trainer.py 25.5 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
25
import typing
K
Kaipeng Deng 已提交
26 27 28
from PIL import Image

import paddle
W
wangguanzhong 已提交
29 30
import paddle.distributed as dist
from paddle.distributed import fleet
31
from paddle import amp
K
Kaipeng Deng 已提交
32
from paddle.static import InputSpec
33
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
34 35 36

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
37
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
38
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
G
George Ni 已提交
39
from ppdet.metrics import RBoxMetric, JDEDetMetric
K
Kaipeng Deng 已提交
40
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
41 42
import ppdet.utils.stats as stats

43
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
44 45 46
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
47
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
48 49 50

__all__ = ['Trainer']

51 52
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
53 54 55 56 57 58 59

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
60
        self.optimizer = None
61
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
62

G
George Ni 已提交
63
        # build data loader
64 65 66 67 68 69 70 71 72
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
73 74 75 76 77 78 79 80
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
81 82 83 84
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
85
        # build model
86 87 88 89 90
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
91

92 93 94 95 96
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            self.ema = ModelEMA(
                cfg['ema_decay'], self.model, use_thres_step=True)

K
Kaipeng Deng 已提交
97 98 99 100 101 102 103 104
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
105 106 107 108 109 110 111 112

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
113 114
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
115

K
Kaipeng Deng 已提交
116 117 118
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
119
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
120 121 122 123 124 125 126 127 128 129 130

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
131
            if self.cfg.get('use_vdl', False):
132
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
133 134 135
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
136 137
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
138
            self._compose_callback = ComposeCallback(self._callbacks)
139
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
140 141
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
142 143 144 145
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
146 147
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
148 149
            self._metrics = []
            return
150
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
151
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
152
            # TODO: bias should be unified
153
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
154 155
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
156
            save_prediction_only = self.cfg.get('save_prediction_only', False)
157 158 159

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
160 161
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
162 163 164 165 166 167 168 169 170

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

171
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
172 173
            self._metrics = [
                COCOMetric(
174
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
175
                    clsid2catid=clsid2catid,
176
                    classwise=classwise,
S
shangliang Xu 已提交
177
                    output_eval=output_eval,
178
                    bias=bias,
179
                    IouType=IouType,
180
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
181
            ]
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
211 212 213
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
214
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
215
                    class_num=self.cfg.num_classes,
216 217
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
218
            ]
219 220 221 222 223 224 225 226 227
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
228 229 230 231 232 233 234 235 236
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownCOCOEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
Z
zhiboniu 已提交
237 238 239 240 241 242 243 244 245
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownMPIIEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
G
George Ni 已提交
246 247
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
248
        else:
249
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
250
                self.cfg.metric))
K
Kaipeng Deng 已提交
251 252 253 254 255 256 257
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
258
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
272
    def load_weights(self, weights):
273 274
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
275
        self.start_epoch = 0
276
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
277 278
        logger.debug("Load weights {} to start training".format(weights))

279 280 281 282 283 284 285
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
286
    def resume_weights(self, weights):
287 288 289 290 291 292
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
293
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
294

K
Kaipeng Deng 已提交
295
    def train(self, validate=False):
K
Kaipeng Deng 已提交
296
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
297
        Init_mark = False
K
Kaipeng Deng 已提交
298

K
Kaipeng Deng 已提交
299 300 301 302 303
        # if validation in training is enabled, metrics should be re-init
        if validate:
            self._init_metrics(validate=validate)
            self._reset_metrics()

304
        model = self.model
305
        if self.cfg.get('fleet', False):
306
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
307
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
308
        elif self._nranks > 1:
G
George Ni 已提交
309 310 311 312
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
313 314

        # initial fp16
315
        if self.cfg.get('fp16', False):
316 317
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
318

K
Kaipeng Deng 已提交
319 320 321 322 323 324 325 326 327 328 329 330
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
331 332 333
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)

K
Kaipeng Deng 已提交
334
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
335
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
336 337 338
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
339
            model.train()
K
Kaipeng Deng 已提交
340 341 342 343 344 345
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

346
                if self.cfg.get('fp16', False):
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
364 365 366 367 368 369

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
370
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
371 372 373 374
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
375 376
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
377
                iter_tic = time.time()
K
Kaipeng Deng 已提交
378

379 380
            # apply ema weight on model
            if self.use_ema:
381
                weight = copy.deepcopy(self.model.state_dict())
382 383
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
384 385
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
386
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
387
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
388 389 390 391 392 393 394 395 396 397 398 399
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
400 401 402 403 404 405
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
406
                with paddle.no_grad():
407
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
408 409
                    self._eval_with_loader(self._eval_loader)

410 411 412 413
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
414
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
415 416 417
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
418 419
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
420 421
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
422
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
423 424 425 426 427 428 429 430 431
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

432 433 434 435 436
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
437 438 439 440 441 442 443 444 445
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
446
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
447 448 449
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
450
    def evaluate(self):
451 452
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
453

C
cnn 已提交
454 455 456 457 458
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
459 460 461 462 463 464
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
465 466
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
467

K
Kaipeng Deng 已提交
468 469 470
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
471 472
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
473 474 475 476
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
477

K
Kaipeng Deng 已提交
478
            for key in ['im_shape', 'scale_factor', 'im_id']:
479 480 481 482
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
483
            for key, value in outs.items():
484 485
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
486 487 488

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
489

K
Kaipeng Deng 已提交
490 491 492 493
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
494
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
495

496
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
497 498 499 500
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
501 502
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
503 504 505 506
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
507
                    int(im_id), catid2name, draw_threshold)
508
                self.status['result_image'] = np.array(image.copy())
509 510
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
511 512 513 514 515
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
516 517
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
518 519 520 521 522 523 524
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
538
        self.model.eval()
K
Kaipeng Deng 已提交
539 540 541 542 543
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
544 545 546 547 548 549
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
550
            image_shape = inputs_def.get('image_shape', None)
551
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
552
        if image_shape is None:
553
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
554

K
Kaipeng Deng 已提交
555
        self.model.eval()
556
        if hasattr(self.model, 'deploy'): self.model.deploy = True
K
Kaipeng Deng 已提交
557

K
Kaipeng Deng 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]
G
George Ni 已提交
571 572 573 574 575
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
K
Kaipeng Deng 已提交
576

Z
zhiboniu 已提交
577
        static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
G
Guanghua Yu 已提交
578 579 580
        # NOTE: dy2st do not pruned program, but jit.save will prune program
        # input spec, prune input spec here and save with pruned input spec
        pruned_input_spec = self._prune_input_spec(
Z
zhiboniu 已提交
581 582
            input_spec, static_model.forward.main_program,
            static_model.forward.outputs)
G
Guanghua Yu 已提交
583 584 585

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
586 587 588 589 590
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
591
            self.cfg.slim.save_quantized_model(
592 593
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
594 595
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec
G
Guanghua Yu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))