program.py 14.9 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
L
littletomatodonkey 已提交
21
import datetime
W
WuHaobo 已提交
22 23
from collections import OrderedDict

littletomatodonkey's avatar
littletomatodonkey 已提交
24
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26 27
from paddle import to_tensor
import paddle.nn as nn
import paddle.nn.functional as F
W
WuHaobo 已提交
28 29 30 31

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
Y
yaohai 已提交
32
from ppcls.modeling.loss import MultiLabelLoss
W
WuHaobo 已提交
33 34
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
35
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
36 37 38
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
Y
yaohai 已提交
39 40 41
from ppcls.utils import multi_hot_encode
from ppcls.utils import hamming_distance
from ppcls.utils import accuracy_score
W
WuHaobo 已提交
42 43


W
WuHaobo 已提交
44
def create_model(architecture, classes_num):
W
WuHaobo 已提交
45 46 47 48
    """
    Create a model

    Args:
49 50
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
51 52 53 54 55 56
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
57
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
58
    params = architecture.get("params", {})
W
WuHaobo 已提交
59
    return architectures.__dict__[name](class_dim=classes_num, **params)
W
WuHaobo 已提交
60 61


62 63
def create_loss(feeds,
                out,
W
WuHaobo 已提交
64 65 66
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
67
                use_mix=False,
Y
yaohai 已提交
68 69
                use_distillation=False,
                multilabel=False):
W
WuHaobo 已提交
70 71 72 73 74 75 76 77 78 79 80
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
81 82
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
83 84
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
85
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
86 87 88 89

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
90
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
91 92
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
93
        return loss(out[0], out[1], out[2], feeds["label"])
W
WuHaobo 已提交
94

littletomatodonkey's avatar
littletomatodonkey 已提交
95
    if use_distillation:
96 97
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
98 99 100 101
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
102
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
103 104 105 106
        feed_y_a = feeds['y_a']
        feed_y_b = feeds['y_b']
        feed_lam = feeds['lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
W
WuHaobo 已提交
107
    else:
Y
yaohai 已提交
108 109 110 111
        if not multilabel:
            loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        else:
            loss = MultiLabelLoss(class_dim=classes_num, epsilon=epsilon)
112
        return loss(out, feeds["label"])
W
WuHaobo 已提交
113 114


W
WuHaobo 已提交
115
def create_metric(out,
W
WuHaobo 已提交
116
                  label,
W
WuHaobo 已提交
117 118 119
                  architecture,
                  topk=5,
                  classes_num=1000,
120
                  use_distillation=False,
Y
yaohai 已提交
121
                  multilabel=False,
122 123
                  mode="train",
                  use_xpu=False):
W
WuHaobo 已提交
124 125 126 127 128 129 130 131
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes
132 133
        use_distillation(bool): whether to use distillation training
        mode(str): mode, train/valid
W
WuHaobo 已提交
134 135 136 137

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
138 139
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
140
        out = out[0]
W
WuHaobo 已提交
141 142 143 144
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
145
    softmax_out = F.softmax(out)
W
WuHaobo 已提交
146

147 148
    fetch_list = []
    metric_names = []
Y
yaohai 已提交
149 150 151 152 153 154 155 156 157
    if not multilabel:
        softmax_out = F.softmax(out)

        # set top1 to fetchs
        top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
        # set topk to fetchs
        k = min(topk, classes_num)
        topk = paddle.metric.accuracy(softmax_out, label=label, k=k)

158 159
        metric_names.append("top1")
        metric_names.append("top{}".format(k))
Y
yaohai 已提交
160

161 162
        fetch_list.append(top1)
        fetch_list.append(topk)
Y
yaohai 已提交
163 164 165 166 167 168 169 170 171
    else:
        out = F.sigmoid(out)
        preds = multi_hot_encode(out.numpy())
        targets = label.numpy()
        ham_dist = to_tensor(hamming_distance(preds, targets))
        accuracy = to_tensor(accuracy_score(preds, targets, base="label"))

        ham_dist_name = "hamming_distance"
        accuracy_name = "multilabel_accuracy"
172 173
        metric_names.append(ham_dist_name)
        metric_names.append(accuracy_name)
Y
yaohai 已提交
174

175 176
        fetch_list.append(accuracy)
        fetch_list.append(ham_dist)
177 178

    # multi cards' eval
179 180 181 182 183 184
    if not use_xpu:
        if mode != "train" and paddle.distributed.get_world_size() > 1:
            for idx, fetch in enumerate(fetch_list):
                fetch_list[idx] = paddle.distributed.all_reduce(
                    fetch, op=paddle.distributed.ReduceOp.
                    SUM) / paddle.distributed.get_world_size()
W
WuHaobo 已提交
185

186 187 188
    fetchs = OrderedDict()
    for idx, name in enumerate(metric_names):
        fetchs[name] = fetch_list[idx]
W
WuHaobo 已提交
189 190 191
    return fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
192
def create_fetchs(feeds, net, config, mode="train"):
W
WuHaobo 已提交
193 194
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
195
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
196 197 198

