Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
b8a7d186
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b8a7d186
编写于
9月 15, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix optimizer and regularizer
上级
94a8f50a
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
97 addition
and
119 deletion
+97
-119
ppcls/optimizer/learning_rate.py
ppcls/optimizer/learning_rate.py
+45
-83
ppcls/optimizer/optimizer.py
ppcls/optimizer/optimizer.py
+11
-13
ppcls/utils/check.py
ppcls/utils/check.py
+6
-5
ppcls/utils/save_load.py
ppcls/utils/save_load.py
+7
-6
tools/program.py
tools/program.py
+19
-4
tools/train.py
tools/train.py
+9
-8
未找到文件。
ppcls/optimizer/learning_rate.py
浏览文件 @
b8a7d186
...
...
@@ -19,36 +19,15 @@ from __future__ import print_function
import
sys
import
math
import
paddle.fluid
as
fluid
import
paddle.fluid.layers.ops
as
ops
from
paddle.fluid.layers.learning_rate_scheduler
import
_decay_step_counter
from
paddle.optimizer.lr_scheduler
import
LinearLrWarmup
from
paddle.optimizer.lr_scheduler
import
PiecewiseLR
from
paddle.optimizer.lr_scheduler
import
CosineAnnealingLR
from
paddle.optimizer.lr_scheduler
import
ExponentialLR
__all__
=
[
'LearningRateBuilder'
]
class
Linear
(
object
):
"""
Linear learning rate decay
Args:
lr(float): initial learning rate
steps(int): total decay steps
end_lr(float): end learning rate, default: 0.0.
"""
def
__init__
(
self
,
lr
,
steps
,
end_lr
=
0.0
,
**
kwargs
):
super
(
Linear
,
self
).
__init__
()
self
.
lr
=
lr
self
.
steps
=
steps
self
.
end_lr
=
end_lr
def
__call__
(
self
):
learning_rate
=
fluid
.
layers
.
polynomial_decay
(
self
.
lr
,
self
.
steps
,
self
.
end_lr
,
power
=
1
)
return
learning_rate
class
Cosine
(
object
):
class
Cosine
(
CosineAnnealingLR
):
"""
Cosine learning rate decay
lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
...
...
@@ -60,20 +39,14 @@ class Cosine(object):
"""
def
__init__
(
self
,
lr
,
step_each_epoch
,
epochs
,
**
kwargs
):
super
(
Cosine
,
self
).
__init__
()
self
.
lr
=
lr
self
.
step_each_epoch
=
step_each_epoch
self
.
epochs
=
epochs
super
(
Cosine
,
self
).
__init__
(
learning_rate
=
lr
,
T_max
=
step_each_epoch
*
epochs
,
)
def
__call__
(
self
):
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
self
.
lr
,
step_each_epoch
=
self
.
step_each_epoch
,
epochs
=
self
.
epochs
)
return
learning_rate
self
.
update_specified
=
False
class
Piecewise
(
object
):
class
Piecewise
(
PiecewiseLR
):
"""
Piecewise learning rate decay
...
...
@@ -85,16 +58,15 @@ class Piecewise(object):
"""
def
__init__
(
self
,
lr
,
step_each_epoch
,
decay_epochs
,
gamma
=
0.1
,
**
kwargs
):
super
(
Piecewise
,
self
).
__init__
()
self
.
bd
=
[
step_each_epoch
*
e
for
e
in
decay_epochs
]
self
.
lr
=
[
lr
*
(
gamma
**
i
)
for
i
in
range
(
len
(
self
.
bd
)
+
1
)]
boundaries
=
[
step_each_epoch
*
e
for
e
in
decay_epochs
]
lr_values
=
[
lr
*
(
gamma
**
i
)
for
i
in
range
(
len
(
boundaries
)
+
1
)]
super
(
Piecewise
,
self
).
__init__
(
boundaries
=
boundaries
,
values
=
lr_values
)
def
__call__
(
self
):
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
self
.
bd
,
self
.
lr
)
return
learning_rate
self
.
update_specified
=
False
class
CosineWarmup
(
object
):
class
CosineWarmup
(
LinearLrWarmup
):
"""
Cosine learning rate decay with warmup
[0, warmup_epoch): linear warmup
...
...
@@ -108,28 +80,23 @@ class CosineWarmup(object):
"""
def
__init__
(
self
,
lr
,
step_each_epoch
,
epochs
,
warmup_epoch
=
5
,
**
kwargs
):
super
(
CosineWarmup
,
self
).
