utils.py 16.6 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import argparse
19
import numpy as np
G
Guanghua Yu 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
C
cnn 已提交
38
    parser.add_argument(
W
wangguanzhong 已提交
39
        "--batch_size", type=int, default=1, help="batch_size for inference.")
G
Guanghua Yu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
61 62
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
G
Guanghua Yu 已提交
63 64 65 66
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
D
duanyanhui 已提交
67
        help="Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU."
G
Guanghua Yu 已提交
68
    )
G
Guanghua Yu 已提交
69 70 71 72
    parser.add_argument(
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
G
Guanghua Yu 已提交
73
        help="Deprecated, please use `--device`.")
G
Guanghua Yu 已提交
74 75 76 77 78 79 80 81 82 83
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
84 85 86 87 88
    parser.add_argument(
        "--enable_mkldnn_bfloat16",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn bfloat16 inference with CPU.")
G
Guanghua Yu 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
G
George Ni 已提交
109 110
    parser.add_argument(
        '--save_images',
111
        type=ast.literal_eval,
112
        default=True,
113
        help='Save visualization image results.')
G
George Ni 已提交
114
    parser.add_argument(
115
        '--save_mot_txts',
G
George Ni 已提交
116 117
        action='store_true',
        help='Save tracking results (txt).')
118 119 120 121 122 123 124 125 126 127
    parser.add_argument(
        '--save_mot_txt_per_img',
        action='store_true',
        help='Save tracking results (txt) for each image.')
    parser.add_argument(
        '--scaled',
        type=bool,
        default=False,
        help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
        "True in general detector.")
W
wangguanzhong 已提交
128 129
    parser.add_argument(
        "--tracker_config", type=str, default=None, help=("tracker donfig"))
G
George Ni 已提交
130 131 132 133 134 135
    parser.add_argument(
        "--reid_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."))
136 137 138 139 140
    parser.add_argument(
        "--reid_batch_size",
        type=int,
        default=50,
        help="max batch_size for reid model inference.")
Z
zhiboniu 已提交
141 142
    parser.add_argument(
        '--use_dark',
143
        type=ast.literal_eval,
Z
zhiboniu 已提交
144 145
        default=True,
        help='whether to use darkpose to get better keypoint position predict ')
J
JYChen 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    parser.add_argument(
        "--action_file",
        type=str,
        default=None,
        help="Path of input file for action recognition.")
    parser.add_argument(
        "--window_size",
        type=int,
        default=50,
        help="Temporal size of skeleton feature for action recognition.")
    parser.add_argument(
        "--random_pad",
        type=ast.literal_eval,
        default=False,
        help="Whether do random padding for action recognition.")
161 162
    parser.add_argument(
        "--save_results",
163
        action='store_true',
164 165
        default=False,
        help="Whether save detection result to file using coco format")
166 167 168 169 170
    parser.add_argument(
        '--use_coco_category',
        action='store_true',
        default=False,
        help='Whether to use the coco format dictionary `clsid2catid`')
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    parser.add_argument(
        "--slice_infer",
        action='store_true',
        help="Whether to slice the image and merge the inference results for small object detection."
    )
    parser.add_argument(
        '--slice_size',
        nargs='+',
        type=int,
        default=[640, 640],
        help="Height of the sliced image.")
    parser.add_argument(
        "--overlap_ratio",
        nargs='+',
        type=float,
        default=[0.25, 0.25],
        help="Overlap height ratio of the sliced image.")
    parser.add_argument(
        "--combine_method",
        type=str,
        default='nms',
        help="Combine method of the sliced images' detection results, choose in ['nms', 'nmm', 'concat']."
    )
    parser.add_argument(
        "--match_threshold",
        type=float,
        default=0.6,
        help="Combine method matching threshold.")
    parser.add_argument(
        "--match_metric",
        type=str,
F
Feng Ni 已提交
202
        default='ios',
203
        help="Combine method matching metric, choose in ['iou', 'ios'].")
204 205 206 207 208 209 210 211 212 213
    parser.add_argument(
        "--collect_trt_shape_info",
        action='store_true',
        default=False,
        help="Whether to collect dynamic shape before using tensorrt.")
    parser.add_argument(
        "--tuned_trt_shape_file",
        type=str,
        default="shape_range_info.pbtxt",
        help="Path of a dynamic shape file for tensorrt.")
L
Lin Manhui 已提交
214
    parser.add_argument("--use_fd_format", action="store_true")
G
Guanghua Yu 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
W
wangguanzhong 已提交
246
    def __init__(self, with_tracker=False):
G
Guanghua Yu 已提交
247
        super(Timer, self).__init__()
W
wangguanzhong 已提交
248
        self.with_tracker = with_tracker
249 250 251
        self.preprocess_time_s = Times()
        self.inference_time_s = Times()
        self.postprocess_time_s = Times()
W
wangguanzhong 已提交
252
        self.tracking_time_s = Times()
G
Guanghua Yu 已提交
253 254 255
        self.img_num = 0

