program.py 12.4 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
from collections import OrderedDict

littletomatodonkey's avatar
littletomatodonkey 已提交
23
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26
from paddle import to_tensor
import paddle.nn as nn
import paddle.nn.functional as F
W
WuHaobo 已提交
27 28 29 30 31 32

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
33
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
34 35 36 37 38
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


W
WuHaobo 已提交
39
def create_model(architecture, classes_num):
W
WuHaobo 已提交
40 41 42 43
    """
    Create a model

    Args:
44 45
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
46 47 48 49 50 51
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
52
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
53
    params = architecture.get("params", {})
W
WuHaobo 已提交
54
    return architectures.__dict__[name](class_dim=classes_num, **params)
W
WuHaobo 已提交
55 56


57 58
def create_loss(feeds,
                out,
W
WuHaobo 已提交
59 60 61
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
64 65 66 67 68 69 70 71 72 73 74
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
75 76
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
77 78
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
79
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
80 81 82 83

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
84
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
85 86
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
87
        return loss(out[0], out[1], out[2], feeds["label"])
W
WuHaobo 已提交
88

littletomatodonkey's avatar
littletomatodonkey 已提交
89
    if use_distillation:
90 91
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
92 93 94 95
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
96
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
97 98 99 100
        feed_y_a = feeds['y_a']
        feed_y_b = feeds['y_b']
        feed_lam = feeds['lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
W
WuHaobo 已提交
101 102
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
103
        return loss(out, feeds["label"])
W
WuHaobo 已提交
104 105


W
WuHaobo 已提交
106
def create_metric(out,
W
WuHaobo 已提交
107
                  label,
W
WuHaobo 已提交
108 109 110
                  architecture,
                  topk=5,
                  classes_num=1000,
111 112
                  use_distillation=False,
                  mode="train"):
W
WuHaobo 已提交
113 114 115 116 117 118 119 120
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes
121 122
        use_distillation(bool): whether to use distillation training
        mode(str): mode, train/valid
W
WuHaobo 已提交
123 124 125 126

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
127 128
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
129
        out = out[0]
W
WuHaobo 已提交
130 131 132 133
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
134
    softmax_out = F.softmax(out)
W
WuHaobo 已提交
135

W
WuHaobo 已提交
136
    fetchs = OrderedDict()
W
WuHaobo 已提交
137
    # set top1 to fetchs
littletomatodonkey's avatar
littletomatodonkey 已提交
138
    top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
W
WuHaobo 已提交
139
    # set topk to fetchs
W
WuHaobo 已提交
140
    k = min(topk, classes_num)
littletomatodonkey's avatar
littletomatodonkey 已提交
141
    topk = paddle.metric.accuracy(softmax_out, label=label, k=k)
142 143 144 145 146 147 148 149 150 151 152

    # multi cards' eval
    if mode != "train" and paddle.distributed.get_world_size() > 1:
        top1 = paddle.distributed.all_reduce(
            top1, op=paddle.distributed.ReduceOp.
            SUM) / paddle.distributed.get_world_size()
        topk = paddle.distributed.all_reduce(
            topk, op=paddle.distributed.ReduceOp.
            SUM) / paddle.distributed.get_world_size()

    fetchs['top1'] = top1
W
WuHaobo 已提交
153
    topk_name = 'top{}'.format(k)
W
WuHaobo 已提交
154
    fetchs[topk_name] = topk
W
WuHaobo 已提交
155 156 157 158

    return fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
159
def create_fetchs(feeds, net, config, mode="train"):
W
WuHaobo 已提交
160 161
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
162
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
163 164 165

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
166 167
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
168 169
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
170 171 172
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
173
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
174 175 176 177

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
178 179 180 181 182 183 184 185 186
    architecture = config.ARCHITECTURE
    topk = config.topk
    classes_num = config.classes_num
    epsilon = config.get('ls_epsilon')
    use_mix = config.get('use_mix') and mode == 'train'
    use_distillation = config.get('use_distillation')

    out = net(feeds["image"])