__init__
()
self
.
lr
=
lr
self
.
step_each_epoch
=
step_each_epoch
self
.
epochs
=
epochs
self
.
warmup_epoch
=
warmup_epoch
def
__call__
(
self
):
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
self
.
lr
,
step_each_epoch
=
self
.
step_each_epoch
,
epochs
=
self
.
epochs
)
assert
epochs
>
warmup_epoch
,
"total epoch({}) should be larger than warmup_epoch({}) in CosineWarmup."
.
format
(
epochs
,
warmup_epoch
)
warmup_step
=
warmup_epoch
*
step_each_epoch
start_lr
=
0.0
end_lr
=
lr
lr_sch
=
Cosine
(
lr
,
step_each_epoch
,
epochs
-
warmup_epoch
)
learning_rate
=
fluid
.
layers
.
linear_lr_warmup
(
learning_rate
,
warmup_steps
=
self
.
warmup_epoch
*
self
.
step_each_epoch
,
start_lr
=
0.0
,
end_lr
=
self
.
lr
)
super
(
CosineWarmup
,
self
).
__init__
(
learning_rate
=
lr_sch
,
warmup_steps
=
warmup_step
,
start_lr
=
start_lr
,
end_lr
=
end_
lr
)
return
learning_rat
e
self
.
update_specified
=
Fals
e
class
ExponentialWarmup
(
object
):
class
ExponentialWarmup
(
LinearLrWarmup
):
"""
Exponential learning rate decay with warmup
[0, warmup_epoch): linear warmup
...
...
@@ -150,27 +117,22 @@ class ExponentialWarmup(object):
decay_rate
=
0.97
,
warmup_epoch
=
5
,
**
kwargs
):
super
(
ExponentialWarmup
,
self
).
__init__
()
self
.
lr
=
lr
warmup_step
=
warmup_epoch
*
step_each_epoch
start_lr
=
0.0
end_lr
=
lr
lr_sch
=
ExponentialLR
(
lr
,
decay_rate
)
super
(
ExponentialWarmup
,
self
).
__init__
(
learning_rate
=
lr_sch
,
warmup_steps
=
warmup_step
,
start_lr
=
start_lr
,
end_lr
=
end_lr
)
# NOTE: hac method to update exponential lr scheduler
self
.
update_specified
=
True
self
.
update_start_step
=
warmup_step
self
.
update_step_interval
=
int
(
decay_epochs
*
step_each_epoch
)
self
.
step_each_epoch
=
step_each_epoch
self
.
decay_epochs
=
decay_epochs
self
.
decay_rate
=
decay_rate
self
.
warmup_epoch
=
warmup_epoch
def
__call__
(
self
):
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
self
.
lr
,
decay_steps
=
self
.
decay_epochs
*
self
.
step_each_epoch
,
decay_rate
=
self
.
decay_rate
,
staircase
=
False
)
learning_rate
=
fluid
.
layers
.
linear_lr_warmup
(
learning_rate
,
warmup_steps
=
self
.
warmup_epoch
*
self
.
step_each_epoch
,
start_lr
=
0.0
,
end_lr
=
self
.
lr
)
return
learning_rate
class
LearningRateBuilder
():
...
...
@@ -193,5 +155,5 @@ class LearningRateBuilder():
def
__call__
(
self
):
mod
=
sys
.
modules
[
__name__
]
lr
=
getattr
(
mod
,
self
.
function
)(
**
self
.
params
)
()
lr
=
getattr
(
mod
,
self
.
function
)(
**
self
.
params
)
return
lr
ppcls/optimizer/optimizer.py
浏览文件 @
b8a7d186
...
...
@@ -18,7 +18,7 @@ from __future__ import print_function
import
sys
import
paddle
.fluid
as
fluid
import
paddle
__all__
=
[
'OptimizerBuilder'
]
...
...
@@ -33,11 +33,10 @@ class L1Decay(object):
def
__init__
(
self
,
factor
=
0.0
):
super
(
L1Decay
,
self
).
__init__
()
self
.
regularization_coeff
=
factor
self
.
factor
=
factor
def
__call__
(
self
):
reg
=
fluid
.
regularizer
.
L1Decay
(
regularization_coeff
=
self
.
regularization_coeff
)
reg
=
paddle
.
regularizer
.
L1Decay
(
self
.
factor
)
return
reg
...
...
@@ -51,11 +50,10 @@ class L2Decay(object):
def
__init__
(
self
,
factor
=
0.0
):
super
(
L2Decay
,
self
).
