infer.py 41.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
43 44
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD', 'RetinaNet',
45
    'StrongBaseline', 'STGCN', 'YOLOX', 'PPHGNet', 'PPLCNet', 'DETR'
Q
qingqing01 已提交
46 47
}

48 49
TUNED_TRT_DYNAMIC_MODELS = {'DETR'}

Q
qingqing01 已提交
50

W
wangguanzhong 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
68 69 70
class Detector(object):
    """
    Args:
71
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
72
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
73
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
74
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
75
        batch_size (int): size of pre batch in inference
76 77 78
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
79 80 81 82
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
83
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
84 85
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
86 87
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
88 89
    """

J
JYChen 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
105
        self.pred_config = self.set_config(model_dir)
106
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
107
            model_dir,
108
            self.pred_config.arch,
Q
qingqing01 已提交
109
            run_mode=run_mode,
110
            batch_size=batch_size,
Q
qingqing01 已提交
111
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
112
            device=device,
113
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
114 115
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
116
            trt_opt_shape=trt_opt_shape,
117 118
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
119
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
120 121
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
122 123
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
124 125 126 127 128 129
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
130

C
cnn 已提交
131
    def preprocess(self, image_list):
Q
qingqing01 已提交
132 133 134 135 136
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
137 138 139 140

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
141
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
142 143 144
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
145 146 147
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
148 149 150 151
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
152

Q
qingqing01 已提交
153 154
        return inputs

W
wangguanzhong 已提交
155
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
156
        # postprocess output of predictor
W
wangguanzhong 已提交
157
        np_boxes_num = result['boxes_num']
158 159 160 161
        assert isinstance(np_boxes_num, np.ndarray), \
            '`np_boxes_num` should be a `numpy.ndarray`'

        if np_boxes_num.sum() <= 0:
162
            print('[WARNNING] No object detected.')
W
wangguanzhong 已提交
163
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': np_boxes_num}
164 165
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
186
    def predict(self, repeats=1):
Q
qingqing01 已提交
187 188
        '''
        Args:
W
wangguanzhong 已提交
189
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
190
        Returns:
W
wangguanzhong 已提交
191
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
192
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
193
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
194
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
195
        '''
W
wangguanzhong 已提交
196
        # model prediction
197
        np_boxes_num, np_boxes, np_masks = np.array([0]), None, None
Q
qingqing01 已提交
198 199 200 201 202
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
203 204
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
205
            if self.pred_config.mask:
Q
qingqing01 已提交
206 207
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
208 209 210 211 212 213 214 215 216 217 218 219
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
220
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
221
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
222
        return results
Q
qingqing01 已提交
223

W
wangguanzhong 已提交
224 225
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
226

227 228 229 230 231 232
    def predict_image_slice(self,
                            img_list,
                            slice_size=[640, 640],
                            overlap_ratio=[0.25, 0.25],
                            combine_method='nms',
                            match_threshold=0.6,
F
Feng Ni 已提交
233 234 235
                            match_metric='ios',
                            run_benchmark=False,
                            repeats=1,
236
                            visual=True,
237
                            save_results=False):
238 239 240 241 242 243
        # slice infer only support bs=1
        results = []
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
F
Feng Ni 已提交
244
            print(
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e
        num_classes = len(self.pred_config.labels)
        for i in range(len(img_list)):
            ori_image = img_list[i]
            slice_image_result = sahi.slicing.slice_image(
                image=ori_image,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])
            sub_img_num = len(slice_image_result)
            merged_bboxs = []
260
            print('slice to {} sub_samples.', sub_img_num)
F
Feng Ni 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

            batch_image_list = [
                slice_image_result.images[_ind] for _ind in range(sub_img_num)
            ]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=50)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
291
                self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
292
                inputs = self.preprocess(batch_image_list)
293 294 295 296 297 298 299 300 301 302 303 304 305
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

