tf_op_mapper.py 54.0 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
J
jiangjiajun 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph 
J
jiangjiajun 已提交
17
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19 20 21
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
22
import inspect
J
jiangjiajun 已提交
23
import numpy
J
jiangjiajun 已提交
24
import sys
25

J
jiangjiajun 已提交
26 27 28 29 30 31 32 33 34 35 36 37
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
38

J
jiangjiajun 已提交
39 40 41 42
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
43 44
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
45 46 47 48
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
49

J
jiangjiajun 已提交
50
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
51
    directly_map_ops = {
S
SunAhong1993 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        'Relu': ['paddle.nn.functional.relu'],
        'Relu6': ['paddle.nn.functional.relu6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softmax': ['paddle.nn.functional.softmax'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.functional.swish'],
        'Tanh': ['paddle.tanh'],
        'Softplus': ['paddle.nn.functional.softplus'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                     dict(alpha='negative_slope')],
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
J
jiangjiajun 已提交
68 69
    }
    elementwise_ops = {
S
SunAhong1993 已提交
70 71 72 73
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
74
        # TODO (syf): replace
S
SunAhong1993 已提交
75
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
76 77
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
78 79 80 81 82 83
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
84 85 86 87 88
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
J
jiangjiajun 已提交
89 90
    }

J
jiangjiajun 已提交
91 92
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
93
        self.decoder = decoder
J
jiangjiajun 已提交
94
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
95 96
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
97 98
        self.params = dict()
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="static", source_type="tf")
S
SunAhong1993 已提交
99
        self.params_output2id = dict()
100

J
jiangjiajun 已提交
101 102
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
103 104 105 106 107
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
108 109 110 111
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
112

S
SunAhong1993 已提交
113 114
        self.paddle_graph.inputs = self.graph.input_nodes
        self.paddle_graph.outputs = self.graph.output_nodes
J
jiangjiajun 已提交
115

S
SunAhong1993 已提交
116 117 118 119 120 121
        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
122
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
123
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
124 125
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
126 127 128 129
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
130 131
            elif op in self.bool_ops:
                self.bool_map(node)
J
jiangjiajun 已提交
132
            elif hasattr(self, op):
J
jiangjiajun 已提交
133
                func = getattr(self, op)
S
SunAhong1993 已提交
134 135 136 137 138 139 140 141 142 143 144 145
                func(node)
        print("\nNodes converted.")
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
146 147
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
J
jiangjiajun 已提交
148
                unsupported_ops.add(op)
S
SunAhong1993 已提交
149 150 151 152 153 154
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
155
            for op in unsupported_ops:
J
jiangjiajun 已提交
156
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
157
            return False
J
jiangjiajun 已提交
158

J
jiangjiajun 已提交
159 160 161
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
162
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
163 164 165 166 167 168
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
169

S
SunAhong1993 已提交
170
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
171
            kernel=op_info[0],
J
jiangjiajun 已提交
172 173 174
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
175

S
SunAhong1993 已提交
176 177 178 179
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
180 181
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
182 183
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
184
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
185
            kernel=op_type,
J
jiangjiajun 已提交
186 187 188
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
189
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
190 191 192 193 194
        
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
J
jiangjiajun 已提交
195

196 197
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
198 199
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
200
        dtype = node.dtype
S
SunAhong1993 已提交
201
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
202
            kernel="paddle.static.data",
J
jiangjiajun 已提交
203 204 205 206 207
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
208

J
jiangjiajun 已提交
209 210 211 212 213 214 215
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
216 217
            if value == float('inf'):
                value = "float('inf')"
S
SunAhong1993 已提交
218
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
219
                kernel="paddle.full",
C
channingss 已提交
220 221 222 223
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
S
SunAhong1993 已提交
224
                fill_value=value)
C
channingss 已提交
225
            return
J
jiangjiajun 已提交
226

S
SunAhong1993 已提交
227
        self.params[node.name] = node.value
S
SunAhong1993 已提交
228
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
229
            kernel="paddle.static.create_parameter",
J
jiangjiajun 已提交
230 231 232 233 234
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
S
SunAhong1993 已提交
235
            default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
236
        self.params_output2id[node.name] = layer_id
J
jiangjiajun 已提交
237 238

    def Transpose(self, node):
J
jiangjiajun 已提交
239 240
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
241
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
242 243
        perm = perm.value.tolist()

