program.py 11.6 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
from collections import OrderedDict

littletomatodonkey's avatar
littletomatodonkey 已提交
23
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26
from paddle import to_tensor
import paddle.nn as nn
import paddle.nn.functional as F
W
WuHaobo 已提交
27 28 29 30 31 32

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
33
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
34 35 36 37 38
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


W
WuHaobo 已提交
39
def create_dataloader():
W
WuHaobo 已提交
40 41 42 43 44 45 46
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
littletomatodonkey's avatar
littletomatodonkey 已提交
47
        dataloader(paddle dataloader):
W
WuHaobo 已提交
48 49
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
littletomatodonkey's avatar
littletomatodonkey 已提交
50
    capacity = 64 if trainer_num == 1 else 8
littletomatodonkey's avatar
littletomatodonkey 已提交
51
    dataloader = paddle.io.DataLoader.from_generator(
52
        capacity=capacity, use_double_buffer=True, iterable=True)
W
WuHaobo 已提交
53 54 55 56

    return dataloader


W
WuHaobo 已提交
57
def create_model(architecture, classes_num):
W
WuHaobo 已提交
58 59 60 61
    """
    Create a model

    Args:
62 63
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
64 65 66 67 68 69
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
70
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
71
    params = architecture.get("params", {})
W
WuHaobo 已提交
72
    return architectures.__dict__[name](class_dim=classes_num, **params)
W
WuHaobo 已提交
73 74


75 76
def create_loss(feeds,
                out,
W
WuHaobo 已提交
77 78 79
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
80 81
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
82 83 84 85 86 87 88 89 90 91 92
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
93 94
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
95 96
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
97
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
98 99 100 101

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
102
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
103 104
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
105
        return loss(out[0], out[1], out[2], feeds["label"])
W
WuHaobo 已提交
106

littletomatodonkey's avatar
littletomatodonkey 已提交
107
    if use_distillation:
108 109
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
110 111 112 113
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
114
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
115 116 117 118
        feed_y_a = feeds['y_a']
        feed_y_b = feeds['y_b']
        feed_lam = feeds['lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
W
WuHaobo 已提交
119 120
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
121
        return loss(out, feeds["label"])
W
WuHaobo 已提交
122 123


W
WuHaobo 已提交
124
def create_metric(out,
W
WuHaobo 已提交
125
                  label,
W
WuHaobo 已提交
126 127 128
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
129
                  use_distillation=False):
W
WuHaobo 已提交
130 131 132 133 134 135 136 137 138 139 140 141
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
142 143 144 145 146 147 148
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
littletomatodonkey's avatar
littletomatodonkey 已提交
149
        softmax_out = F.softmax(out)
W
WuHaobo 已提交
150

W
WuHaobo 已提交
151
    fetchs = OrderedDict()
W
WuHaobo 已提交
152
    # set top1 to fetchs
littletomatodonkey's avatar
littletomatodonkey 已提交
153
    top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
W
WuHaobo 已提交
154
    fetchs['top1'] = top1
W
WuHaobo 已提交
155
    # set topk to fetchs
W
WuHaobo 已提交
156
    k = min(topk, classes_num)
littletomatodonkey's avatar
littletomatodonkey 已提交
157
    topk = paddle.metric.accuracy(softmax_out, label=label, k=k)
W
WuHaobo 已提交
158
    topk_name = 'top{}'.format(k)
W
WuHaobo 已提交
159
    fetchs[topk_name] = topk
W
WuHaobo 已提交
160 161 162 163

    return fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
164
def create_fetchs(feeds, net, config, mode="train"):
W
WuHaobo 已提交
165 166
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
167
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
168 169 170

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
171 172
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
173 174
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
175 176 177
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
178
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
179 180 181 182

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
183 184 185 186 187 188 189 190 191
    architecture = config.ARCHITECTURE
    topk = config.topk
    classes_num = config.classes_num
    epsilon = config.get('ls_epsilon')
    use_mix = config.get('use_mix') and mode == 'train'
    use_distillation = config.get('use_distillation')

    out = net(feeds["image"])

W
WuHaobo 已提交
192
    fetchs = OrderedDict()
193 194
    fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
                                 epsilon, use_mix, use_distillation)
littletomatodonkey's avatar
littletomatodonkey 已提交
195
    if not use_mix:
196 197
        metric = create_metric(out, feeds["label"], architecture, topk,
                               classes_num, use_distillation)
W
WuHaobo 已提交
198 199 200 201 202
        fetchs.update(metric)

    return fetchs


W
WuHaobo 已提交
203
def create_optimizer(config, parameter_list=None):
W
WuHaobo 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
238
    return opt(lr, parameter_list), lr
W
WuHaobo 已提交
239 240