__init__
()
self
.
regularization_coeff
=
factor
self
.
factor
=
factor
def
__call__
(
self
):
reg
=
fluid
.
regularizer
.
L2Decay
(
regularization_coeff
=
self
.
regularization_coeff
)
reg
=
paddle
.
regularizer
.
L2Decay
(
self
.
factor
)
return
reg
...
...
@@ -83,11 +81,11 @@ class Momentum(object):
self
.
regularization
=
regularization
def
__call__
(
self
):
opt
=
fluid
.
optimizer
.
Momentum
(
opt
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
self
.
learning_rate
,
momentum
=
self
.
momentum
,
parameter
_list
=
self
.
parameter_list
,
regularization
=
self
.
regularization
)
parameter
s
=
self
.
parameter_list
,
weight_decay
=
self
.
regularization
)
return
opt
...
...
@@ -121,13 +119,13 @@ class RMSProp(object):
self
.
regularization
=
regularization
def
__call__
(
self
):
opt
=
fluid
.
optimizer
.
RMSProp
(
opt
=
paddle
.
optimizer
.
RMSProp
(
learning_rate
=
self
.
learning_rate
,
momentum
=
self
.
momentum
,
rho
=
self
.
rho
,
epsilon
=
self
.
epsilon
,
parameter
_list
=
self
.
parameter_list
,
regularization
=
self
.
regularization
)
parameter
s
=
self
.
parameter_list
,
weight_decay
=
self
.
regularization
)
return
opt
...
...
ppcls/utils/check.py
浏览文件 @
b8a7d186
...
...
@@ -19,7 +19,9 @@ from __future__ import print_function
import
os
import
sys
import
paddle.fluid
as
fluid
import
paddle
# TODO: need to be fixed in the future.
from
paddle.fluid
import
is_compiled_with_cuda
from
ppcls.modeling
import
get_architectures
from
ppcls.modeling
import
similar_architectures
...
...
@@ -33,10 +35,9 @@ def check_version():
"""
err
=
"PaddlePaddle version 1.8.0 or higher is required, "
\
"or a suitable develop version is satisfied as well.
\n
"
\
"Please make sure the version is good with your code."
\
"Please make sure the version is good with your code."
try
:
fluid
.
require_version
(
'1.8
.0'
)
paddle
.
utils
.
require_version
(
'0.0
.0'
)
except
Exception
:
logger
.
error
(
err
)
sys
.
exit
(
1
)
...
...
@@ -50,7 +51,7 @@ def check_gpu():
"install paddlepaddle-gpu to run model on GPU."
try
:
assert
fluid
.
is_compiled_with_cuda
()
assert
is_compiled_with_cuda
()
except
AssertionError
:
logger
.
error
(
err
)
sys
.
exit
(
1
)
...
...
ppcls/utils/save_load.py
浏览文件 @
b8a7d186
...
...
@@ -22,7 +22,8 @@ import re
import
shutil
import
tempfile
import
paddle.fluid
as
fluid
import
paddle
from
paddle.io
import
load_program_state
from
ppcls.utils
import
logger
...
...
@@ -50,7 +51,7 @@ def load_dygraph_pretrain(model, path=None, load_static_weights=False):
raise
ValueError
(
"Model pretrain path {} does not "
"exists."
.
format
(
path
))
if
load_static_weights
:
pre_state_dict
=
fluid
.
load_program_state
(
path
)
pre_state_dict
=
load_program_state
(
path
)
param_state_dict
=
{}
model_dict
=
model
.
state_dict
()
for
key
in
model_dict
.
keys
():
...
...
@@ -64,7 +65,7 @@ def load_dygraph_pretrain(model, path=None, load_static_weights=False):
model
.
set_dict
(
param_state_dict
)
return
param_state_dict
,
optim_state_dict
=
fluid
.
load_dygraph
(
path
)
param_state_dict
,
optim_state_dict
=
paddle
.
load
(
path
)
model
.
set_dict
(
param_state_dict
)
return
...
...
@@ -105,7 +106,7 @@ def init_model(config, net, optimizer=None):
"Given dir {}.pdparams not exist."
.
format
(
checkpoints
)
assert
os
.
path
.
exists
(
checkpoints
+
".pdopt"
),
\
"Given dir {}.pdopt not exist."
.
format
(
checkpoints
)
para_dict
,
opti_dict
=
fluid
.
dygraph
.
load_dygraph
(
checkpoints
)
para_dict
,
opti_dict
=
paddle
(
checkpoints
)
net
.
set_dict
(
para_dict
)
optimizer
.
set_dict
(
opti_dict
)
logger
.
info
(
...