S
SunAhong1993 已提交
244
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
245
            kernel="paddle.transpose",
J
jiangjiajun 已提交
246 247 248 249 250 251 252 253 254 255 256 257
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
258
        else:
J
jiangjiajun 已提交
259 260
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
261
        attr["fill_value"] = input_value.value
J
jiangjiajun 已提交
262

S
SunAhong1993 已提交
263
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
264
            "paddle.full",
J
jiangjiajun 已提交
265 266 267
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
268 269 270 271 272 273
        if dims.layer_type != "Const":
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
274

J
jiangjiajun 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
288
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
289
                kernel="paddle.transpose",
J
jiangjiajun 已提交
290 291 292 293 294 295 296
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
297
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
298
            kernel="paddle.reshape",
J
jiangjiajun 已提交
299 300 301 302 303
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
S
SunAhong1993 已提交
304
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
305
            kernel="paddle.transpose",
J
jiangjiajun 已提交
306 307 308 309 310
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
S
SunAhong1993 已提交
311
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
312
            kernel="paddle.reshape",
J
jiangjiajun 已提交
313 314 315 316
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

S
SunAhong1993 已提交
317
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
318
            kernel="paddle.nn.functional.pixel_shuffle",
J
jiangjiajun 已提交
319 320 321 322 323
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
S
SunAhong1993 已提交
324
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
325
                kernel="paddle.transpose",
J
jiangjiajun 已提交
326 327 328
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
add beg  
SunAhong1993 已提交
329
            
S
SunAhong1993 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
                "paddle.nonzero",
                inputs={"x": cond.name},
                outputs=[node.name])
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
            
S
add beg  
SunAhong1993 已提交
348 349 350 351 352 353 354 355
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
        
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
J
jiangjiajun 已提交
356 357 358

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
359

J
jiangjiajun 已提交
360 361 362 363 364
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
365 366 367
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
S
SunAhong1993 已提交
368
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
369
                kernel="paddle.transpose",
J
jiangjiajun 已提交
370 371 372
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
373
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
374
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
375 376
            input_name = transpose_name

S
SunAhong1993 已提交
377
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
378 379
            kernel="paddle.nn.functional.max_pool2d",
            inputs={"x": input_name},
J
jiangjiajun 已提交
380
            outputs=[node.name],
S
SunAhong1993 已提交
381 382 383
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
J
jiangjiajun 已提交
384 385

        if data_format == "NHWC":
S
SunAhong1993 已提交
386
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
387
                kernel="paddle.transpose",
J
jiangjiajun 已提交
388 389 390
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
391 392

    def Conv2D(self, node):
J
jiangjiajun 已提交
393 394
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
395

J
jiangjiajun 已提交
396 397 398 399 400
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
401 402 403 404
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
405

J
jiangjiajun 已提交
406 407 408 409
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
S
SunAhong1993 已提交
410
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
J
jiangjiajun 已提交
411 412 413 414 415
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
416
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
S
SunAhong1993 已提交
417 418 419 420 421 422 423 424 425
                                                          (3, 2, 0, 1))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
        
J
jiangjiajun 已提交
426 427
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
428 429
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
430
            transpose_name = gen_name("conv2d", "transpose")
S
SunAhong1993 已提交
431
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
432
                kernel="paddle.transpose",
J
jiangjiajun 已提交
433 434 435 436 437 438 439
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
S
SunAhong1993 已提交
440
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
441
                kernel="paddle.reshape",
J
jiangjiajun 已提交
442 443 444 445
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

S
SunAhong1993 已提交
446
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
447 448
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name, "weight": kernel_weight_name},
J
jiangjiajun 已提交
449
            outputs=[node.name],
S
SunAhong1993 已提交
450
            bias=None,
J
jiangjiajun 已提交
451 452 453 454 455
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
S
SunAhong1993 已提交
456
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
457
                kernel="paddle.transpose",
J
jiangjiajun 已提交
458 459 460
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            
    def Conv3D(self, node):
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
S
SunAhong1993 已提交
486 487 488 489 490 491 492 493 494
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))
        self.paddle_graph.add_layer(
            kernel="paddle.static.nn.create_parameter",
            inputs={},
            outputs=[kernel_weight_name],
            shape=self.params[kernel_weight_name].shape,
            dtype=string(str(self.params[kernel_weight_name].dtype)),
            name=string(kernel_weight_name))
S
SunAhong1993 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        
        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])        
            
