utils.py 9.3 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import argparse


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
C
cnn 已提交
37
    parser.add_argument(
W
wangguanzhong 已提交
38
        "--batch_size", type=int, default=1, help="batch_size for inference.")
G
Guanghua Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
60 61
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
G
Guanghua Yu 已提交
62 63 64 65 66 67
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
G
Guanghua Yu 已提交
68 69 70 71
    parser.add_argument(
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
G
Guanghua Yu 已提交
72
        help="Deprecated, please use `--device`.")
G
Guanghua Yu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
G
George Ni 已提交
103 104 105
    parser.add_argument(
        '--save_images',
        action='store_true',
106
        help='Save visualization image results.')
G
George Ni 已提交
107
    parser.add_argument(
108
        '--save_mot_txts',
G
George Ni 已提交
109 110
        action='store_true',
        help='Save tracking results (txt).')
111 112 113 114 115 116 117 118 119 120
    parser.add_argument(
        '--save_mot_txt_per_img',
        action='store_true',
        help='Save tracking results (txt) for each image.')
    parser.add_argument(
        '--scaled',
        type=bool,
        default=False,
        help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
        "True in general detector.")
W
wangguanzhong 已提交
121 122
    parser.add_argument(
        "--tracker_config", type=str, default=None, help=("tracker donfig"))
G
George Ni 已提交
123 124 125 126 127 128
    parser.add_argument(
        "--reid_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."))
129 130 131 132 133
    parser.add_argument(
        "--reid_batch_size",
        type=int,
        default=50,
        help="max batch_size for reid model inference.")
Z
zhiboniu 已提交
134 135
    parser.add_argument(
        '--use_dark',
136
        type=ast.literal_eval,
Z
zhiboniu 已提交
137 138
        default=True,
        help='whether to use darkpose to get better keypoint position predict ')
G
Guanghua Yu 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
W
wangguanzhong 已提交
170
    def __init__(self, with_tracker=False):
G
Guanghua Yu 已提交
171
        super(Timer, self).__init__()
W
wangguanzhong 已提交
172
        self.with_tracker = with_tracker
173 174 175
        self.preprocess_time_s = Times()
        self.inference_time_s = Times()
        self.postprocess_time_s = Times()
W
wangguanzhong 已提交
176
        self.tracking_time_s = Times()
G
Guanghua Yu 已提交
177 178 179
        self.img_num = 0

    def info(self, average=False):
W
wangguanzhong 已提交
180 181 182 183 184 185 186 187
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
            total_time = total_time + track_time
G
Guanghua Yu 已提交
188 189 190 191
        total_time = round(total_time, 4)
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))
W
wangguanzhong 已提交
192 193 194 195 196 197 198 199
        preprocess_time = round(pre_time / max(1, self.img_num),
                                4) if average else pre_time
        postprocess_time = round(post_time / max(1, self.img_num),
                                 4) if average else post_time
        inference_time = round(infer_time / max(1, self.img_num),
                               4) if average else infer_time
        tracking_time = round(track_time / max(1, self.img_num),
                              4) if average else track_time
G
Guanghua Yu 已提交
200

201
        average_latency = total_time / max(1, self.img_num)
202 203 204
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
G
Guanghua Yu 已提交
205
        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
206
            average_latency * 1000, qps))
W
wangguanzhong 已提交
207 208 209 210 211 212 213 214 215 216
        if self.with_tracker:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000, tracking_time * 1000))
        else:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000))
G
Guanghua Yu 已提交
217 218 219

    def report(self, average=False):
        dic = {}
W
wangguanzhong 已提交
220 221 222 223 224 225 226 227 228 229 230
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num),
                                         4) if average else pre_time
        dic['inference_time_s'] = round(infer_time / max(1, self.img_num),
                                        4) if average else infer_time
        dic['postprocess_time_s'] = round(post_time / max(1, self.img_num),
                                          4) if average else post_time
G
Guanghua Yu 已提交
231
        dic['img_num'] = self.img_num
W
wangguanzhong 已提交
232 233
        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
234 235
            dic['tracking_time_s'] = round(track_time / max(1, self.img_num),
                                        4) if average else track_time
W
wangguanzhong 已提交
236
            total_time = total_time + track_time
237
        dic['total_time_s'] = round(total_time, 4)
G
Guanghua Yu 已提交
238 239 240 241 242 243 244 245 246 247 248
        return dic


def get_current_memory_mb():
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
249
    gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))
G
Guanghua Yu 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    gpus = GPUtil.getGPUs()
    if gpu_id is not None and len(gpus) > 0:
        gpu_percent = gpus[gpu_id].load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)