W
WuHaobo 已提交
187
    fetchs = OrderedDict()
188 189
    fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
                                 epsilon, use_mix, use_distillation)
littletomatodonkey's avatar
littletomatodonkey 已提交
190
    if not use_mix:
191 192 193 194 195 196 197 198
        metric = create_metric(
            out,
            feeds["label"],
            architecture,
            topk,
            classes_num,
            use_distillation,
            mode=mode)
W
WuHaobo 已提交
199 200 201 202 203
        fetchs.update(metric)

    return fetchs


W
WuHaobo 已提交
204
def create_optimizer(config, parameter_list=None):
W
WuHaobo 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
239
    return opt(lr, parameter_list), lr
W
WuHaobo 已提交
240 241


242
def create_feeds(batch, use_mix):
littletomatodonkey's avatar
littletomatodonkey 已提交
243
    image = batch[0]
244
    if use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
245 246 247
        y_a = to_tensor(batch[1].numpy().astype("int64").reshape(-1, 1))
        y_b = to_tensor(batch[2].numpy().astype("int64").reshape(-1, 1))
        lam = to_tensor(batch[3].numpy().astype("float32").reshape(-1, 1))
248 249
        feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
    else:
littletomatodonkey's avatar
littletomatodonkey 已提交
250
        label = to_tensor(batch[1].numpy().astype('int64').reshape(-1, 1))
251 252 253 254
        feeds = {"image": image, "label": label}
    return feeds


255 256 257 258 259 260 261
def run(dataloader,
        config,
        net,
        optimizer=None,
        lr_scheduler=None,
        epoch=0,
        mode='train'):
W
WuHaobo 已提交
262 263 264 265
    """
    Feed data to the model and fetch the measures and loss

    Args:
littletomatodonkey's avatar
littletomatodonkey 已提交
266
        dataloader(paddle dataloader):
W
WuHaobo 已提交
267 268 269 270 271 272 273 274
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
275
    print_interval = config.get("print_interval", 10)
littletomatodonkey's avatar
littletomatodonkey 已提交
276
    use_mix = config.get("use_mix", False) and mode == "train"
littletomatodonkey's avatar
littletomatodonkey 已提交
277 278

    metric_list = [
L
littletomatodonkey 已提交
279 280
        ("loss", AverageMeter(
            'loss', '7.5f', postfix=",")),
littletomatodonkey's avatar
littletomatodonkey 已提交
281
        ("lr", AverageMeter(
L
littletomatodonkey 已提交
282 283 284 285 286
            'lr', 'f', postfix=",", need_avg=False)),
        ("batch_time", AverageMeter(
            'batch_cost', '.5f', postfix=" s,")),
        ("reader_time", AverageMeter(
            'reader_cost', '.5f', postfix=" s,")),
littletomatodonkey's avatar
littletomatodonkey 已提交
287 288
    ]
    if not use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
289
        topk_name = 'top{}'.format(config.topk)
L
littletomatodonkey 已提交
290 291 292 293 294 295
        metric_list.insert(
            1, (topk_name, AverageMeter(
                topk_name, '.5f', postfix=",")))
        metric_list.insert(
            1, ("top1", AverageMeter(
                "top1", '.5f', postfix=",")))
littletomatodonkey's avatar
littletomatodonkey 已提交
296 297

    metric_list = OrderedDict(metric_list)
W
WuHaobo 已提交
298

W
WuHaobo 已提交
299
    tic = time.time()
300
    for idx, batch in enumerate(dataloader()):
L
littletomatodonkey 已提交
301 302 303 304 305
        # avoid statistics from warmup time
        if idx == 10:
            metric_list["batch_time"].reset()
            metric_list["reader_time"].reset()