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv3d",
S
SunAhong1993 已提交
518
            inputs={"x": input_name,  "weight": kernel_weight_name},
S
SunAhong1993 已提交
519 520 521 522 523 524 525 526 527 528 529 530
            outputs=[node.name],
            bias=None,
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
J
jiangjiajun 已提交
531

J
jiangjiajun 已提交
532
    def BiasAdd(self, node):
J
jiangjiajun 已提交
533 534
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
S
SunAhong1993 已提交
535
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
536
            kernel="paddle.add",
J
jiangjiajun 已提交
537 538 539
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
540 541

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
542 543 544 545 546
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
547
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
548 549 550 551 552

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
553 554 555 556

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
S
SunAhong1993 已提交
557
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
558
                kernel="paddle.transpose",
J
jiangjiajun 已提交
559 560 561 562 563
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
564
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
565 566 567 568 569 570
            kernel="paddle.nn.functional.batch_norm",
            inputs={"x": input_name,
                    "running_mean": moving_mean.name,
                    "running_var": moving_var.name,
                    "weight": gamma.name,
                    "bias": beta.name},
J
jiangjiajun 已提交
571
            outputs=[node.name],
S
SunAhong1993 已提交
572
            epsilon=node.get_attr("epsilon"))
J
jiangjiajun 已提交
573 574

        if data_format == "NHWC":
S
SunAhong1993 已提交
575
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
576
                kernel="paddle.transpose",
J
jiangjiajun 已提交
577 578 579
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
580 581 582
            
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
J
jiangjiajun 已提交
583 584 585 586 587 588 589 590

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

S
SunAhong1993 已提交
591
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
592 593
            kernel="paddle.mean",
            inputs={"x": input.name},
J
jiangjiajun 已提交
594
            outputs=[node.name],
S
SunAhong1993 已提交
595 596
            axis=dims,
            keepdim=keep_dims)
J
jiangjiajun 已提交
597 598

    def Reshape(self, node):
S
SunAhong1993 已提交
599 600
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
601 602 603 604 605

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
S
SunAhong1993 已提交
606
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
607
                kernel="paddle.reshape",
J
jiangjiajun 已提交
608 609 610 611
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
S
SunAhong1993 已提交
612
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
613
                kernel="paddle.reshape",
J
jiangjiajun 已提交
614 615 616 617 618 619 620
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
S
SunAhong1993 已提交
621
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
622
                    kernel="paddle.reshape",
J
jiangjiajun 已提交
623 624 625 626 627
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
S
SunAhong1993 已提交
628 629
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
630 631 632
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

S
SunAhong1993 已提交
633
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
634
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
635
            inputs={"x": input.name},
J
jiangjiajun 已提交
636
            outputs=[node.name],
S
SunAhong1993 已提交
637
            pad=paddings)
S
SunAhong1993 已提交
638 639
        
    def MirrorPad(self, node):
S
SunAhong1993 已提交
640 641 642 643 644
        self.Pad(node)
        
        
    def PadV2(self, node):
        self.Pad(node)
J
jiangjiajun 已提交
645 646

    def Squeeze(self, node):
S
SunAhong1993 已提交
647
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
648
        squeeze_dims = node.get_attr('squeeze_dims')
S
SunAhong1993 已提交
649
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
650 651
            kernel="paddle.squeeze",
            inputs={"x": input.name},
J
jiangjiajun 已提交
652
            outputs=[node.name],
S
SunAhong1993 已提交
653
            axis=squeeze_dims)
J
jiangjiajun 已提交
654 655

    def Shape(self, node):
S
SunAhong1993 已提交
656
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
657
        input_name = input.name
S
SunAhong1993 已提交
658
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
659
            kernel="paddle.shape",
J
jiangjiajun 已提交
660 661 662
            inputs={"input": input_name},
            outputs=[node.name])

S
SunAhong1993 已提交
663 664 665 666
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
667
            kernel="paddle.shape",
S
SunAhong1993 已提交
668 669
            inputs={"input": input_name},
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
670 671 672 673
        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
S
SunAhong1993 已提交
674 675 676 677 678 679 680 681
        
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
            kernel="paddle.ceil",
            inputs={"x": input.name},
            outputs=[node.name])

J
jiangjiajun 已提交
682
    def ArgMax(self, node):
S
SunAhong1993 已提交
683 684
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
685 686
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
S
SunAhong1993 已提交
687
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
688
            kernel="paddle.argmax",
J
jiangjiajun 已提交
689 690 691
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704
        
