trainer.py 25.2 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24 25 26 27
import numpy as np
from PIL import Image

import paddle
W
wangguanzhong 已提交
28 29
import paddle.distributed as dist
from paddle.distributed import fleet
30
from paddle import amp
K
Kaipeng Deng 已提交
31
from paddle.static import InputSpec
32
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
33 34 35

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
36
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
37
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
G
George Ni 已提交
38
from ppdet.metrics import RBoxMetric, JDEDetMetric
K
Kaipeng Deng 已提交
39
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
40 41
import ppdet.utils.stats as stats

42
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
43 44 45
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
46
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
47 48 49

__all__ = ['Trainer']

50 51
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
52 53 54 55 56 57 58

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
59
        self.optimizer = None
60
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
61

G
George Ni 已提交
62
        # build data loader
63 64 65 66 67 68 69 70 71
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
72 73 74 75 76 77 78 79
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
80 81 82 83
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
84
        # build model
85 86 87 88 89
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
90

91 92 93 94 95
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            self.ema = ModelEMA(
                cfg['ema_decay'], self.model, use_thres_step=True)

K
Kaipeng Deng 已提交
96 97 98 99 100 101 102 103
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
104 105 106 107 108 109 110 111

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
112 113
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
114

K
Kaipeng Deng 已提交
115 116 117
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
118
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
119 120 121 122 123 124 125 126 127 128 129

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
130
            if self.cfg.get('use_vdl', False):
131
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
132 133 134
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
135 136
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
137
            self._compose_callback = ComposeCallback(self._callbacks)
138
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
139 140
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
141 142 143 144
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
145 146
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
147 148
            self._metrics = []
            return
149
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
150
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
151
            # TODO: bias should be unified
152
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
153 154
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
155
            save_prediction_only = self.cfg.get('save_prediction_only', False)
156 157 158

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
159 160
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
161 162 163 164 165 166 167 168 169

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

170
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
171 172
            self._metrics = [
                COCOMetric(
173
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
174
                    clsid2catid=clsid2catid,
175
                    classwise=classwise,
S
shangliang Xu 已提交
176
                    output_eval=output_eval,
177
                    bias=bias,
178
                    IouType=IouType,
179
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
180
            ]
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
210 211 212
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
213
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
214
                    class_num=self.cfg.num_classes,
215 216
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
217
            ]
218 219 220 221 222 223 224 225 226
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
227 228 229 230 231 232 233 234 235
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownCOCOEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
Z
zhiboniu 已提交
236 237 238 239 240 241 242 243 244
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownMPIIEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
G
George Ni 已提交
245 246
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
247
        else:
248
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
249
                self.cfg.metric))
K
Kaipeng Deng 已提交
250 251 252 253 254 255 256
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
257
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
271
    def load_weights(self, weights):
272 273
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
274
        self.start_epoch = 0
275
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
276 277
        logger.debug("Load weights {} to start training".format(weights))

278 279 280 281 282 283 284
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
285
    def resume_weights(self, weights):
286 287 288 289 290 291
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
292
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
293

K
Kaipeng Deng 已提交
294
    def train(self, validate=False):
K
Kaipeng Deng 已提交
295
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
296
        Init_mark = False
K
Kaipeng Deng 已提交
297

K
Kaipeng Deng 已提交
298 299 300 301 302
        # if validation in training is enabled, metrics should be re-init
        if validate:
            self._init_metrics(validate=validate)
            self._reset_metrics()

303
        model = self.model
304
        if self.cfg.get('fleet', False):
305
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
306
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
307
        elif self._nranks > 1:
G
George Ni 已提交
308 309 310 311
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
312 313

        # initial fp16
314
        if self.cfg.get('fp16', False):
315 316
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
317

K
Kaipeng Deng 已提交
318 319 320 321 322 323 324 325 326 327 328 329
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
330 331 332
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)

K
Kaipeng Deng 已提交
333
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
334
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
335 336 337
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
338
            model.train()
K
Kaipeng Deng 已提交
339 340 341 342 343 344
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

345
                if self.cfg.get('fp16', False):
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
363 364 365 366 367 368

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
369
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
370 371 372 373
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
374 375
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
376
                iter_tic = time.time()
K
Kaipeng Deng 已提交
377

378 379
            # apply ema weight on model
            if self.use_ema:
380
                weight = copy.deepcopy(self.model.state_dict())
381 382
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
383 384
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
385
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
386
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
387 388 389 390 391 392 393 394 395 396 397 398
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
399 400 401 402 403 404
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
405
                with paddle.no_grad():
406
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
407 408
                    self._eval_with_loader(self._eval_loader)

409 410 411 412
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
413
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
414 415 416
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
417 418
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
419 420
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
421
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
441
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
442 443 444
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
445
    def evaluate(self):
446 447
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
448

C
cnn 已提交
449 450 451 452 453
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
454 455 456 457 458 459
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
460 461
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
462

K
Kaipeng Deng 已提交
463 464 465
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
466 467
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
468 469 470 471
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
472

K
Kaipeng Deng 已提交
473 474
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
475
            for key, value in outs.items():
476 477
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
478 479 480

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
481

K
Kaipeng Deng 已提交
482 483 484 485
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
486
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
487

488
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
489 490 491 492
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
493 494
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
495 496 497 498
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
499
                    int(im_id), catid2name, draw_threshold)
500
                self.status['result_image'] = np.array(image.copy())
501 502
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
503 504 505 506 507
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
508 509
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
510 511 512 513 514 515 516
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
530
        self.model.eval()
K
Kaipeng Deng 已提交
531 532 533 534 535
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
536 537 538 539 540 541
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
542
            image_shape = inputs_def.get('image_shape', None)
543
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
544
        if image_shape is None:
545
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
546

K
Kaipeng Deng 已提交
547
        self.model.eval()
548
        if hasattr(self.model, 'deploy'): self.model.deploy = True
K
Kaipeng Deng 已提交
549

K
Kaipeng Deng 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]
G
George Ni 已提交
563 564 565 566 567
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
K
Kaipeng Deng 已提交
568

Z
zhiboniu 已提交
569
        static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
G
Guanghua Yu 已提交
570 571 572
        # NOTE: dy2st do not pruned program, but jit.save will prune program
        # input spec, prune input spec here and save with pruned input spec
        pruned_input_spec = self._prune_input_spec(
Z
zhiboniu 已提交
573 574
            input_spec, static_model.forward.main_program,
            static_model.forward.outputs)
G
Guanghua Yu 已提交
575 576 577

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
578 579 580 581 582
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
583
            self.cfg.slim.save_quantized_model(
584 585
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
586 587
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec
G
Guanghua Yu 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))