F
Feng Ni 已提交
306 307 308
            st, ed = 0, result['boxes_num'][0]  # start_index, end_index
            for _ind in range(sub_img_num):
                boxes_num = result['boxes_num'][_ind]
309
                ed = st + boxes_num
310
                shift_amount = slice_image_result.starting_pixels[_ind]
F
Feng Ni 已提交
311 312 313 314 315 316
                result['boxes'][st:ed][:, 2:4] = result['boxes'][
                    st:ed][:, 2:4] + shift_amount
                result['boxes'][st:ed][:, 4:6] = result['boxes'][
                    st:ed][:, 4:6] + shift_amount
                merged_bboxs.append(result['boxes'][st:ed])
                st = ed
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

            merged_results = {'boxes': []}
            if combine_method == 'nms':
                final_boxes = multiclass_nms(
                    np.concatenate(merged_bboxs), num_classes, match_threshold,
                    match_metric)
                merged_results['boxes'] = np.concatenate(final_boxes)
            elif combine_method == 'concat':
                merged_results['boxes'] = np.concatenate(merged_bboxs)
            else:
                raise ValueError(
                    "Now only support 'nms' or 'concat' to fuse detection results."
                )
            merged_results['boxes_num'] = np.array(
                [len(merged_results['boxes'])], dtype=np.int32)

            if visual:
                visualize(
                    [ori_image],  # should be list
                    merged_results,
                    self.pred_config.labels,
                    output_dir=self.output_dir,
                    threshold=self.threshold)

            results.append(merged_results)
342
            print('Test iter {}'.format(i))
343 344

        results = self.merge_batch_result(results)
345 346 347 348
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                img_list, results, use_coco_category=FLAGS.use_coco_category)
349 350
        return results

W
wangguanzhong 已提交
351 352 353 354
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
355
                      visual=True,
356
                      save_results=False):
W
wangguanzhong 已提交
357
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
358
        results = []
W
wangguanzhong 已提交
359 360 361 362 363 364 365 366 367 368 369 370
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
371
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)
            results.append(result)
412
            print('Test iter {}'.format(i))
W
wangguanzhong 已提交
413
        results = self.merge_batch_result(results)
414 415 416 417
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                image_list, results, use_coco_category=FLAGS.use_coco_category)
Q
qingqing01 已提交
418 419
        return results

W
wangguanzhong 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
437
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
W
wangguanzhong 已提交
438 439 440 441 442 443 444 445
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
446
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    def save_coco_results(self, image_list, results, use_coco_category=False):
        bbox_results = []
        mask_results = []
        idx = 0
        print("Start saving coco json files...")
        for i, box_num in enumerate(results['boxes_num']):
            file_name = os.path.split(image_list[i])[-1]
            if use_coco_category:
                img_id = int(os.path.splitext(file_name)[0])
            else:
                img_id = i

            if 'boxes' in results:
                boxes = results['boxes'][idx:idx + box_num].tolist()
                bbox_results.extend([{
                    'image_id': img_id,
                    'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                    'file_name': file_name,
                    'bbox': [box[2], box[3], box[4] - box[2],
                         box[5] - box[3]],  # xyxy -> xywh
                    'score': box[1]} for box in boxes])

            if 'masks' in results:
                import pycocotools.mask as mask_util

                boxes = results['boxes'][idx:idx + box_num].tolist()
                masks = results['masks'][i][:box_num].astype(np.uint8)
                seg_res = []
                for box, mask in zip(boxes, masks):
                    rle = mask_util.encode(
                        np.array(
                            mask[:, :, None], dtype=np.uint8, order="F"))[0]
                    if 'counts' in rle:
                        rle['counts'] = rle['counts'].decode("utf8")
                    seg_res.append({
                        'image_id': img_id,
                        'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                        'file_name': file_name,
501
                        'segmentation': rle,
502 503
                        'score': box[1]})
                mask_results.extend(seg_res)
504