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
J
jiangjiajun 已提交
705 706

    def MatMul(self, node):
S
SunAhong1993 已提交
707 708
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
709 710 711 712 713 714
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
S
SunAhong1993 已提交
715
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
716
            kernel="paddle.matmul",
J
jiangjiajun 已提交
717 718 719 720 721 722 723 724 725 726 727
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
728

J
jiangjiajun 已提交
729
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
730 731
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
732
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
733

J
jiangjiajun 已提交
734 735 736 737 738 739
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
740

S
SunAhong1993 已提交
741 742 743 744 745 746 747 748 749 750 751
        if len(kernel.outputs) == 1:
            self.params[kernel.name] = numpy.transpose(self.params[kernel.name],
                                                          (2, 3, 0, 1))
            layer = self.paddle_graph.layers[self.params_output2id[kernel.name]] 
            layer.attrs["shape"] = self.params[kernel.name].shape
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": kernel.name},
                outputs=[kernel.name],
                perm=[2, 3, 0, 1])
J
jiangjiajun 已提交
752

J
jiangjiajun 已提交
753 754
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
755 756 757
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
758
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
S
SunAhong1993 已提交
759
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
760
                kernel="paddle.transpose",
J
jiangjiajun 已提交
761 762 763 764 765
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
766
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
767 768 769
            kernel="paddle.nn.functional.conv2d",
            inputs={"x": input_name,
                    "weight": kernel.name},
J
jiangjiajun 已提交
770 771 772 773 774
            outputs=[node.name],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
S
SunAhong1993 已提交
775
            bias=None)
J
jiangjiajun 已提交
776 777

        if data_format == "NHWC":
S
SunAhong1993 已提交
778
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
779
                kernel="paddle.transpose",
J
jiangjiajun 已提交
780 781 782
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
783 784

    def AvgPool(self, node):
S
SunAhong1993 已提交
785
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
786

J
jiangjiajun 已提交
787 788 789 790 791
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
792 793 794
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
S
SunAhong1993 已提交
795
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
796
                kernel="paddle.transpose",
J
jiangjiajun 已提交
797 798 799
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
800
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
801
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
802
            input_name = transpose_name
S
SunAhong1993 已提交
803 804
        
        # TODO(syf): The op has diff.
J
jiangjiajun 已提交
805

S
SunAhong1993 已提交
806
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
807 808
            kernel="paddle.nn.functional.avg_pool2d",
            inputs={"x": input_name},
J
jiangjiajun 已提交
809
            outputs=[node.name],
S
SunAhong1993 已提交
810 811 812
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
J
jiangjiajun 已提交
813 814

        if data_format == "NHWC":
S
SunAhong1993 已提交
815
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
816
                kernel="paddle.transpose",
J
jiangjiajun 已提交
817 818 819
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
820 821

    def Pack(self, node):
S
SunAhong1993 已提交
822 823 824 825
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
J
jiangjiajun 已提交
826
        axis = node.get_attr("axis")
S
SunAhong1993 已提交
827
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
828
            kernel="paddle.stack",
J
jiangjiajun 已提交
829 830 831 832
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
S
SunAhong1993 已提交
833
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
834
                kernel="paddle.reshape",
J
jiangjiajun 已提交
835 836 837 838 839
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
840
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
841 842 843 844 845 846
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
S
SunAhong1993 已提交
847
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
848 849
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
J
jiangjiajun 已提交
850
                    outputs=[node.name],
S
SunAhong1993 已提交
851
                    axis=[0])
J
jiangjiajun 已提交
852 853 854 855
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
SunAhong1993 已提交
856 857 858
        layer_outputs = ["{}_p{}".format(node.layer_name, i) for i in range(num)]
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
859
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
860
            kernel="paddle.unstack",
J
jiangjiajun 已提交
861
            inputs={"x": input_name},
S
SunAhong1993 已提交
862
            outputs=layer_outputs,
J
jiangjiajun 已提交
863 864
            axis=axis,
            num=num)
J
jiangjiajun 已提交
865

J
jiangjiajun 已提交
866
    def ConcatV2(self, node):
S
SunAhong1993 已提交
867 868 869 870
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
J
jiangjiajun 已提交
871 872 873
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
SunAhong1993 已提交
874
            axis += len(inputs_list[0].out_shapes[0])
J
jiangjiajun 已提交
875