241
def create_feeds(batch, use_mix):
littletomatodonkey's avatar
littletomatodonkey 已提交
242
    image = batch[0]
243
    if use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
244 245 246
        y_a = to_tensor(batch[1].numpy().astype("int64").reshape(-1, 1))
        y_b = to_tensor(batch[2].numpy().astype("int64").reshape(-1, 1))
        lam = to_tensor(batch[3].numpy().astype("float32").reshape(-1, 1))
247 248
        feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
    else:
littletomatodonkey's avatar
littletomatodonkey 已提交
249
        label = to_tensor(batch[1].numpy().astype('int64').reshape(-1, 1))
250 251 252 253
        feeds = {"image": image, "label": label}
    return feeds


254 255 256 257 258 259 260
def run(dataloader,
        config,
        net,
        optimizer=None,
        lr_scheduler=None,
        epoch=0,
        mode='train'):
W
WuHaobo 已提交
261 262 263 264
    """
    Feed data to the model and fetch the measures and loss

    Args:
littletomatodonkey's avatar
littletomatodonkey 已提交
265
        dataloader(paddle dataloader):
W
WuHaobo 已提交
266 267 268 269 270 271 272 273
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
274
    print_interval = config.get("print_interval", 10)
littletomatodonkey's avatar
littletomatodonkey 已提交
275
    use_mix = config.get("use_mix", False) and mode == "train"
littletomatodonkey's avatar
littletomatodonkey 已提交
276 277 278 279 280 281 282 283

    metric_list = [
        ("loss", AverageMeter('loss', '7.4f')),
        ("lr", AverageMeter(
            'lr', 'f', need_avg=False)),
        ("batch_time", AverageMeter('elapse', '.3f')),
    ]
    if not use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
284
        topk_name = 'top{}'.format(config.topk)
littletomatodonkey's avatar
littletomatodonkey 已提交
285 286 287 288
        metric_list.insert(1, (topk_name, AverageMeter(topk_name, '.4f')))
        metric_list.insert(1, ("top1", AverageMeter("top1", '.4f')))

    metric_list = OrderedDict(metric_list)
W
WuHaobo 已提交
289

W
WuHaobo 已提交
290
    tic = time.time()
291
    for idx, batch in enumerate(dataloader()):
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
292
        batch_size = len(batch[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
293
        feeds = create_feeds(batch, use_mix)
littletomatodonkey's avatar
littletomatodonkey 已提交
294
        fetchs = create_fetchs(feeds, net, config, mode)
W
WuHaobo 已提交
295
        if mode == 'train':
296 297 298 299 300 301 302
            if config["use_data_parallel"]:
                avg_loss = net.scale_loss(fetchs['loss'])
                avg_loss.backward()
                net.apply_collective_grads()
            else:
                avg_loss = fetchs['loss']
                avg_loss.backward()
W
WuHaobo 已提交
303 304 305 306

            optimizer.minimize(avg_loss)
            net.clear_gradients()
            metric_list['lr'].update(
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
307
                optimizer._global_learning_rate().numpy()[0], batch_size)
W
WuHaobo 已提交
308

309 310 311 312 313 314 315 316 317 318 319
            if lr_scheduler is not None:
                if lr_scheduler.update_specified:
                    curr_global_counter = lr_scheduler.step_each_epoch * epoch + idx
                    update = max(
                        0, curr_global_counter - lr_scheduler.update_start_step
                    ) % lr_scheduler.update_step_interval == 0
                    if update:
                        lr_scheduler.step()
                else:
                    lr_scheduler.step()

W
WuHaobo 已提交
320
        for name, fetch in fetchs.items():
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
321
            metric_list[name].update(fetch.numpy()[0], batch_size)
W
WuHaobo 已提交
322
        metric_list['batch_time'].update(time.time() - tic)
W
WuHaobo 已提交
323
        tic = time.time()
W
WuHaobo 已提交
324 325

        fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
littletomatodonkey's avatar
littletomatodonkey 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338

        if idx % print_interval == 0:
            if mode == 'eval':
                logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx,
                                                            fetchs_str))
            else:
                epoch_str = "epoch:{:<3d}".format(epoch)
                step_str = "{:s} step:{:<4d}".format(mode, idx)
                logger.info("{:s} {:s} {:s}s".format(
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
                    logger.coloring(fetchs_str, 'OKGREEN')))
S
refine  
shippingwang 已提交
339

340 341
    end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
                       [metric_list['batch_time'].total])
W
WuHaobo 已提交
342
    if mode == 'eval':
S
refine  
shippingwang 已提交
343
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
344
    else:
S
shippingwang 已提交
345 346
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

W
WuHaobo 已提交
347
        logger.info("{:s} {:s} {:s}s".format(
348 349 350
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
351

W
WuHaobo 已提交
352
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
353
    if mode == 'valid':
354
        return metric_list['top1'].avg