    def info(self, average=False):
W
wangguanzhong 已提交
256 257 258 259 260 261 262 263
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
            total_time = total_time + track_time
G
Guanghua Yu 已提交
264 265 266 267
        total_time = round(total_time, 4)
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))
W
wangguanzhong 已提交
268 269 270 271 272 273 274 275
        preprocess_time = round(pre_time / max(1, self.img_num),
                                4) if average else pre_time
        postprocess_time = round(post_time / max(1, self.img_num),
                                 4) if average else post_time
        inference_time = round(infer_time / max(1, self.img_num),
                               4) if average else infer_time
        tracking_time = round(track_time / max(1, self.img_num),
                              4) if average else track_time
G
Guanghua Yu 已提交
276

277
        average_latency = total_time / max(1, self.img_num)
278 279 280
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
G
Guanghua Yu 已提交
281
        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
282
            average_latency * 1000, qps))
W
wangguanzhong 已提交
283 284 285 286 287 288 289 290 291 292
        if self.with_tracker:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000, tracking_time * 1000))
        else:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000))
G
Guanghua Yu 已提交
293 294 295

    def report(self, average=False):
        dic = {}
W
wangguanzhong 已提交
296 297 298 299 300 301 302 303 304 305 306
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num),
                                         4) if average else pre_time
        dic['inference_time_s'] = round(infer_time / max(1, self.img_num),
                                        4) if average else infer_time
        dic['postprocess_time_s'] = round(post_time / max(1, self.img_num),
                                          4) if average else post_time
G
Guanghua Yu 已提交
307
        dic['img_num'] = self.img_num
W
wangguanzhong 已提交
308 309
        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
310
            dic['tracking_time_s'] = round(track_time / max(1, self.img_num),
J
JYChen 已提交
311
                                           4) if average else track_time
W
wangguanzhong 已提交
312
            total_time = total_time + track_time
313
        dic['total_time_s'] = round(total_time, 4)
G
Guanghua Yu 已提交
314 315 316 317 318 319 320 321 322 323 324
        return dic


def get_current_memory_mb():
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
325
    gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))
G
Guanghua Yu 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    gpus = GPUtil.getGPUs()
    if gpu_id is not None and len(gpus) > 0:
        gpu_percent = gpus[gpu_id].load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370


def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'):
    final_boxes = []
    for c in range(num_classes):
        idxs = bboxs[:, 0] == c
        if np.count_nonzero(idxs) == 0: continue
        r = nms(bboxs[idxs, 1:], match_threshold, match_metric)
        final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
    return final_boxes


