program.py 11.0 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
from collections import OrderedDict

littletomatodonkey's avatar
littletomatodonkey 已提交
23
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26
from paddle import to_tensor
import paddle.nn as nn
import paddle.nn.functional as F
W
WuHaobo 已提交
27 28 29 30 31 32

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
33
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
34 35 36 37 38
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


W
WuHaobo 已提交
39
def create_dataloader():
W
WuHaobo 已提交
40 41 42 43 44 45 46
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
littletomatodonkey's avatar
littletomatodonkey 已提交
47
        dataloader(paddle dataloader):
W
WuHaobo 已提交
48 49
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
littletomatodonkey's avatar
littletomatodonkey 已提交
50
    capacity = 64 if trainer_num == 1 else 8
littletomatodonkey's avatar
littletomatodonkey 已提交
51
    dataloader = paddle.io.DataLoader.from_generator(
52
        capacity=capacity, use_double_buffer=True, iterable=True)
W
WuHaobo 已提交
53 54 55 56

    return dataloader


W
WuHaobo 已提交
57
def create_model(architecture, classes_num):
W
WuHaobo 已提交
58 59 60 61
    """
    Create a model

    Args:
62 63
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
64 65 66 67 68 69
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
70
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
71
    params = architecture.get("params", {})
72 73
    print(name)
    print(params)
W
WuHaobo 已提交
74
    return architectures.__dict__[name](class_dim=classes_num, **params)
W
WuHaobo 已提交
75 76


77 78
def create_loss(feeds,
                out,
W
WuHaobo 已提交
79 80 81
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
82 83
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
84 85 86 87 88 89 90 91 92 93 94
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
95 96
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
97 98
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
99
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
100 101 102 103

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
104
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
105 106
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
107
        return loss(out[0], out[1], out[2], feeds["label"])
W
WuHaobo 已提交
108

littletomatodonkey's avatar
littletomatodonkey 已提交
109
    if use_distillation:
110 111
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
112 113 114 115
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
116
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
117 118 119 120
        feed_y_a = feeds['y_a']
        feed_y_b = feeds['y_b']
        feed_lam = feeds['lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
W
WuHaobo 已提交
121 122
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
123
        return loss(out, feeds["label"])
W
WuHaobo 已提交
124 125


W
WuHaobo 已提交
126
def create_metric(out,
W
WuHaobo 已提交
127
                  label,
W
WuHaobo 已提交
128 129 130
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
131
                  use_distillation=False):
W
WuHaobo 已提交
132 133 134 135 136 137 138 139 140 141 142 143
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
144 145 146 147 148 149 150
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
littletomatodonkey's avatar
littletomatodonkey 已提交
151
        softmax_out = F.softmax(out)
W
WuHaobo 已提交
152

W
WuHaobo 已提交
153
    fetchs = OrderedDict()
W
WuHaobo 已提交
154
    # set top1 to fetchs
littletomatodonkey's avatar
littletomatodonkey 已提交
155
    top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
W
WuHaobo 已提交
156
    fetchs['top1'] = top1
W
WuHaobo 已提交
157
    # set topk to fetchs
W
WuHaobo 已提交
158
    k = min(topk, classes_num)
littletomatodonkey's avatar
littletomatodonkey 已提交
159
    topk = paddle.metric.accuracy(softmax_out, label=label, k=k)
W
WuHaobo 已提交
160
    topk_name = 'top{}'.format(k)
W
WuHaobo 已提交
161
    fetchs[topk_name] = topk
W
WuHaobo 已提交
162 163 164 165

    return fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
166
def create_fetchs(feeds, net, config, mode="train"):
W
WuHaobo 已提交
167 168
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
169
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
170 171 172

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
173 174
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
175 176
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
177 178 179
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
180
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
181 182 183 184

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
185 186 187 188 189 190 191 192 193
    architecture = config.ARCHITECTURE
    topk = config.topk
    classes_num = config.classes_num
    epsilon = config.get('ls_epsilon')
    use_mix = config.get('use_mix') and mode == 'train'
    use_distillation = config.get('use_distillation')

    out = net(feeds["image"])

W
WuHaobo 已提交
194
    fetchs = OrderedDict()
195 196
    fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
                                 epsilon, use_mix, use_distillation)
littletomatodonkey's avatar
littletomatodonkey 已提交
197
    if not use_mix:
198 199
        metric = create_metric(out, feeds["label"], architecture, topk,
                               classes_num, use_distillation)
W
WuHaobo 已提交
200 201 202 203 204
        fetchs.update(metric)

    return fetchs


W
WuHaobo 已提交
205
def create_optimizer(config, parameter_list=None):
W
WuHaobo 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
W
WuHaobo 已提交
240
    return opt(lr, parameter_list)
W
WuHaobo 已提交
241 242


