program.py 11.5 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
from collections import OrderedDict

littletomatodonkey's avatar
littletomatodonkey 已提交
23
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26
from paddle import to_tensor
import paddle.nn as nn
import paddle.nn.functional as F
W
WuHaobo 已提交
27 28 29 30 31 32

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
33
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
34 35 36 37 38
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


W
WuHaobo 已提交
39
def create_model(architecture, classes_num):
W
WuHaobo 已提交
40 41 42 43
    """
    Create a model

    Args:
44 45
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
46 47 48 49 50 51
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
52
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
53
    params = architecture.get("params", {})
W
WuHaobo 已提交
54
    return architectures.__dict__[name](class_dim=classes_num, **params)
W
WuHaobo 已提交
55 56


57 58
def create_loss(feeds,
                out,
W
WuHaobo 已提交
59 60 61
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
64 65 66 67 68 69 70 71 72 73 74
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
75 76
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
77 78
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
79
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
80 81 82 83

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
84
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
85 86
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
87
        return loss(out[0], out[1], out[2], feeds["label"])
W
WuHaobo 已提交
88

littletomatodonkey's avatar
littletomatodonkey 已提交
89
    if use_distillation:
90 91
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
92 93 94 95
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
96
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
97 98 99 100
        feed_y_a = feeds['y_a']
        feed_y_b = feeds['y_b']
        feed_lam = feeds['lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
W
WuHaobo 已提交
101 102
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
103
        return loss(out, feeds["label"])
W
WuHaobo 已提交
104 105


W
WuHaobo 已提交
106
def create_metric(out,
W
WuHaobo 已提交
107
                  label,
W
WuHaobo 已提交
108 109 110
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
111
                  use_distillation=False):
W
WuHaobo 已提交
112 113 114 115 116 117 118 119 120 121 122 123
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
124 125
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
126
        out = out[0]
W
WuHaobo 已提交
127 128 129 130
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
131
    softmax_out = F.softmax(out)
W
WuHaobo 已提交
132

W
WuHaobo 已提交
133
    fetchs = OrderedDict()
W
WuHaobo 已提交
134
    # set top1 to fetchs
littletomatodonkey's avatar
littletomatodonkey 已提交
135
    top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
W
WuHaobo 已提交
136
    fetchs['top1'] = top1
W
WuHaobo 已提交
137
    # set topk to fetchs
W
WuHaobo 已提交
138
    k = min(topk, classes_num)
littletomatodonkey's avatar
littletomatodonkey 已提交
139
    topk = paddle.metric.accuracy(softmax_out, label=label, k=k)
W
WuHaobo 已提交
140
    topk_name = 'top{}'.format(k)
W
WuHaobo 已提交
141
    fetchs[topk_name] = topk
W
WuHaobo 已提交
142 143 144 145

    return fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
146
def create_fetchs(feeds, net, config, mode="train"):
W
WuHaobo 已提交
147 148
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
149
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
150 151 152

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
153 154
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
155 156
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
157 158 159
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
160
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
161 162 163 164

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
165 166 167 168 169 170 171 172 173
    architecture = config.ARCHITECTURE
    topk = config.topk
    classes_num = config.classes_num
    epsilon = config.get('ls_epsilon')
    use_mix = config.get('use_mix') and mode == 'train'
    use_distillation = config.get('use_distillation')

    out = net(feeds["image"])

W
WuHaobo 已提交
174
    fetchs = OrderedDict()
175 176
    fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
                                 epsilon, use_mix, use_distillation)
littletomatodonkey's avatar
littletomatodonkey 已提交
177
    if not use_mix:
178 179
        metric = create_metric(out, feeds["label"], architecture, topk,
                               classes_num, use_distillation)
W
WuHaobo 已提交
180 181 182 183 184
        fetchs.update(metric)

    return fetchs


W
WuHaobo 已提交
185
def create_optimizer(config, parameter_list=None):
W
WuHaobo 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
220
    return opt(lr, parameter_list), lr
W
WuHaobo 已提交
221 222


223
def create_feeds(batch, use_mix):
littletomatodonkey's avatar
littletomatodonkey 已提交
224
    image = batch[0]
225
    if use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
226 227 228
        y_a = to_tensor(batch[1].numpy().astype("int64").reshape(-1, 1))
        y_b = to_tensor(batch[2].numpy().astype("int64").reshape(-1, 1))
        lam = to_tensor(batch[3].numpy().astype("float32").reshape(-1, 1))
229 230
        feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
    else:
littletomatodonkey's avatar
littletomatodonkey 已提交
231
        label = to_tensor(batch[1].numpy().astype('int64').reshape(-1, 1))
232 233 234 235
        feeds = {"image": image, "label": label}
    return feeds


236 237 238 239 240 241 242
def run(dataloader,
        config,
        net,
        optimizer=None,
        lr_scheduler=None,
        epoch=0,
        mode='train'):
W
WuHaobo 已提交
243 244 245 246
    """
    Feed data to the model and fetch the measures and loss