...
@@ -141,8 +142,8 @@ def save_model(net, optimizer, model_path, epoch_id, prefix='ppcls'):
_mkdir_if_not_exist
(
model_path
)
model_prefix
=
os
.
path
.
join
(
model_path
,
prefix
)
fluid
.
dygraph
.
save_dygraph
(
net
.
state_dict
(),
model_prefix
)
fluid
.
dygraph
.
save_dygraph
(
optimizer
.
state_dict
(),
model_prefix
)
paddle
.
save
(
net
.
state_dict
(),
model_prefix
)
paddle
.
save
(
optimizer
.
state_dict
(),
model_prefix
)
logger
.
info
(
logger
.
coloring
(
"Already save model in {}"
.
format
(
model_path
),
"HEADER"
))
tools/program.py
浏览文件 @
b8a7d186
...
...
@@ -69,8 +69,6 @@ def create_model(architecture, classes_num):
"""
name
=
architecture
[
"name"
]
params
=
architecture
.
get
(
"params"
,
{})
print
(
name
)
print
(
params
)
return
architectures
.
__dict__
[
name
](
class_dim
=
classes_num
,
**
params
)
...
...
@@ -237,7 +235,7 @@ def create_optimizer(config, parameter_list=None):
# create optimizer instance
opt_config
=
config
[
'OPTIMIZER'
]
opt
=
OptimizerBuilder
(
**
opt_config
)
return
opt
(
lr
,
parameter_list
)
return
opt
(
lr
,
parameter_list
)
,
lr
def
create_feeds
(
batch
,
use_mix
):
...
...
@@ -253,7 +251,13 @@ def create_feeds(batch, use_mix):
return
feeds
def
run
(
dataloader
,
config
,
net
,
optimizer
=
None
,
epoch
=
0
,
mode
=
'train'
):
def
run
(
dataloader
,
config
,
net
,
optimizer
=
None
,
lr_scheduler
=
None
,
epoch
=
0
,
mode
=
'train'
):
"""
Feed data to the model and fetch the measures and loss
...
...
@@ -302,6 +306,17 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
metric_list
[
'lr'
].
update
(
optimizer
.
_global_learning_rate
().
numpy
()[
0
],
batch_size
)
if
lr_scheduler
is
not
None
:
if
lr_scheduler
.
update_specified
:
curr_global_counter
=
lr_scheduler
.
step_each_epoch
*
epoch
+
idx
update
=
max
(
0
,
curr_global_counter
-
lr_scheduler
.
update_start_step
)
%
lr_scheduler
.
update_step_interval
==
0
if
update
:
lr_scheduler
.
step
()
else
:
lr_scheduler
.
step
()
for
name
,
fetch
in
fetchs
.
items
():
metric_list
[
name
].
update
(
fetch
.
numpy
()[
0
],
batch_size
)
metric_list
[
'batch_time'
].
update
(
time
.
time
()
-
tic
)
...
...
tools/train.py
浏览文件 @
b8a7d186
...
...
@@ -23,15 +23,16 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
import
program
from
ppcls.utils
import
logger
from
ppcls.utils.save_load
import
init_model
,
save_model
from
ppcls.utils.config
import
get_config
from
ppcls.data
import
Reader
import
paddle
from
paddle.distributed
import
ParallelEnv
from
ppcls.data
import
Reader
from
ppcls.utils.config
import
get_config
from
ppcls.utils.save_load
import
init_model
,
save_model
from
ppcls.utils
import
logger
import
program
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"PaddleClas train script"
)
parser
.
add_argument
(
...
...
@@ -67,7 +68,7 @@ def main(args):
net
=
program
.
create_model
(
config
.
ARCHITECTURE
,
config
.
classes_num
)
optimizer
=
program
.
create_optimizer
(
optimizer
,
lr_scheduler
=
program
.
create_optimizer
(
config
,
parameter_list
=
net
.
parameters
())
if
config
[
"use_data_parallel"
]:
...
...
@@ -90,8 +91,8 @@ def main(args):
for
epoch_id
in
range
(
config
.
epochs
):
net
.
train
()
# 1. train with train dataset
program
.
run
(
train_dataloader
,
config
,
net
,
optimizer
,
epoch_id
,
'train'
)
program
.
run
(
train_dataloader
,
config
,
net
,
optimizer
,
lr_scheduler
,
epoch_id
,
'train'
)
if
not
config
[
"use_data_parallel"
]
or
ParallelEnv
().
local_rank
==
0
:
# 2. validate with validate dataset
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录