243
def create_feeds(batch, use_mix):
littletomatodonkey's avatar
littletomatodonkey 已提交
244
    image = batch[0]
245
    if use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
246 247 248
        y_a = to_tensor(batch[1].numpy().astype("int64").reshape(-1, 1))
        y_b = to_tensor(batch[2].numpy().astype("int64").reshape(-1, 1))
        lam = to_tensor(batch[3].numpy().astype("float32").reshape(-1, 1))
249 250
        feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
    else:
littletomatodonkey's avatar
littletomatodonkey 已提交
251
        label = to_tensor(batch[1].numpy().astype('int64').reshape(-1, 1))
252 253 254 255
        feeds = {"image": image, "label": label}
    return feeds


W
WuHaobo 已提交
256
def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
W
WuHaobo 已提交
257 258 259 260
    """
    Feed data to the model and fetch the measures and loss

    Args:
littletomatodonkey's avatar
littletomatodonkey 已提交
261
        dataloader(paddle dataloader):
W
WuHaobo 已提交
262 263 264 265 266 267 268 269
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
270
    print_interval = config.get("print_interval", 10)
littletomatodonkey's avatar
littletomatodonkey 已提交
271
    use_mix = config.get("use_mix", False) and mode == "train"
littletomatodonkey's avatar
littletomatodonkey 已提交
272 273 274 275 276 277 278 279

    metric_list = [
        ("loss", AverageMeter('loss', '7.4f')),
        ("lr", AverageMeter(
            'lr', 'f', need_avg=False)),
        ("batch_time", AverageMeter('elapse', '.3f')),
    ]
    if not use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
280
        topk_name = 'top{}'.format(config.topk)
littletomatodonkey's avatar
littletomatodonkey 已提交
281 282 283 284
        metric_list.insert(1, (topk_name, AverageMeter(topk_name, '.4f')))
        metric_list.insert(1, ("top1", AverageMeter("top1", '.4f')))

    metric_list = OrderedDict(metric_list)
W
WuHaobo 已提交
285

W
WuHaobo 已提交
286
    tic = time.time()
287
    for idx, batch in enumerate(dataloader()):
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
288
        batch_size = len(batch[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
289
        feeds = create_feeds(batch, use_mix)
littletomatodonkey's avatar
littletomatodonkey 已提交
290
        fetchs = create_fetchs(feeds, net, config, mode)
W
WuHaobo 已提交
291
        if mode == 'train':
292 293 294 295 296 297 298
            if config["use_data_parallel"]:
                avg_loss = net.scale_loss(fetchs['loss'])
                avg_loss.backward()
                net.apply_collective_grads()
            else:
                avg_loss = fetchs['loss']
                avg_loss.backward()
W
WuHaobo 已提交
299 300 301 302

            optimizer.minimize(avg_loss)
            net.clear_gradients()
            metric_list['lr'].update(
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
303
                optimizer._global_learning_rate().numpy()[0], batch_size)
W
WuHaobo 已提交
304 305

        for name, fetch in fetchs.items():
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
306
            metric_list[name].update(fetch.numpy()[0], batch_size)
W
WuHaobo 已提交
307
        metric_list['batch_time'].update(time.time() - tic)
W
WuHaobo 已提交
308
        tic = time.time()
W
WuHaobo 已提交
309 310

        fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
littletomatodonkey's avatar
littletomatodonkey 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323

        if idx % print_interval == 0:
            if mode == 'eval':
                logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx,
                                                            fetchs_str))
            else:
                epoch_str = "epoch:{:<3d}".format(epoch)
                step_str = "{:s} step:{:<4d}".format(mode, idx)
                logger.info("{:s} {:s} {:s}s".format(
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
                    logger.coloring(fetchs_str, 'OKGREEN')))
S
refine  
shippingwang 已提交
324

325 326
    end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
                       [metric_list['batch_time'].total])
W
WuHaobo 已提交
327
    if mode == 'eval':
S
refine  
shippingwang 已提交
328
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
329
    else:
S
shippingwang 已提交
330 331
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

W
WuHaobo 已提交
332
        logger.info("{:s} {:s} {:s}s".format(
333 334 335
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
336

W
WuHaobo 已提交
337
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
338
    if mode == 'valid':
339
        return metric_list['top1'].avg