def nms(dets, match_threshold=0.6, match_metric='iou'):
    """ Apply NMS to avoid detecting too many overlapping bounding boxes.
        Args:
            dets: shape [N, 5], [score, x1, y1, x2, y2]
            match_metric: 'iou' or 'ios'
            match_threshold: overlap thresh for match metric.
    """
    if dets.shape[0] == 0:
        return dets[[], :]
    scores = dets[:, 0]
    x1 = dets[:, 1]
    y1 = dets[:, 2]
    x2 = dets[:, 3]
    y2 = dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
W
wangguanzhong 已提交
371
    suppressed = np.zeros((ndets), dtype=np.int32)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            if match_metric == 'iou':
                union = iarea + areas[j] - inter
                match_value = inter / union
            elif match_metric == 'ios':
                smaller = min(iarea, areas[j])
                match_value = inter / smaller
            else:
                raise ValueError()
            if match_value >= match_threshold:
                suppressed[j] = 1
    keep = np.where(suppressed == 0)[0]
    dets = dets[keep, :]
    return dets
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489


coco_clsid2catid = {
    0: 1,
    1: 2,
    2: 3,
    3: 4,
    4: 5,
    5: 6,
    6: 7,
    7: 8,
    8: 9,
    9: 10,
    10: 11,
    11: 13,
    12: 14,
    13: 15,
    14: 16,
    15: 17,
    16: 18,
    17: 19,
    18: 20,
    19: 21,
    20: 22,
    21: 23,
    22: 24,
    23: 25,
    24: 27,
    25: 28,
    26: 31,
    27: 32,
    28: 33,
    29: 34,
    30: 35,
    31: 36,
    32: 37,
    33: 38,
    34: 39,
    35: 40,
    36: 41,
    37: 42,
    38: 43,
    39: 44,
    40: 46,
    41: 47,
    42: 48,
    43: 49,
    44: 50,
    45: 51,
    46: 52,
    47: 53,
    48: 54,
    49: 55,
    50: 56,
    51: 57,
    52: 58,
    53: 59,
    54: 60,
    55: 61,
    56: 62,
    57: 63,
    58: 64,
    59: 65,
    60: 67,
    61: 70,
    62: 72,
    63: 73,
    64: 74,
    65: 75,
    66: 76,
    67: 77,
    68: 78,
    69: 79,
    70: 80,
    71: 81,
    72: 82,
    73: 84,
    74: 85,
    75: 86,
    76: 87,
    77: 88,
    78: 89,
    79: 90
}
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545


def gaussian_radius(bbox_size, min_overlap):
    height, width = bbox_size

    a1 = 1
    b1 = (height + width)
    c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
    sq1 = np.sqrt(b1**2 - 4 * a1 * c1)
    radius1 = (b1 + sq1) / (2 * a1)

    a2 = 4
    b2 = 2 * (height + width)
    c2 = (1 - min_overlap) * width * height
    sq2 = np.sqrt(b2**2 - 4 * a2 * c2)
    radius2 = (b2 + sq2) / 2

    a3 = 4 * min_overlap
    b3 = -2 * min_overlap * (height + width)
    c3 = (min_overlap - 1) * width * height
    sq3 = np.sqrt(b3**2 - 4 * a3 * c3)
    radius3 = (b3 + sq3) / 2
    return min(radius1, radius2, radius3)


def gaussian2D(shape, sigma_x=1, sigma_y=1):
    m, n = [(ss - 1.) / 2. for ss in shape]
    y, x = np.ogrid[-m:m + 1, -n:n + 1]

    h = np.exp(-(x * x / (2 * sigma_x * sigma_x) + y * y / (2 * sigma_y *
                                                            sigma_y)))
    h[h < np.finfo(h.dtype).eps * h.max()] = 0
    return h


def draw_umich_gaussian(heatmap, center, radius, k=1):
    """
    draw_umich_gaussian, refer to https://github.com/xingyizhou/CenterNet/blob/master/src/lib/utils/image.py#L126
    """
    diameter = 2 * radius + 1
    gaussian = gaussian2D(
        (diameter, diameter), sigma_x=diameter / 6, sigma_y=diameter / 6)

    x, y = int(center[0]), int(center[1])

    height, width = heatmap.shape[0:2]

    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)

    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:
                               radius + right]
    if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
        np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
    return heatmap