program.py 14.1 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from collections import OrderedDict

import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
31
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
32 33 34 35 36 37 38 39
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy


littletomatodonkey's avatar
littletomatodonkey 已提交
40
def create_feeds(image_shape, use_mix=None):
W
WuHaobo 已提交
41 42 43 44 45
    """
    Create feeds as model input

    Args:
        image_shape(list[int]): model input shape, such as [3, 224, 224]
littletomatodonkey's avatar
littletomatodonkey 已提交
46
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
47 48 49 50 51 52 53

    Returns:
        feeds(dict): dict of model input variables
    """
    feeds = OrderedDict()
    feeds['image'] = fluid.data(
        name="feed_image", shape=[None] + image_shape, dtype="float32")
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    if use_mix:
W
WuHaobo 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        feeds['feed_y_a'] = fluid.data(
            name="feed_y_a", shape=[None, 1], dtype="int64")
        feeds['feed_y_b'] = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64")
        feeds['feed_lam'] = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32")
    else:
        feeds['label'] = fluid.data(
            name="feed_label", shape=[None, 1], dtype="int64")

    return feeds


def create_dataloader(feeds):
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    capacity = 64 if trainer_num <= 1 else 8
    dataloader = fluid.io.DataLoader.from_generator(
        feed_list=feeds,
        capacity=capacity,
        use_double_buffer=True,
        iterable=True)

    return dataloader


littletomatodonkey's avatar
littletomatodonkey 已提交
89
def create_model(architecture, image, classes_num):
W
WuHaobo 已提交
90 91 92 93
    """
    Create a model

    Args:
94 95
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
96 97 98 99 100 101
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
102
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
103
    params = architecture.get("params", {})
littletomatodonkey's avatar
littletomatodonkey 已提交
104
    model = architectures.__dict__[name](**params)
W
WuHaobo 已提交
105 106 107 108 109 110 111 112 113
    out = model.net(input=image, class_dim=classes_num)
    return out


def create_loss(out,
                feeds,
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
114 115
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
116 117 118 119 120 121 122 123 124 125 126
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
127 128
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
129 130
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
131
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
132 133 134 135

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
136
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
137 138 139 140 141
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out[0], out[1], out[2], target)

littletomatodonkey's avatar
littletomatodonkey 已提交
142
    if use_distillation:
143 144
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146 147 148
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
149 150 151 152 153 154 155 156 157 158 159
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
        feed_y_a = feeds['feed_y_a']
        feed_y_b = feeds['feed_y_b']
        feed_lam = feeds['feed_lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out, target)


W
WuHaobo 已提交
160 161 162 163 164
def create_metric(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
165
                  use_distillation=False):
W
WuHaobo 已提交
166 167 168 169 170 171 172 173 174 175 176 177
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
178 179 180 181 182 183 184 185 186
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)

W
WuHaobo 已提交
187
    fetchs = OrderedDict()
W
WuHaobo 已提交
188 189
    # set top1 to fetchs
    top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1)
190
    fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True))
W
WuHaobo 已提交
191
    # set topk to fetchs
W
WuHaobo 已提交
192
    k = min(topk, classes_num)
W
WuHaobo 已提交
193
    topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k)
W
WuHaobo 已提交
194
    topk_name = 'top{}'.format(k)
195
    fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True))
W
WuHaobo 已提交
196 197 198 199 200 201 202 203 204 205

    return fetchs


def create_fetchs(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
206 207
                  use_mix=False,
                  use_distillation=False):
W
WuHaobo 已提交
208 209
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
210
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
211 212 213

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
214 215
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
216 217
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
218 219 220
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
221
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
222 223 224 225 226

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    fetchs = OrderedDict()
littletomatodonkey's avatar
littletomatodonkey 已提交
227 228
    loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix,
                       use_distillation)
229
    fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
littletomatodonkey's avatar
littletomatodonkey 已提交
230
    if not use_mix:
W
WuHaobo 已提交
231 232
        metric = create_metric(out, feeds, architecture, topk, classes_num,
                               use_distillation)
W
WuHaobo 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        fetchs.update(metric)

    return fetchs


def create_optimizer(config):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
    return opt(lr)


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.exec_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


