program.py 11.1 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from collections import OrderedDict

littletomatodonkey's avatar
littletomatodonkey 已提交
24
import paddle
W
WuHaobo 已提交
25 26 27 28 29 30 31
import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
32
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
33 34 35 36
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

W
WuHaobo 已提交
37
from paddle.fluid.dygraph.base import to_variable
W
WuHaobo 已提交
38 39


W
WuHaobo 已提交
40
def create_dataloader():
W
WuHaobo 已提交
41 42 43 44 45 46 47 48 49 50
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
littletomatodonkey's avatar
littletomatodonkey 已提交
51
    capacity = 64 if trainer_num == 1 else 8
W
WuHaobo 已提交
52
    dataloader = fluid.io.DataLoader.from_generator(
53
        capacity=capacity, use_double_buffer=True, iterable=True)
W
WuHaobo 已提交
54 55 56 57

    return dataloader


W
WuHaobo 已提交
58
def create_model(architecture, classes_num):
W
WuHaobo 已提交
59 60 61 62
    """
    Create a model

    Args:
63 64
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
65 66 67 68 69 70
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
71
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
72
    params = architecture.get("params", {})
73 74
    print(name)
    print(params)
W
WuHaobo 已提交
75
    return architectures.__dict__[name](class_dim=classes_num, **params)
W
WuHaobo 已提交
76 77


78 79
def create_loss(feeds,
                out,
W
WuHaobo 已提交
80 81 82
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
83 84
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
85 86 87 88 89 90 91 92 93 94 95
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
96 97
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
98 99
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
100
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
101 102 103 104

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
105
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
106 107
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
108
        return loss(out[0], out[1], out[2], feeds["label"])
W
WuHaobo 已提交
109

littletomatodonkey's avatar
littletomatodonkey 已提交
110
    if use_distillation:
111 112
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
113 114 115 116
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
117
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
118 119 120 121
        feed_y_a = feeds['y_a']
        feed_y_b = feeds['y_b']
        feed_lam = feeds['lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
W
WuHaobo 已提交
122 123
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
124
        return loss(out, feeds["label"])
W
WuHaobo 已提交
125 126


W
WuHaobo 已提交
127
def create_metric(out,
W
WuHaobo 已提交
128
                  label,
W
WuHaobo 已提交
129 130 131
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
132
                  use_distillation=False):
W
WuHaobo 已提交
133 134 135 136 137 138 139 140 141 142 143 144
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
145 146 147 148 149 150 151 152 153
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)

W
WuHaobo 已提交
154
    fetchs = OrderedDict()
W
WuHaobo 已提交
155
    # set top1 to fetchs
W
WuHaobo 已提交
156 157
    top1 = fluid.layers.accuracy(softmax_out, label=label, k=1)
    fetchs['top1'] = top1
W
WuHaobo 已提交
158
    # set topk to fetchs
W
WuHaobo 已提交
159
    k = min(topk, classes_num)
W
WuHaobo 已提交
160
    topk = fluid.layers.accuracy(softmax_out, label=label, k=k)
W
WuHaobo 已提交
161
    topk_name = 'top{}'.format(k)
W
WuHaobo 已提交
162
    fetchs[topk_name] = topk
W
WuHaobo 已提交
163 164 165 166

    return fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
167
def create_fetchs(feeds, net, config, mode="train"):
W
WuHaobo 已提交
168 169
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
170
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
171 172 173

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
174 175
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
176 177
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
178 179 180
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
181
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
182 183 184 185

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
186 187 188 189 190 191 192 193 194
    architecture = config.ARCHITECTURE
    topk = config.topk
    classes_num = config.classes_num
    epsilon = config.get('ls_epsilon')
    use_mix = config.get('use_mix') and mode == 'train'
    use_distillation = config.get('use_distillation')

    out = net(feeds["image"])

W
WuHaobo 已提交
195
    fetchs = OrderedDict()
196 197
    fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
                                 epsilon, use_mix, use_distillation)
littletomatodonkey's avatar
littletomatodonkey 已提交
198
    if not use_mix:
199 200
        metric = create_metric(out, feeds["label"], architecture, topk,
                               classes_num, use_distillation)
W
WuHaobo 已提交
201 202 203 204 205
        fetchs.update(metric)

    return fetchs


W
WuHaobo 已提交
206
def create_optimizer(config, parameter_list=None):
W
WuHaobo 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
W
WuHaobo 已提交
241
    return opt(lr, parameter_list)
W
WuHaobo 已提交
242 243