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
199 200
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
201 202
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
203 204 205
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
206
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
207 208 209 210

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
211 212 213 214 215 216
    architecture = config.ARCHITECTURE
    topk = config.topk
    classes_num = config.classes_num
    epsilon = config.get('ls_epsilon')
    use_mix = config.get('use_mix') and mode == 'train'
    use_distillation = config.get('use_distillation')
Y
yaohai 已提交
217
    multilabel = config.get('multilabel', False)
218
    use_xpu = config.get("use_xpu", False)
littletomatodonkey's avatar
littletomatodonkey 已提交
219 220 221

    out = net(feeds["image"])

W
WuHaobo 已提交
222
    fetchs = OrderedDict()
223
    fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
Y
yaohai 已提交
224 225
                                 epsilon, use_mix, use_distillation,
                                 multilabel)
littletomatodonkey's avatar
littletomatodonkey 已提交
226
    if not use_mix:
227 228 229 230 231 232 233
        metric = create_metric(
            out,
            feeds["label"],
            architecture,
            topk,
            classes_num,
            use_distillation,
Y
yaohai 已提交
234
            multilabel=multilabel,
235 236
            mode=mode,
            use_xpu=use_xpu)
W
WuHaobo 已提交
237 238 239 240 241
        fetchs.update(metric)

    return fetchs


W
WuHaobo 已提交
242
def create_optimizer(config, parameter_list=None):
W
WuHaobo 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
277
    return opt(lr, parameter_list), lr
W
WuHaobo 已提交
278 279


Y
yaohai 已提交
280
def create_feeds(batch, use_mix, num_classes, multilabel=False):
littletomatodonkey's avatar
littletomatodonkey 已提交
281
    image = batch[0]
282
    if use_mix:
littletomatodonkey's avatar
littletomatodonkey 已提交
283 284 285
        y_a = to_tensor(batch[1].numpy().astype("int64").reshape(-1, 1))
        y_b = to_tensor(batch[2].numpy().astype("int64").reshape(-1, 1))
        lam = to_tensor(batch[3].numpy().astype("float32").reshape(-1, 1))
286 287
        feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
    else:
Y
yaohai 已提交
288 289 290
        if not multilabel:
            label = to_tensor(batch[1].numpy().astype("int64").reshape(-1, 1))
        else:
291 292
            label = to_tensor(batch[1].numpy().astype('float32').reshape(
                -1, num_classes))
293 294 295 296
        feeds = {"image": image, "label": label}
    return feeds


T
Tingquan Gao 已提交
297 298 299
total_step = 0


300 301 302 303 304 305
def run(dataloader,
        config,
        net,
        optimizer=None,
        lr_scheduler=None,
        epoch=0,
T
Tingquan Gao 已提交
306 307
        mode='train',
        vdl_writer=None):
W
WuHaobo 已提交
308 309 310 311
    """
    Feed data to the model and fetch the measures and loss

    Args:
littletomatodonkey's avatar
littletomatodonkey 已提交
312
        dataloader(paddle dataloader):
W
WuHaobo 已提交
313 314 315 316 317 318 319 320
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
321
    print_interval = config.get("print_interval", 10)
littletomatodonkey's avatar
littletomatodonkey 已提交
322
    use_mix = config.get("use_mix", False) and mode == "train"
Y
yaohai 已提交
323 324
    multilabel = config.get("multilabel", False)
    classes_num = config.get("classes_num")
littletomatodonkey's avatar
littletomatodonkey 已提交
325 326

    metric_list = [
L
littletomatodonkey 已提交
327 328
        ("loss", AverageMeter(
            'loss', '7.5f', postfix=",")),
littletomatodonkey's avatar
littletomatodonkey 已提交
329
        ("lr", AverageMeter(
L
littletomatodonkey 已提交
330 331 332 333 334
            'lr', 'f', postfix=",", need_avg=False)),
        ("batch_time", AverageMeter(
            'batch_cost', '.5f', postfix=" s,")),
        ("reader_time", AverageMeter(
            'reader_cost', '.5f', postfix=" s,")),
littletomatodonkey's avatar
littletomatodonkey 已提交
335 336
    ]
    if not use_mix:
Y
yaohai 已提交
337 338 339 340 341 342 343 344 345
        if not multilabel:
            topk_name = 'top{}'.format(config.topk)
            metric_list.insert(
                0, (topk_name, AverageMeter(
                    topk_name, '.5f', postfix=",")))
            metric_list.insert(
                0, ("top1", AverageMeter(
                    "top1", '.5f', postfix=",")))
        else:
346 347 348 349 350 351
            metric_list.insert(
                0, ("multilabel_accuracy", AverageMeter(
                    "multilabel_accuracy", '.5f', postfix=",")))
            metric_list.insert(
                0, ("hamming_distance", AverageMeter(
                    "hamming_distance", '.5f', postfix=",")))
littletomatodonkey's avatar
littletomatodonkey 已提交
352 353

