utils.py 8.3 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import argparse


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
C
cnn 已提交
37
    parser.add_argument(
W
wangguanzhong 已提交
38
        "--batch_size", type=int, default=1, help="batch_size for inference.")
G
Guanghua Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
        help="mode of running(fluid/trt_fp32/trt_fp16/trt_int8)")
G
Guanghua Yu 已提交
62 63 64 65 66 67
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
G
Guanghua Yu 已提交
68 69 70 71
    parser.add_argument(
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
G
Guanghua Yu 已提交
72
        help="Deprecated, please use `--device`.")
G
Guanghua Yu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
G
George Ni 已提交
103 104 105
    parser.add_argument(
        '--save_images',
        action='store_true',
106
        help='Save visualization image results.')
G
George Ni 已提交
107
    parser.add_argument(
108
        '--save_mot_txts',
G
George Ni 已提交
109 110
        action='store_true',
        help='Save tracking results (txt).')
111 112 113 114 115 116 117 118 119 120
    parser.add_argument(
        '--save_mot_txt_per_img',
        action='store_true',
        help='Save tracking results (txt) for each image.')
    parser.add_argument(
        '--scaled',
        type=bool,
        default=False,
        help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
        "True in general detector.")
G
George Ni 已提交
121 122 123 124 125 126
    parser.add_argument(
        "--reid_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."))
127 128 129 130 131
    parser.add_argument(
        "--reid_batch_size",
        type=int,
        default=50,
        help="max batch_size for reid model inference.")
Z
zhiboniu 已提交
132 133 134 135 136
    parser.add_argument(
        '--use_dark',
        type=bool,
        default=True,
        help='whether to use darkpose to get better keypoint position predict ')
G
Guanghua Yu 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
    def __init__(self):
        super(Timer, self).__init__()
170 171 172
        self.preprocess_time_s = Times()
        self.inference_time_s = Times()
        self.postprocess_time_s = Times()
G
Guanghua Yu 已提交
173 174 175
        self.img_num = 0

    def info(self, average=False):
176 177
        total_time = self.preprocess_time_s.value(
        ) + self.inference_time_s.value() + self.postprocess_time_s.value()
G
Guanghua Yu 已提交
178 179 180 181
        total_time = round(total_time, 4)
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))
182
        preprocess_time = round(
183
            self.preprocess_time_s.value() / max(1, self.img_num),
184
            4) if average else self.preprocess_time_s.value()
G
Guanghua Yu 已提交
185
        postprocess_time = round(
186
            self.postprocess_time_s.value() / max(1, self.img_num),
187
            4) if average else self.postprocess_time_s.value()
188 189
        inference_time = round(self.inference_time_s.value() /
                               max(1, self.img_num),
190
                               4) if average else self.inference_time_s.value()
G
Guanghua Yu 已提交
191

192
        average_latency = total_time / max(1, self.img_num)
193 194 195
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
G
Guanghua Yu 已提交
196
        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
197
            average_latency * 1000, qps))
G
Guanghua Yu 已提交
198 199 200 201 202 203 204
        print(
            "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
            format(preprocess_time * 1000, inference_time * 1000,
                   postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
205
        dic['preprocess_time_s'] = round(
206
            self.preprocess_time_s.value() / max(1, self.img_num),
207 208
            4) if average else self.preprocess_time_s.value()
        dic['postprocess_time_s'] = round(
209
            self.postprocess_time_s.value() / max(1, self.img_num),
210 211
            4) if average else self.postprocess_time_s.value()
        dic['inference_time_s'] = round(
212
            self.inference_time_s.value() / max(1, self.img_num),
213
            4) if average else self.inference_time_s.value()
G
Guanghua Yu 已提交
214
        dic['img_num'] = self.img_num
215 216 217
        total_time = self.preprocess_time_s.value(
        ) + self.inference_time_s.value() + self.postprocess_time_s.value()
        dic['total_time_s'] = round(total_time, 4)
G
Guanghua Yu 已提交
218 219 220 221 222 223 224 225 226 227 228
        return dic


def get_current_memory_mb():
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
229
    gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))
G
Guanghua Yu 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    gpus = GPUtil.getGPUs()
    if gpu_id is not None and len(gpus) > 0:
        gpu_percent = gpus[gpu_id].load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)