiangjiajun 已提交
1284 1285 1286
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
SunAhong1993 已提交
1287 1288
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
J
jiangjiajun 已提交
1289

1290
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1291
        if in_shape.count(-1) > 2:
S
SunAhong1993 已提交
1292
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
1293
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1294
        if k_size.count(-1) > 2:
S
SunAhong1993 已提交
1295
            k_size = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
J
jiangjiajun 已提交
1296

J
jiangjiajun 已提交
1297
        pad_mode = node.get_attr("padding").decode()
1298 1299 1300
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1301

S
SunAhong1993 已提交
1302
        self.params[kernel.layer_name.replace(
J
jiangjiajun 已提交
1303 1304 1305 1306
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
1307 1308 1309
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1310
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
S
SunAhong1993 已提交
1311
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1312 1313 1314 1315 1316 1317
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1318
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
S
SunAhong1993 已提交
1332
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1333 1334 1335 1336
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1337

J
jiangjiajun 已提交
1338 1339
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
S
SunAhong1993 已提交
1340
        repeat_times = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
1341 1342
        inputs = {"x": input.name}
        attr = dict()
S
SunAhong1993 已提交
1343 1344 1345
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
J
jiangjiajun 已提交
1346
        else:
S
SunAhong1993 已提交
1347 1348
            inputs["repeat_times"] = repeat_times.name
            
S
SunAhong1993 已提交
1349
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1350
            kernel="paddle.tile",
J
jiangjiajun 已提交
1351 1352 1353
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1354 1355 1356 1357 1358 1359 1360
        
        if not isinstance(repeat_times, list) and repeat_times.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1361

J
jiangjiajun 已提交
1362 1363 1364 1365 1366 1367
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1368

C
channingss 已提交
1369 1370 1371
        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
J
jiangjiajun 已提交
1372 1373
        if start.layer_type == "Const":
            attr["start"] = start.value
1374
        else:
J
jiangjiajun 已提交
1375
            inputs["start"] = start.name
C
channingss 已提交
1376 1377
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
J
jiangjiajun 已提交
1378 1379
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1380
        else:
J
jiangjiajun 已提交
1381
            inputs["end"] = limit.name
C
channingss 已提交
1382 1383
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
J
jiangjiajun 已提交
1384 1385
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1386
        else:
J
jiangjiajun 已提交
1387
            inputs["step"] = delta.name
C
channingss 已提交
1388
        node.set_dtype(dtype)
J
jiangjiajun 已提交
1389 1390
        attr["dtype"] = string(node.dtype)

S
SunAhong1993 已提交
1391
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1392
            kernel="paddle.arange",
J
jiangjiajun 已提交
1393 1394 1395
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1396 1397 1398 1399 1400 1401 1402 1403
        if start.layer_type != "Const" or \
                limit.layer_type != "Const" or \
                delta.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1404 1405

    def SquaredDifference(self, node):
J
jiangjiajun 已提交
1406 1407 1408 1409 1410
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1411
        layer_id = self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1412
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1413
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1414 1415 1416 1417

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1418
        layer_id = self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1419
            "fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1420
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

    def OneHot(self, node):
        input = self.graph.get_node(node.layer.input[0])
        depth = self.graph.get_node(node.layer.input[1])
        on_value = self.graph.get_node(node.layer.input[2])
        off_value = self.graph.get_node(node.layer.input[3])
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

S
SunAhong1993 已提交
1439
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            "fluid.one_hot",
            inputs={"input": input.name},
            outputs=[node.name],
            depth=depth.value)

    def Pow(self, node):
        x = self.graph.get_node(node.layer.input[0])
        factor = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["factor"] = factor.value.tolist()
        else:
            inputs["factor"] = factor.name
S
SunAhong1993 已提交
1454
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            "fluid.layers.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["dim"] = reduce_idx.value.tolist()
        attr["keep_dim"] = node.get_attr("keep_dims")

J
jiangjiajun 已提交
1465 1466 1467
        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
S
SunAhong1993 已提交
1468
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1469 1470 1471 1472
                "fluid.layers.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
S
SunAhong1993 已提交
1473
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1474
            "fluid.layers.reduce_all",
J
jiangjiajun 已提交
1475
            inputs={"input": input_name},
J
jiangjiajun 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
        embeddings = self.graph.get_node(node.layer.input[0])
        index = self.graph.get_node(node.layer.input[1])
        axis = self.graph.get_node(node.layer.input[2])
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1486
        axis = axis.value
J
jiangjiajun 已提交
1487 1488 1489 1490 1491
        assert axis == 0, "Only support axis=0 in GatherV2 OP"
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
S
SunAhong1993 已提交
1492
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1493 1494 1495 1496 1497
                "fluid.layers.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'input': embeddings.name, 'index': index_name}
S
SunAhong1993 已提交
1498
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1499 1500 1501 1502 1503 1504
            "fluid.layers.gather",
            inputs=inputs,
            outputs=[node.name],
            overwrite=False)
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1505
            self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1506 1507 1508 1509
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
SunAhong1993 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518
            
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs=inputs,
            outputs=[node.name])
J
jiangjiajun 已提交
1519 1520

    def ExpandDims(self, node):
J
jiangjiajun 已提交
1521 1522
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531
        inputs = {"input": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axes'] = dim
        else:
            inputs['axes'] = y.name
S
SunAhong1993 已提交
1532
        self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1533 1534 1535 1536
            "fluid.layers.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)