505
            idx += box_num
506

507 508 509 510 511 512 513 514 515 516
        if bbox_results:
            bbox_file = os.path.join(self.output_dir, "bbox.json")
            with open(bbox_file, 'w') as f:
                json.dump(bbox_results, f)
            print(f"The bbox result is saved to {bbox_file}")
        if mask_results:
            mask_file = os.path.join(self.output_dir, "mask.json")
            with open(mask_file, 'w') as f:
                json.dump(mask_results, f)
            print(f"The mask result is saved to {mask_file}")
517

Q
qingqing01 已提交
518

G
Guanghua Yu 已提交
519 520 521 522
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
523
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
524
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
525
        batch_size (int): size of pre batch in inference
526 527 528
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
529 530 531 532
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
533
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
534 535 536
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
537 538
    """

W
wangguanzhong 已提交
539 540
    def __init__(
            self,
G
Guanghua Yu 已提交
541
            model_dir,
W
wangguanzhong 已提交
542 543 544 545 546 547 548 549 550
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
551
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
552 553 554 555 556
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
557
            run_mode=run_mode,
558
            batch_size=batch_size,
559 560
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
561
            trt_opt_shape=trt_opt_shape,
562 563
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
564
            enable_mkldnn=enable_mkldnn,
565
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
566 567
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
568

W
wangguanzhong 已提交
569
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
570 571
        '''
        Args:
W
wangguanzhong 已提交
572
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
573
        Returns:
W
wangguanzhong 已提交
574
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
575 576
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
577 578 579 580 581
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
582 583
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
584 585
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
586
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
587
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
588 589
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
590

W
wangguanzhong 已提交
591
        result = dict(
W
wangguanzhong 已提交
592 593 594 595
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
596
        return result
G
Guanghua Yu 已提交
597 598


599 600 601 602 603
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
604
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
605 606 607 608 609 610 611
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
612 613
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
614 615
    """

W
wangguanzhong 已提交
616 617
    def __init__(
            self,
618
            model_dir,
W
wangguanzhong 已提交
619 620 621 622 623 624 625 626 627
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
628
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
629 630 631 632 633
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
634 635 636 637 638 639 640
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
641
            enable_mkldnn=enable_mkldnn,
642
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
659

W
wangguanzhong 已提交
660
    def predict(self, repeats=1):
661 662
        '''
        Args:
W
wangguanzhong 已提交
663
            repeats (int): repeat number for prediction
664
        Returns:
W
wangguanzhong 已提交
665
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
682 683
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
684 685


C
cnn 已提交
686
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
687 688
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
689 690
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
691 692 693 694 695
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
696 697
    im_shape = []
    scale_factor = []
698 699 700 701 702 703 704 705
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
706 707 708 709
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
710 711
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
712 713 714 715 716 717 718 719 720 721 722 723

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
743
        self.mask = False
744
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
745 746
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
747 748 749
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
750 751 752 753
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
754 755 756 757
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
781
                   arch,
782
                   run_mode='paddle',
Q
qingqing01 已提交
783
                   batch_size=1,
G
Guanghua Yu 已提交
784
                   device='CPU',
785 786 787 788
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
789
                   trt_opt_shape=640,
790 791
                   trt_calib_mode=False,
                   cpu_threads=1,
792
                   enable_mkldnn=False,
J
JYChen 已提交
793
                   enable_mkldnn_bfloat16=False,
794 795
                   delete_shuffle_pass=False,
                   tuned_trt_shape_file="shape_range_info.pbtxt"):
Q
qingqing01 已提交
796 797 798
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
799
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
800
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
801 802 803 804
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
805 806
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
807 808
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
809 810 811
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
812
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
813
    """
814
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
815
        raise ValueError(
G
Guanghua Yu 已提交
816 817
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
818 819 820 821 822 823 824 825 826
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
827
    if device == 'GPU':
Q
qingqing01 已提交
828 829 830
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
831
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
832
    elif device == 'XPU':
833 834
        if config.lite_engine_enabled():
            config.enable_lite_engine()
G
Guanghua Yu 已提交
835
        config.enable_xpu(10 * 1024 * 1024)
836 837 838 839
    elif device == 'NPU':
        if config.lite_engine_enabled():
            config.enable_lite_engine()
        config.enable_npu()
Q
qingqing01 已提交
840 841
    else:
        config.disable_gpu()
842 843
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
844 845 846 847
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
848 849
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
850 851 852 853 854
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
855