244
def create_feeds(batch, use_mix):
littletomatodonkey's avatar
littletomatodonkey 已提交
245
    image = batch[0]
246 247 248 249 250 251 252 253 254 255 256
    if use_mix:
        y_a = to_variable(batch[1].numpy().astype("int64").reshape(-1, 1))
        y_b = to_variable(batch[2].numpy().astype("int64").reshape(-1, 1))
        lam = to_variable(batch[3].numpy().astype("float32").reshape(-1, 1))
        feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
    else:
        label = to_variable(batch[1].numpy().astype('int64').reshape(-1, 1))
        feeds = {"image": image, "label": label}
    return feeds


W
WuHaobo 已提交
257
def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
W
WuHaobo 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
271
    print_interval = config.get("print_interval", 10)
littletomatodonkey's avatar
littletomatodonkey 已提交
272
    use_mix = config.get("use_mix", False) and mode == "train"
littletomatodonkey's avatar
littletomatodonkey 已提交
273 274 275 276 277 278 279 280

    metric_list = [
        ("loss", AverageMeter('loss', '7.4f')),
        ("lr", AverageMeter(
            'lr', 'f', need_avg=False)),
        ("batch_time", AverageMeter('elapse', '.3f')),
    ]
    if not use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
281
        topk_name = 'top{}'.format(config.topk)
littletomatodonkey's avatar
littletomatodonkey 已提交
282 283 284 285
        metric_list.insert(1, (topk_name, AverageMeter(topk_name, '.4f')))
        metric_list.insert(1, ("top1", AverageMeter("top1", '.4f')))

    metric_list = OrderedDict(metric_list)
W
WuHaobo 已提交
286

W
WuHaobo 已提交
287
    tic = time.time()
288
    for idx, batch in enumerate(dataloader()):
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
289
        batch_size = len(batch[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
290
        feeds = create_feeds(batch, use_mix)
littletomatodonkey's avatar
littletomatodonkey 已提交
291
        fetchs = create_fetchs(feeds, net, config, mode)
W
WuHaobo 已提交
292
        if mode == 'train':
293 294 295 296 297 298 299
            if config["use_data_parallel"]:
                avg_loss = net.scale_loss(fetchs['loss'])
                avg_loss.backward()
                net.apply_collective_grads()
            else:
                avg_loss = fetchs['loss']
                avg_loss.backward()
W
WuHaobo 已提交
300 301 302 303

            optimizer.minimize(avg_loss)
            net.clear_gradients()
            metric_list['lr'].update(
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
304
                optimizer._global_learning_rate().numpy()[0], batch_size)
W
WuHaobo 已提交
305 306

        for name, fetch in fetchs.items():
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
307
            metric_list[name].update(fetch.numpy()[0], batch_size)
W
WuHaobo 已提交
308
        metric_list['batch_time'].update(time.time() - tic)
W
WuHaobo 已提交
309
        tic = time.time()
W
WuHaobo 已提交
310 311

        fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
littletomatodonkey's avatar
littletomatodonkey 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324

        if idx % print_interval == 0:
            if mode == 'eval':
                logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx,
                                                            fetchs_str))
            else:
                epoch_str = "epoch:{:<3d}".format(epoch)
                step_str = "{:s} step:{:<4d}".format(mode, idx)
                logger.info("{:s} {:s} {:s}s".format(
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
                    logger.coloring(fetchs_str, 'OKGREEN')))
S
refine  
shippingwang 已提交
325

326 327
    end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
                       [metric_list['batch_time'].total])
W
WuHaobo 已提交
328
    if mode == 'eval':
S
refine  
shippingwang 已提交
329
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
330
    else:
S
shippingwang 已提交
331 332
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

W
WuHaobo 已提交
333
        logger.info("{:s} {:s} {:s}s".format(
334 335 336
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
337

W
WuHaobo 已提交
338
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
339
    if mode == 'valid':
340
        return metric_list['top1'].avg