300 301 302 303 304 305 306 307 308 309 310 311 312
def mixed_precision_optimizer(config, optimizer):
    use_fp16 = config.get('use_fp16', False)
    amp_scale_loss = config.get('amp_scale_loss', 1.0)
    use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
    if use_fp16:
        optimizer = fluid.contrib.mixed_precision.decorate(
            optimizer,
            init_loss_scaling=amp_scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)

    return optimizer


W
WuHaobo 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
def build(config, main_prog, startup_prog, is_train=True):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
littletomatodonkey's avatar
littletomatodonkey 已提交
335 336
            use_distillation = config.get('use_distillation')
            feeds = create_feeds(config.image_shape, use_mix=use_mix)
W
WuHaobo 已提交
337
            dataloader = create_dataloader(feeds.values())
littletomatodonkey's avatar
littletomatodonkey 已提交
338
            out = create_model(config.ARCHITECTURE, feeds['image'],
W
WuHaobo 已提交
339 340 341 342
                               config.classes_num)
            fetchs = create_fetchs(
                out,
                feeds,
littletomatodonkey's avatar
littletomatodonkey 已提交
343
                config.ARCHITECTURE,
W
WuHaobo 已提交
344 345 346
                config.topk,
                config.classes_num,
                epsilon=config.get('ls_epsilon'),
littletomatodonkey's avatar
littletomatodonkey 已提交
347 348
                use_mix=use_mix,
                use_distillation=use_distillation)
W
WuHaobo 已提交
349 350 351
            if is_train:
                optimizer = create_optimizer(config)
                lr = optimizer._global_learning_rate()
352
                fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))
353 354

                optimizer = mixed_precision_optimizer(config, optimizer)
W
WuHaobo 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                optimizer = dist_optimizer(config, optimizer)
                optimizer.minimize(fetchs['loss'][0])

    return dataloader, fetchs


def compile(config, program, loss_name=None):
    """
    Compile the program

    Args:
        config(dict): config
        program(): the program which is wrapped by
        loss_name(str): loss name

    Returns:
        compiled_program(): a compiled program
    """
    build_strategy = fluid.compiler.BuildStrategy()
    exec_strategy = fluid.ExecutionStrategy()

    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10

    compiled_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    return compiled_program


def run(dataloader, exe, program, fetchs, epoch=0, mode='train'):
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
    fetch_list = [f[0] for f in fetchs.values()]
    metric_list = [f[1] for f in fetchs.values()]
W
WuHaobo 已提交
403 404
    for m in metric_list:
        m.reset()
S
shippingwang 已提交
405
    batch_time = AverageMeter('elapse', '.3f')
W
WuHaobo 已提交
406 407 408 409 410 411 412
    tic = time.time()
    for idx, batch in enumerate(dataloader()):
        metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
        batch_time.update(time.time() - tic)
        tic = time.time()
        for i, m in enumerate(metrics):
            metric_list[i].update(m[0], len(batch[0]))
littletomatodonkey's avatar
littletomatodonkey 已提交
413
        fetchs_str = ''.join([str(m.value) + ' '
414
                              for m in metric_list] + [batch_time.value]) + 's'
W
WuHaobo 已提交
415
        if mode == 'eval':
W
WuHaobo 已提交
416 417
            logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str))
        else:
S
shippingwang 已提交
418 419 420 421
            epoch_str = "epoch:{:<3d}".format(epoch)
            step_str = "{:s} step:{:<4d}".format(mode, idx)

            logger.info("{:s} {:s} {:s}".format(
422 423 424 425
                logger.coloring(epoch_str, "HEADER")
                if idx == 0 else epoch_str,
                logger.coloring(step_str, "PURPLE"),
                logger.coloring(fetchs_str, 'OKGREEN')))
S
refine  
shippingwang 已提交
426

littletomatodonkey's avatar
littletomatodonkey 已提交
427
    end_str = ''.join([str(m.mean) + ' '
428
                       for m in metric_list] + [batch_time.total]) + 's'
W
WuHaobo 已提交
429
    if mode == 'eval':
S
refine  
shippingwang 已提交
430
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
431
    else:
S
shippingwang 已提交
432 433
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

434 435 436 437
        logger.info("{:s} {:s} {:s}".format(
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
438

W
WuHaobo 已提交
439
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
440
    if mode == 'valid':
W
WuHaobo 已提交
441
        return fetchs["top1"][1].avg