    Args:
littletomatodonkey's avatar
littletomatodonkey 已提交
247
        dataloader(paddle dataloader):
W
WuHaobo 已提交
248 249 250 251 252 253 254 255
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
256
    print_interval = config.get("print_interval", 10)
littletomatodonkey's avatar
littletomatodonkey 已提交
257
    use_mix = config.get("use_mix", False) and mode == "train"
littletomatodonkey's avatar
littletomatodonkey 已提交
258 259

    metric_list = [
L
littletomatodonkey 已提交
260 261
        ("loss", AverageMeter(
            'loss', '7.5f', postfix=",")),
littletomatodonkey's avatar
littletomatodonkey 已提交
262
        ("lr", AverageMeter(
L
littletomatodonkey 已提交
263 264 265 266 267
            'lr', 'f', postfix=",", need_avg=False)),
        ("batch_time", AverageMeter(
            'batch_cost', '.5f', postfix=" s,")),
        ("reader_time", AverageMeter(
            'reader_cost', '.5f', postfix=" s,")),
littletomatodonkey's avatar
littletomatodonkey 已提交
268 269
    ]
    if not use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
270
        topk_name = 'top{}'.format(config.topk)
L
littletomatodonkey 已提交
271 272 273 274 275 276
        metric_list.insert(
            1, (topk_name, AverageMeter(
                topk_name, '.5f', postfix=",")))
        metric_list.insert(
            1, ("top1", AverageMeter(
                "top1", '.5f', postfix=",")))
littletomatodonkey's avatar
littletomatodonkey 已提交
277 278

    metric_list = OrderedDict(metric_list)
W
WuHaobo 已提交
279

W
WuHaobo 已提交
280
    tic = time.time()
281
    for idx, batch in enumerate(dataloader()):
littletomatodonkey's avatar
littletomatodonkey 已提交
282
        metric_list['reader_time'].update(time.time() - tic)
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
283
        batch_size = len(batch[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
284
        feeds = create_feeds(batch, use_mix)
littletomatodonkey's avatar
littletomatodonkey 已提交
285
        fetchs = create_fetchs(feeds, net, config, mode)
W
WuHaobo 已提交
286
        if mode == 'train':
L
littletomatodonkey 已提交
287 288 289 290 291
            avg_loss = fetchs['loss']
            avg_loss.backward()

            optimizer.step()
            optimizer.clear_grad()
W
WuHaobo 已提交
292
            metric_list['lr'].update(
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
293
                optimizer._global_learning_rate().numpy()[0], batch_size)
W
WuHaobo 已提交
294

295 296 297 298 299 300 301 302 303 304 305
            if lr_scheduler is not None:
                if lr_scheduler.update_specified:
                    curr_global_counter = lr_scheduler.step_each_epoch * epoch + idx
                    update = max(
                        0, curr_global_counter - lr_scheduler.update_start_step
                    ) % lr_scheduler.update_step_interval == 0
                    if update:
                        lr_scheduler.step()
                else:
                    lr_scheduler.step()

W
WuHaobo 已提交
306
        for name, fetch in fetchs.items():
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
307
            metric_list[name].update(fetch.numpy()[0], batch_size)
L
littletomatodonkey 已提交
308
        metric_list["batch_time"].update(time.time() - tic)
W
WuHaobo 已提交
309
        tic = time.time()
W
WuHaobo 已提交
310 311

        fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
littletomatodonkey's avatar
littletomatodonkey 已提交
312 313

        if idx % print_interval == 0:
L
littletomatodonkey 已提交
314 315
            ips_info = "ips: {:.5f} images/sec.".format(
                batch_size / metric_list["batch_time"].val)
littletomatodonkey's avatar
littletomatodonkey 已提交
316
            if mode == 'eval':
L
littletomatodonkey 已提交
317 318
                logger.info("{:s} step:{:<4d}, {:s} {:s}".format(
                    mode, idx, fetchs_str, ips_info))
littletomatodonkey's avatar
littletomatodonkey 已提交
319 320 321
            else:
                epoch_str = "epoch:{:<3d}".format(epoch)
                step_str = "{:s} step:{:<4d}".format(mode, idx)
L
littletomatodonkey 已提交
322
                logger.info("{:s}, {:s}, {:s} {:s}".format(
littletomatodonkey's avatar
littletomatodonkey 已提交
323 324 325
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
L
littletomatodonkey 已提交
326 327
                    logger.coloring(fetchs_str, 'OKGREEN'),
                    logger.coloring(ips_info, 'OKGREEN')))
S
refine  
shippingwang 已提交
328

329 330
    end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
                       [metric_list['batch_time'].total])
L
littletomatodonkey 已提交
331 332 333 334
    ips_info = "ips: {:.5f} images/sec.".format(
        batch_size * metric_list["batch_time"].count /
        metric_list["batch_time"].sum)

W
WuHaobo 已提交
335
    if mode == 'eval':
L
littletomatodonkey 已提交
336
        logger.info("END {:s} {:s} {:s}".format(mode, end_str, ips_info))
W
WuHaobo 已提交
337
    else:
S
shippingwang 已提交
338 339
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

L
littletomatodonkey 已提交
340
        logger.info("{:s} {:s} {:s} {:s}".format(
341 342
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
L
littletomatodonkey 已提交
343 344
            logger.coloring(end_str, "OKGREEN"),
            logger.coloring(ips_info, "OKGREEN"), ))
littletomatodonkey's avatar
littletomatodonkey 已提交
345

W
WuHaobo 已提交
346
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
347
    if mode == 'valid':
348
        return metric_list['top1'].avg