S
SunAhong1993 已提交
876
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
877
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
            
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
J
jiangjiajun 已提交
897 898
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
899 900 901 902 903 904 905 906 907 908 909
            
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
J
jiangjiajun 已提交
910

J
jiangjiajun 已提交
911
    def StridedSlice(self, node):
S
SunAhong1993 已提交
912 913 914 915
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
916

J
jiangjiajun 已提交
917 918
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
919
        else:
S
SunAhong1993 已提交
920
            strides = self.decoder.infer_tensor(strides)
J
jiangjiajun 已提交
921 922
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
923
        else:
S
SunAhong1993 已提交
924
            begin = self.decoder.infer_tensor(begin)
J
jiangjiajun 已提交
925 926
        if end.layer_type == "Const":
            end = end.value.tolist()
927
        else:
S
SunAhong1993 已提交
928
            end = self.decoder.infer_tensor(end)
929

J
jiangjiajun 已提交
930 931
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
932

J
jiangjiajun 已提交
933 934 935 936
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
937 938 939 940
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
941 942 943 944
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
945
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
SunAhong1993 已提交
977 978 979 980 981 982 983
            
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
J
jiangjiajun 已提交
984

S
SunAhong1993 已提交
985
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
986
            kernel="paddle.slice",
J
jiangjiajun 已提交
987 988 989 990 991
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
SunAhong1993 已提交
992 993 994 995 996 997 998 999
        
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

J
jiangjiajun 已提交
1000
        if len(new_axes) > 0:
S
SunAhong1993 已提交
1001
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1002 1003
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
J
jiangjiajun 已提交
1004
                outputs=[node.name],
S
SunAhong1993 已提交
1005
                axis=new_axes)
J
jiangjiajun 已提交
1006 1007 1008 1009
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
S
SunAhong1993 已提交
1010
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1011 1012
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
J
jiangjiajun 已提交
1013
                    outputs=[node.name],
S
SunAhong1993 已提交
1014
                    axis=shrink_axes)
S
SunAhong1993 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
                
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
J
jiangjiajun 已提交
1029 1030

    def Split(self, node):
S
SunAhong1993 已提交
1031 1032
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1033 1034 1035 1036
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

S
SunAhong1993 已提交
1037
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1038 1039
            kernel="paddle.split",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1040 1041 1042 1043
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1044
            axis=dim)
1045 1046

    def Slice(self, node):
S
SunAhong1993 已提交
1047 1048 1049
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1050 1051 1052

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
1053 1054
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
1055
            attrs['offsets'] = begin
J
jiangjiajun 已提交
1056
        else:
J
jiangjiajun 已提交
1057 1058
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1059
            #             self.paddle_graph.add_layer(
J
jiangjiajun 已提交
1060 1061 1062 1063 1064
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
S
SunAhong1993 已提交
1065
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
J
jiangjiajun 已提交
1066 1067
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
1068
            size = size.value.tolist()
J
jiangjiajun 已提交
1069 1070 1071 1072
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
S
SunAhong1993 已提交
1073
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1074
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1075 1076 1077 1078
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
S
SunAhong1993 已提交
1079
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1080
            kernel="paddle.crop",
J
jiangjiajun 已提交
1081 1082 1083 1084 1085
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1086 1087
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1088
        data_format = "NHWC"
S
SunAhong1993 已提交
1089 1090 1091 1092
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("nearest"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1093 1094 1095

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1096
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1097
        else:
J
jiangjiajun 已提交
1098 1099
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1100
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1101
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1102 1103 1104
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1105
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1106 1107 1108

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
S
SunAhong1993 已提交
1109
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1110
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1111 1112 1113
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1114
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1115

S
SunAhong1993 已提交
1116
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1117
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1118 1119 1120 1121 1122
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1123
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1124
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1125 1126 1127
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1128

J
jiangjiajun 已提交
1129
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1130 1131
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1132
        data_format = "NHWC"
S
SunAhong1993 已提交
1133 1134 1135 1136
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("bilinear"),
                 "align_mode": 1}
J
jiangjiajun 已提交
1137

J
jiangjiajun 已提交
1138 1139
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
S
SunAhong1993 已提交
1140
            attrs["size"] = resize_shape
J
jiangjiajun 已提交
1141 1142 1143
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1144
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1145
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1146 1147 1148
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1149
            inputs["size"] = reshape_name
J
jiangjiajun 已提交
1150 1151 1152