littletomatodonkey's avatar
littletomatodonkey 已提交
306
        metric_list['reader_time'].update(time.time() - tic)
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
307
        batch_size = len(batch[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
308
        feeds = create_feeds(batch, use_mix)
littletomatodonkey's avatar
littletomatodonkey 已提交
309
        fetchs = create_fetchs(feeds, net, config, mode)
W
WuHaobo 已提交
310
        if mode == 'train':
L
littletomatodonkey 已提交
311 312 313 314 315
            avg_loss = fetchs['loss']
            avg_loss.backward()

            optimizer.step()
            optimizer.clear_grad()
W
WuHaobo 已提交
316
            metric_list['lr'].update(
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
317
                optimizer._global_learning_rate().numpy()[0], batch_size)
W
WuHaobo 已提交
318

319 320 321 322 323 324 325 326 327 328 329
            if lr_scheduler is not None:
                if lr_scheduler.update_specified:
                    curr_global_counter = lr_scheduler.step_each_epoch * epoch + idx
                    update = max(
                        0, curr_global_counter - lr_scheduler.update_start_step
                    ) % lr_scheduler.update_step_interval == 0
                    if update:
                        lr_scheduler.step()
                else:
                    lr_scheduler.step()

W
WuHaobo 已提交
330
        for name, fetch in fetchs.items():
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
331
            metric_list[name].update(fetch.numpy()[0], batch_size)
L
littletomatodonkey 已提交
332
        metric_list["batch_time"].update(time.time() - tic)
W
WuHaobo 已提交
333
        tic = time.time()
W
WuHaobo 已提交
334

L
littletomatodonkey 已提交
335 336 337 338 339
        fetchs_str = ' '.join([
            str(metric_list[key].mean)
            if "time" in key else str(metric_list[key].value)
            for key in metric_list
        ])
littletomatodonkey's avatar
littletomatodonkey 已提交
340 341

        if idx % print_interval == 0:
L
littletomatodonkey 已提交
342
            ips_info = "ips: {:.5f} images/sec.".format(
L
littletomatodonkey 已提交
343
                batch_size / metric_list["batch_time"].avg)
littletomatodonkey's avatar
littletomatodonkey 已提交
344
            if mode == 'eval':
L
littletomatodonkey 已提交
345 346
                logger.info("{:s} step:{:<4d}, {:s} {:s}".format(
                    mode, idx, fetchs_str, ips_info))
littletomatodonkey's avatar
littletomatodonkey 已提交
347 348 349
            else:
                epoch_str = "epoch:{:<3d}".format(epoch)
                step_str = "{:s} step:{:<4d}".format(mode, idx)
L
littletomatodonkey 已提交
350
                logger.info("{:s}, {:s}, {:s} {:s}".format(
littletomatodonkey's avatar
littletomatodonkey 已提交
351 352 353
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
L
littletomatodonkey 已提交
354 355
                    logger.coloring(fetchs_str, 'OKGREEN'),
                    logger.coloring(ips_info, 'OKGREEN')))
S
refine  
shippingwang 已提交
356

357 358
    end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
                       [metric_list['batch_time'].total])
L
littletomatodonkey 已提交
359 360 361 362
    ips_info = "ips: {:.5f} images/sec.".format(
        batch_size * metric_list["batch_time"].count /
        metric_list["batch_time"].sum)

W
WuHaobo 已提交
363
    if mode == 'eval':
L
littletomatodonkey 已提交
364
        logger.info("END {:s} {:s} {:s}".format(mode, end_str, ips_info))
W
WuHaobo 已提交
365
    else:
S
shippingwang 已提交
366 367
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

L
littletomatodonkey 已提交
368
        logger.info("{:s} {:s} {:s} {:s}".format(
369 370
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
L
littletomatodonkey 已提交
371 372
            logger.coloring(end_str, "OKGREEN"),
            logger.coloring(ips_info, "OKGREEN"), ))
littletomatodonkey's avatar
littletomatodonkey 已提交
373

W
WuHaobo 已提交
374
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
375
    if mode == 'valid':
376
        return metric_list['top1'].avg