utils.py 7.7 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import argparse


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
C
cnn 已提交
37
    parser.add_argument(
W
wangguanzhong 已提交
38
        "--batch_size", type=int, default=1, help="batch_size for inference.")
G
Guanghua Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
        help="mode of running(fluid/trt_fp32/trt_fp16/trt_int8)")
G
Guanghua Yu 已提交
62 63 64 65 66 67
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
G
Guanghua Yu 已提交
68 69 70 71
    parser.add_argument(
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
G
Guanghua Yu 已提交
72
        help="Deprecated, please use `--device`.")
G
Guanghua Yu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
G
George Ni 已提交
103 104 105
    parser.add_argument(
        '--save_images',
        action='store_true',
106
        help='Save visualization image results.')
G
George Ni 已提交
107
    parser.add_argument(
108
        '--save_mot_txts',
G
George Ni 已提交
109 110
        action='store_true',
        help='Save tracking results (txt).')
G
George Ni 已提交
111 112 113 114 115 116
    parser.add_argument(
        "--reid_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."))
Z
zhiboniu 已提交
117 118 119 120 121
    parser.add_argument(
        '--use_dark',
        type=bool,
        default=True,
        help='whether to use darkpose to get better keypoint position predict ')
G
Guanghua Yu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
    def __init__(self):
        super(Timer, self).__init__()
155 156 157
        self.preprocess_time_s = Times()
        self.inference_time_s = Times()
        self.postprocess_time_s = Times()
G
Guanghua Yu 已提交
158 159 160
        self.img_num = 0

    def info(self, average=False):
161 162
        total_time = self.preprocess_time_s.value(
        ) + self.inference_time_s.value() + self.postprocess_time_s.value()
G
Guanghua Yu 已提交
163 164 165 166
        total_time = round(total_time, 4)
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))
167 168 169
        preprocess_time = round(
            self.preprocess_time_s.value() / self.img_num,
            4) if average else self.preprocess_time_s.value()
G
Guanghua Yu 已提交
170
        postprocess_time = round(
171 172 173 174
            self.postprocess_time_s.value() / self.img_num,
            4) if average else self.postprocess_time_s.value()
        inference_time = round(self.inference_time_s.value() / self.img_num,
                               4) if average else self.inference_time_s.value()
G
Guanghua Yu 已提交
175 176 177 178 179 180 181 182 183 184 185

        average_latency = total_time / self.img_num
        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, 1 / average_latency))
        print(
            "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
            format(preprocess_time * 1000, inference_time * 1000,
                   postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
186 187 188 189 190 191 192 193 194
        dic['preprocess_time_s'] = round(
            self.preprocess_time_s.value() / self.img_num,
            4) if average else self.preprocess_time_s.value()
        dic['postprocess_time_s'] = round(
            self.postprocess_time_s.value() / self.img_num,
            4) if average else self.postprocess_time_s.value()
        dic['inference_time_s'] = round(
            self.inference_time_s.value() / self.img_num,
            4) if average else self.inference_time_s.value()
G
Guanghua Yu 已提交
195
        dic['img_num'] = self.img_num
196 197 198
        total_time = self.preprocess_time_s.value(
        ) + self.inference_time_s.value() + self.postprocess_time_s.value()
        dic['total_time_s'] = round(total_time, 4)
G
Guanghua Yu 已提交
199 200 201 202 203 204 205 206 207 208 209
        return dic


def get_current_memory_mb():
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
210
    gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))
G
Guanghua Yu 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    gpus = GPUtil.getGPUs()
    if gpu_id is not None and len(gpus) > 0:
        gpu_percent = gpus[gpu_id].load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)