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
S
SunAhong1993 已提交
1153
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1154
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1155 1156 1157
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1158
            inputs["x"] = transpose_name
J
jiangjiajun 已提交
1159

S
SunAhong1993 已提交
1160
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1161
            kernel="paddle.nn.functional.interpolate",
J
jiangjiajun 已提交
1162 1163 1164 1165 1166
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
S
SunAhong1993 已提交
1167
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1168
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1169 1170 1171 1172 1173
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1174
        input = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1175
        dtype = node.dtype
S
SunAhong1993 已提交
1176
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1177
            kernel="paddle.cast",
J
jiangjiajun 已提交
1178 1179 1180 1181 1182
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1183 1184
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1185 1186 1187 1188
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

S
SunAhong1993 已提交
1189
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1190 1191
            kernel="paddle.sum",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1192
            outputs=[node.name],
S
SunAhong1993 已提交
1193 1194
            axis=dim,
            keepdim=keep_dims)
J
jiangjiajun 已提交
1195 1196

    def Max(self, node):
S
SunAhong1993 已提交
1197 1198
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1199 1200 1201
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
S
SunAhong1993 已提交
1202
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1203 1204
            kernel="paddle.max",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1205
            outputs=[node.name],
S
SunAhong1993 已提交
1206 1207
            axis=dim,
            keepdim=keep_dims)
1208

J
jiangjiajun 已提交
1209
    def RandomUniform(self, node):
S
SunAhong1993 已提交
1210
        shape = self.graph.get_input_node(node, 0)
J
jiangjiajun 已提交
1211 1212
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
S
SunAhong1993 已提交
1213
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1214
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1215 1216 1217 1218 1219 1220
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
S
SunAhong1993 已提交
1221
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1222
                kernel="paddle.uniform",
J
jiangjiajun 已提交
1223 1224 1225 1226
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1227 1228

    def Conv2DBackpropInput(self, node):
S
SunAhong1993 已提交
1229 1230 1231
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
1232

1233
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1234

J
jiangjiajun 已提交
1235 1236 1237
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
SunAhong1993 已提交
1238 1239
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
J
jiangjiajun 已提交
1240

1241
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1242
        if in_shape.count(-1) > 2:
S
SunAhong1993 已提交
1243
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
1244
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1245
        if k_size.count(-1) > 2:
S
SunAhong1993 已提交
1246
            k_size = self.decoder.infer_tensor(kernel, use_diff_inputs=False).shape
J
jiangjiajun 已提交
1247

J
jiangjiajun 已提交
1248
        pad_mode = node.get_attr("padding").decode()
1249 1250 1251
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1252

S
SunAhong1993 已提交
1253 1254
        kernel_name = node.name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
1255 1256 1257

        input_name = input.name
        if data_format == "NHWC":
1258 1259 1260
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1261
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
S
SunAhong1993 已提交
1262
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1263
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1264 1265 1266 1267 1268
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1269
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            kernel="paddle.static.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            dtype=string(str(self.params[kernel_name].dtype)),
            shape=self.params[kernel_name].shape,
            name=string(kernel_name))
    
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
            inputs={"x": input_name,
                    "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_")},
J
jiangjiajun 已提交
1281
            outputs=[node.name],
S
SunAhong1993 已提交
1282
            bias=None,
J
jiangjiajun 已提交
1283 1284 1285 1286 1287 1288
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
S
SunAhong1993 已提交
1289
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1290
                kernel="paddle.transpose",
J
jiangjiajun 已提交
1291 1292 1293
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1294

J
jiangjiajun 已提交
1295 1296
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
S
SunAhong1993 已提交
1297
        repeat_times = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
1298 1299
        inputs = {"x": input.name}
        attr = dict()
S
SunAhong1993 已提交
1300 1301 1302
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
J
jiangjiajun 已提交
1303
        else:
S
SunAhong1993 已提交
1304 1305
            inputs["repeat_times"] = repeat_times.name
            
S
SunAhong1993 已提交
1306
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1307
            kernel="paddle.tile",
J
jiangjiajun 已提交
1308 1309 1310
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1311 1312 1313 1314 1315 1316 1317
        
        if not isinstance(repeat_times, list) and repeat_times.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1318

J
jiangjiajun 已提交
1319 1320 1321 1322 1323 1324
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1325