G
Guanghua Yu 已提交
856 857 858 859 860
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
861
    if run_mode in precision_map.keys():
862 863
        if arch in TUNED_TRT_DYNAMIC_MODELS:
            config.collect_shape_range_info(tuned_trt_shape_file)
Q
qingqing01 已提交
864
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
865
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
866 867 868 869
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
870
            use_calib_mode=trt_calib_mode)
871 872 873
        if arch in TUNED_TRT_DYNAMIC_MODELS:
            config.enable_tuned_tensorrt_dynamic_shape(tuned_trt_shape_file,
                                                       True)
874 875

        if use_dynamic_shape:
876
            min_input_shape = {
W
wangxinxin08 已提交
877 878
                'image': [batch_size, 3, trt_min_shape, trt_min_shape],
                'scale_factor': [batch_size, 2]
879 880
            }
            max_input_shape = {
W
wangxinxin08 已提交
881 882
                'image': [batch_size, 3, trt_max_shape, trt_max_shape],
                'scale_factor': [batch_size, 2]
883 884
            }
            opt_input_shape = {
W
wangxinxin08 已提交
885 886
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape],
                'scale_factor': [batch_size, 2]
887
            }
888 889 890
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
891 892 893 894 895 896 897

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
898 899
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
900
    predictor = create_predictor(config)
901
    return predictor, config
Q
qingqing01 已提交
902 903


G
Guanghua Yu 已提交
904 905 906 907 908
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
909
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
935
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
936
    # visualize the predict result
C
cnn 已提交
937 938
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
939
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
940
        im_results = {}
W
wangguanzhong 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
956

C
cnn 已提交
957 958 959 960 961 962 963 964 965
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
966 967 968 969 970 971 972 973 974 975


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
976 977 978 979
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
980
    detector_func = 'Detector'
W
wangguanzhong 已提交
981
    if arch == 'SOLOv2':
982
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
983
    elif arch == 'PicoDet':
984 985
        detector_func = 'DetectorPicoDet'

986 987 988 989 990 991 992 993 994 995 996 997 998 999
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
1000

Q
qingqing01 已提交
1001
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
1002
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
1003
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
1004 1005
    else:
        # predict from image
C
cnn 已提交
1006 1007
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
1008
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
1009 1010 1011 1012 1013 1014 1015 1016
        if FLAGS.slice_infer:
            detector.predict_image_slice(
                img_list,
                FLAGS.slice_size,
                FLAGS.overlap_ratio,
                FLAGS.combine_method,
                FLAGS.match_threshold,
                FLAGS.match_metric,
1017 1018
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
1019 1020
        else:
            detector.predict_image(
1021 1022 1023 1024 1025
                img_list,
                FLAGS.run_benchmark,
                repeats=100,
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
G
Guanghua Yu 已提交
1026 1027 1028
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
1029
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
1030
            model_dir = FLAGS.model_dir
1031
            model_info = {
1032 1033
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
1034
            }
W
wangguanzhong 已提交
1035
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
1036 1037 1038 1039


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
1040
    parser = argsparser()
Q
qingqing01 已提交
1041 1042
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
1043
    FLAGS.device = FLAGS.device.upper()
1044 1045
    assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
                            ], "device should be CPU, GPU, XPU or NPU"
G
Guanghua Yu 已提交
1046
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
1047

1048 1049 1050
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
1051

Q
qingqing01 已提交
1052
    main()