    metric_list = OrderedDict(metric_list)
W
WuHaobo 已提交
354

W
WuHaobo 已提交
355
    tic = time.time()
356
    for idx, batch in enumerate(dataloader()):
L
littletomatodonkey 已提交
357 358 359 360 361
        # avoid statistics from warmup time
        if idx == 10:
            metric_list["batch_time"].reset()
            metric_list["reader_time"].reset()

littletomatodonkey's avatar
littletomatodonkey 已提交
362
        metric_list['reader_time'].update(time.time() - tic)
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
363
        batch_size = len(batch[0])
Y
yaohai 已提交
364
        feeds = create_feeds(batch, use_mix, classes_num, multilabel)
littletomatodonkey's avatar
littletomatodonkey 已提交
365
        fetchs = create_fetchs(feeds, net, config, mode)
W
WuHaobo 已提交
366
        if mode == 'train':
L
littletomatodonkey 已提交
367 368 369 370 371
            avg_loss = fetchs['loss']
            avg_loss.backward()

            optimizer.step()
            optimizer.clear_grad()
T
Tingquan Gao 已提交
372 373
            lr_value = optimizer._global_learning_rate().numpy()[0]
            metric_list['lr'].update(lr_value, batch_size)
W
WuHaobo 已提交
374

375 376 377 378 379 380 381 382 383 384 385
            if lr_scheduler is not None:
                if lr_scheduler.update_specified:
                    curr_global_counter = lr_scheduler.step_each_epoch * epoch + idx
                    update = max(
                        0, curr_global_counter - lr_scheduler.update_start_step
                    ) % lr_scheduler.update_step_interval == 0
                    if update:
                        lr_scheduler.step()
                else:
                    lr_scheduler.step()

W
WuHaobo 已提交
386
        for name, fetch in fetchs.items():
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
387
            metric_list[name].update(fetch.numpy()[0], batch_size)
L
littletomatodonkey 已提交
388
        metric_list["batch_time"].update(time.time() - tic)
W
WuHaobo 已提交
389
        tic = time.time()
W
WuHaobo 已提交
390

T
Tingquan Gao 已提交
391 392 393 394 395 396 397 398 399 400 401 402
        if vdl_writer and mode == "train":
            global total_step
            logger.scaler(
                name="lr", value=lr_value, step=total_step, writer=vdl_writer)
            for name, fetch in fetchs.items():
                logger.scaler(
                    name="train_{}".format(name),
                    value=fetch.numpy()[0],
                    step=total_step,
                    writer=vdl_writer)
            total_step += 1

L
littletomatodonkey 已提交
403 404 405 406 407
        fetchs_str = ' '.join([
            str(metric_list[key].mean)
            if "time" in key else str(metric_list[key].value)
            for key in metric_list
        ])
littletomatodonkey's avatar
littletomatodonkey 已提交
408 409

        if idx % print_interval == 0:
L
littletomatodonkey 已提交
410
            ips_info = "ips: {:.5f} images/sec".format(
L
littletomatodonkey 已提交
411
                batch_size / metric_list["batch_time"].avg)
L
littletomatodonkey 已提交
412 413

            if mode == "train":
littletomatodonkey's avatar
littletomatodonkey 已提交
414 415
                epoch_str = "epoch:{:<3d}".format(epoch)
                step_str = "{:s} step:{:<4d}".format(mode, idx)
L
littletomatodonkey 已提交
416 417 418 419 420 421 422 423 424
                eta_sec = ((config["epochs"] - epoch) * len(dataloader) - idx
                           ) * metric_list["batch_time"].avg
                eta_str = "eta: {:s}".format(
                    str(datetime.timedelta(seconds=int(eta_sec))))
                logger.info("{:s}, {:s}, {:s} {:s}, {:s}".format(
                    epoch_str, step_str, fetchs_str, ips_info, eta_str))
            else:
                logger.info("{:s} step:{:<4d}, {:s} {:s}".format(
                    mode, idx, fetchs_str, ips_info))
S
refine  
shippingwang 已提交
425

426 427
    end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
                       [metric_list['batch_time'].total])
L
littletomatodonkey 已提交
428 429 430 431
    ips_info = "ips: {:.5f} images/sec.".format(
        batch_size * metric_list["batch_time"].count /
        metric_list["batch_time"].sum)

W
WuHaobo 已提交
432
    if mode == 'eval':
L
littletomatodonkey 已提交
433
        logger.info("END {:s} {:s} {:s}".format(mode, end_str, ips_info))
W
WuHaobo 已提交
434
    else:
S
shippingwang 已提交
435
        end_epoch_str = "END epoch:{:<3d}".format(epoch)
L
littletomatodonkey 已提交
436 437
        logger.info("{:s} {:s} {:s} {:s}".format(end_epoch_str, mode, end_str,
                                                 ips_info))
littletomatodonkey's avatar
littletomatodonkey 已提交
438

W
WuHaobo 已提交
439
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
440
    if mode == 'valid':
Y
yaohai 已提交
441 442 443 444
        if multilabel:
            return metric_list['multilabel_accuracy'].avg
        else:
            return metric_list['top1'].avg