program.py 11.6 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time

from collections import OrderedDict

import paddle
import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder

from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy


def create_feeds(image_shape, mix=None):
    """
    Create feeds as model input

    Args:
        image_shape(list[int]): model input shape, such as [3, 224, 224]
        mix(bool): whether to use mix(include mixup, cutmix, fmix)

    Returns:
        feeds(dict): dict of model input variables
    """
    feeds = OrderedDict()
    feeds['image'] = fluid.data(
        name="feed_image", shape=[None] + image_shape, dtype="float32")
    if mix:
        feeds['feed_y_a'] = fluid.data(
            name="feed_y_a", shape=[None, 1], dtype="int64")
        feeds['feed_y_b'] = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64")
        feeds['feed_lam'] = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32")
    else:
        feeds['label'] = fluid.data(
            name="feed_label", shape=[None, 1], dtype="int64")

    return feeds


def create_dataloader(feeds):
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    capacity = 64 if trainer_num <= 1 else 8
    dataloader = fluid.io.DataLoader.from_generator(
        feed_list=feeds,
        capacity=capacity,
        use_double_buffer=True,
        iterable=True)

    return dataloader


littletomatodonkey's avatar
littletomatodonkey 已提交
91
def create_model(architecture, image, classes_num):
W
WuHaobo 已提交
92 93 94 95
    """
    Create a model

    Args:
littletomatodonkey's avatar
littletomatodonkey 已提交
96
        architecture(dict): architecture information, name(such as ResNet50) is needed
W
WuHaobo 已提交
97 98 99 100 101 102
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
103
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
104
    params = architecture.get("params", {})
littletomatodonkey's avatar
littletomatodonkey 已提交
105
    model = architectures.__dict__[name](**params)
W
WuHaobo 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    out = model.net(input=image, class_dim=classes_num)
    return out


def create_loss(out,
                feeds,
                architecture,
                classes_num=1000,
                epsilon=None,
                mix=False):
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
littletomatodonkey's avatar
littletomatodonkey 已提交
127
        architecture(dict): architecture information, name(such as ResNet50) is needed
W
WuHaobo 已提交
128 129 130 131 132 133 134
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
        mix(bool): whether to use mix(include mixup, cutmix, fmix)

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
135
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out[0], out[1], out[2], target)

    if mix:
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
        feed_y_a = feeds['feed_y_a']
        feed_y_b = feeds['feed_y_b']
        feed_lam = feeds['feed_lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out, target)


def create_metric(out, feeds, topk=5, classes_num=1000):
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
    fetchs = OrderedDict()
    label = feeds['label']
    softmax_out = fluid.layers.softmax(out, use_cudnn=False)
    top1 = fluid.layers.accuracy(softmax_out, label=label, k=1)
    fetchs['top1'] = (top1, AverageMeter('top1', ':2.4f', True))
    k = min(topk, classes_num)
    topk = fluid.layers.accuracy(softmax_out, label=label, k=k)
    topk_name = 'top{}'.format(k)
    fetchs[topk_name] = (topk, AverageMeter(topk_name, ':2.4f', True))

    return fetchs


def create_fetchs(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  epsilon=None,
                  mix=False):
    """
    Create fetchs as model outputs(included loss and measures),
    will call create_loss and create_metric(if mix).

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
littletomatodonkey's avatar
littletomatodonkey 已提交
193
        architecture(dict): architecture information, name(such as ResNet50) is needed
W
WuHaobo 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
        mix(bool): whether to use mix(include mixup, cutmix, fmix)

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    fetchs = OrderedDict()
    loss = create_loss(out, feeds, architecture, classes_num, epsilon, mix)
    fetchs['loss'] = (loss, AverageMeter('loss', ':2.4f', True))
    if not mix:
        metric = create_metric(out, feeds, topk, classes_num)
        fetchs.update(metric)

    return fetchs


def create_optimizer(config):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
    return opt(lr)


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.exec_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


def build(config, main_prog, startup_prog, is_train=True):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
            feeds = create_feeds(config.image_shape, mix=use_mix)
            dataloader = create_dataloader(feeds.values())
littletomatodonkey's avatar
littletomatodonkey 已提交
298
            out = create_model(config.ARCHITECTURE, feeds['image'],
W
WuHaobo 已提交
299 300 301 302
                               config.classes_num)
            fetchs = create_fetchs(
                out,
                feeds,
littletomatodonkey's avatar
littletomatodonkey 已提交
303
                config.ARCHITECTURE,
W
WuHaobo 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                config.topk,
                config.classes_num,
                epsilon=config.get('ls_epsilon'),
                mix=use_mix)
            if is_train:
                optimizer = create_optimizer(config)
                lr = optimizer._global_learning_rate()
                fetchs['lr'] = (lr, AverageMeter('lr', ':f', False))
                optimizer = dist_optimizer(config, optimizer)
                optimizer.minimize(fetchs['loss'][0])

    return dataloader, fetchs


def compile(config, program, loss_name=None):
    """
    Compile the program

    Args:
        config(dict): config
        program(): the program which is wrapped by
        loss_name(str): loss name

    Returns:
        compiled_program(): a compiled program
    """
    build_strategy = fluid.compiler.BuildStrategy()
    #build_strategy.fuse_bn_act_ops = config.get("fuse_bn_act_ops")
    #build_strategy.fuse_elewise_add_act_ops = config.get("fuse_elewise_add_act_ops")
    exec_strategy = fluid.ExecutionStrategy()

    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10

    compiled_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    return compiled_program


def run(dataloader, exe, program, fetchs, epoch=0, mode='train'):
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
    fetch_list = [f[0] for f in fetchs.values()]
    metric_list = [f[1] for f in fetchs.values()]
W
WuHaobo 已提交
362 363
    for m in metric_list:
        m.reset()
W
WuHaobo 已提交
364 365 366 367 368 369 370 371 372 373 374
    batch_time = AverageMeter('cost', ':6.3f')
    tic = time.time()
    for idx, batch in enumerate(dataloader()):
        metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
        batch_time.update(time.time() - tic)
        tic = time.time()
        for i, m in enumerate(metrics):
            metric_list[i].update(m[0], len(batch[0]))
        fetchs_str = ''.join([str(m) for m in metric_list] + [str(batch_time)])
        logger.info("[epoch:%3d][%s][step:%4d]%s" %
                    (epoch, mode, idx, fetchs_str))