C
channingss 已提交
1326 1327 1328
        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
J
jiangjiajun 已提交
1329 1330
        if start.layer_type == "Const":
            attr["start"] = start.value
1331
        else:
J
jiangjiajun 已提交
1332
            inputs["start"] = start.name
C
channingss 已提交
1333 1334
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
J
jiangjiajun 已提交
1335 1336
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1337
        else:
J
jiangjiajun 已提交
1338
            inputs["end"] = limit.name
C
channingss 已提交
1339 1340
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
J
jiangjiajun 已提交
1341 1342
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1343
        else:
J
jiangjiajun 已提交
1344
            inputs["step"] = delta.name
C
channingss 已提交
1345
        node.set_dtype(dtype)
J
jiangjiajun 已提交
1346 1347
        attr["dtype"] = string(node.dtype)

S
SunAhong1993 已提交
1348
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1349
            kernel="paddle.arange",
J
jiangjiajun 已提交
1350 1351 1352
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1353 1354 1355 1356 1357 1358 1359 1360
        if start.layer_type != "Const" or \
                limit.layer_type != "Const" or \
                delta.layer_type != "Const":
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
J
jiangjiajun 已提交
1361 1362

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1363 1364
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1365 1366 1367
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1368
        # TODO(syf)
S
SunAhong1993 已提交
1369
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1370
            "paddle.subtract", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1371
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1372 1373 1374 1375

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1376
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1377
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1378
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
J
jiangjiajun 已提交
1379 1380

    def OneHot(self, node):
S
SunAhong1993 已提交
1381 1382 1383 1384
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
J
jiangjiajun 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

S
SunAhong1993 已提交
1397
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1398 1399
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
J
jiangjiajun 已提交
1400
            outputs=[node.name],
S
SunAhong1993 已提交
1401
            num_classes=depth.value)
J
jiangjiajun 已提交
1402 1403

    def Pow(self, node):
S
SunAhong1993 已提交
1404 1405
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1406 1407 1408
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
S
SunAhong1993 已提交
1409
            attr["y"] = factor.value.tolist()
J
jiangjiajun 已提交
1410
        else:
S
SunAhong1993 已提交
1411
            inputs["y"] = factor.name
S
SunAhong1993 已提交
1412
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1413
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)
J
jiangjiajun 已提交
1414 1415

    def All(self, node):
S
SunAhong1993 已提交
1416 1417
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
J
jiangjiajun 已提交
1418 1419
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
S
SunAhong1993 已提交
1420 1421
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1422

J
jiangjiajun 已提交
1423 1424 1425
        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
S
SunAhong1993 已提交
1426
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1427
                "paddle.cast",
J
jiangjiajun 已提交
1428 1429 1430
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
S
SunAhong1993 已提交
1431
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1432 1433
            "paddle.all",
            inputs={"x": input_name},
J
jiangjiajun 已提交
1434 1435 1436 1437 1438 1439
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1440 1441 1442
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
J
jiangjiajun 已提交
1443
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1444
        axis = axis.value
J
jiangjiajun 已提交
1445 1446 1447 1448
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
S
SunAhong1993 已提交
1449
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1450
                "paddle.reshape",
J
jiangjiajun 已提交
1451 1452 1453
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
S
SunAhong1993 已提交
1454
        inputs = {'x': embeddings.name, 'index': index_name}
S
SunAhong1993 已提交
1455
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1456
            "paddle.gather",
J
jiangjiajun 已提交
1457 1458
            inputs=inputs,
            outputs=[node.name],
S
SunAhong1993 已提交
1459
            axis=axis)
J
jiangjiajun 已提交
1460 1461
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
S
SunAhong1993 已提交
1462
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1463
                kernel="paddle.reshape",
J
jiangjiajun 已提交
1464 1465 1466
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
SunAhong1993 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475
            
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs=inputs,
            outputs=[node.name])
J
jiangjiajun 已提交
1476 1477

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1478 1479 1480
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
        inputs = {"x": x.name}
J
jiangjiajun 已提交
1481 1482 1483 1484 1485
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
S
SunAhong1993 已提交
1486
            attr['axis'] = dim
J
jiangjiajun 已提交
1487
        else:
S
SunAhong1993 已提交
1488
            inputs['axis'] = y.name
S
SunAhong1993 已提交
1489
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1490
            "paddle.unsqueeze",
J
jiangjiajun 已提交
1491 1492 1493
            inputs=inputs,
            outputs=[node.name],
            **attr)