test_layers.py 171.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36 37 38 39 40 41 42 43 44 45 46


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

47 48 49 50 51 52 53 54
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
55 56 57 58

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
59
            paddle.seed(self.seed)
L
Leo Chen 已提交
60
            paddle.framework.random._manual_program_seed(self.seed)
61 62
            yield

63 64 65
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
66
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
67
        exe.run(fluid.default_startup_program())
68 69 70 71 72 73
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
74 75

    @contextlib.contextmanager
76
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
77
        with fluid.dygraph.guard(
78 79
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
80
            paddle.seed(self.seed)
L
Leo Chen 已提交
81
            paddle.framework.random._manual_program_seed(self.seed)
82 83 84 85
            yield


class TestLayer(LayerTest):
86 87
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
88
            def __init__(self, input_size, linear1_size=4):
89
                super().__init__()
90 91 92
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
93 94 95 96 97 98
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
99 100 101
                return ret

        with self.dynamic_graph():
102 103 104 105 106
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
107
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
108
                ret = custom(x, do_linear2=True)
109
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
110 111
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
112 113
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
114
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
115
            ret = custom(x, do_linear2=True)
116
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
117

118 119 120
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
121 122 123 124 125 126
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
127 128
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
129 130 131
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
132
            static_ret, static_ret2 = self.get_static_graph_result(
133 134
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
135
        with self.dynamic_graph():
136 137 138 139
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
140 141 142
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
143 144 145
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

146 147 148
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
149 150 151
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
152 153 154
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

155 156
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
157

158 159 160
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
161

S
songyouwei 已提交
162 163 164
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
165 166 167 168 169 170
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
171
            linear = nn.Linear(
172 173
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
174
            ret = linear(t)
175 176 177
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
178
        with self.dynamic_graph():
179 180 181 182 183
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
184 185
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
186 187 188
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
189 190
            t = base.to_variable(inp)
            linear = nn.Linear(
191 192
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
193 194 195
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

196 197
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
198

199 200 201 202 203 204 205 206
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
207 208
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
209 210 211 212 213 214 215 216
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
217 218 219
                linear = nn.Linear(
                    32,
                    4,
220 221
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
222 223 224 225 226 227 228
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
229 230 231 232 233 234
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
235 236
            flatten = nn.Flatten()
            ret = flatten(t)
237 238 239
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
240
        with self.dynamic_graph():
241 242 243 244 245 246
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

247 248 249 250 251
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

252 253
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
254 255 256 257 258 259 260 261 262

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
263 264
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
265 266 267 268 269 270 271 272
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
273 274 275
                linear = nn.Linear(
                    32,
                    4,
276 277
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
278 279 280 281
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

282 283 284
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
285 286 287 288 289 290
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
291 292 293
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
294 295 296 297 298
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
299
        with self.static_graph():
300 301 302 303 304 305
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
306
            lm = nn.LayerNorm(
307
                normalized_shape=[32, 32],
308
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
309 310
                act='sigmoid',
            )
311
            ret = lm(t)
312 313 314
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
315
        with self.dynamic_graph():
316 317 318 319
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
320 321
                    act='sigmoid',
                )
322 323 324
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

325
            lm = nn.LayerNorm(
326
                normalized_shape=[32, 32],
327
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
328 329
                act='sigmoid',
            )
330
            dy_ret = lm(base.to_variable(inp))
331
            dy_ret_value = dy_ret.numpy()
332

333
        with self.dynamic_graph():
334 335 336 337 338 339 340
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
341 342
                    act='sigmoid',
                )
343 344 345 346 347
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

348
            lm = nn.LayerNorm(
349
                normalized_shape=[32, 32],
350 351 352 353
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
354 355
                act='sigmoid',
            )
356 357 358 359
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
360

361 362 363
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
364

365
        with self.dynamic_graph():
366 367 368 369
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
370 371
                    act='sigmoid',
                )
372 373 374
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

375 376 377
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
378 379
                act='sigmoid',
            )
380 381 382
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
383 384 385 386
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
387
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
388 389
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
390
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
391 392
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
393 394

            with self.dynamic_graph():
395 396 397 398 399 400
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
401 402 403 404
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
405 406
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
407

408 409 410 411 412
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
413 414
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
415 416

        with self.dynamic_graph():
417 418 419 420 421
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

422 423
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
424
            dy_ret_value = dy_ret.numpy()
425

426 427
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
428

429 430 431 432 433
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
434 435 436 437 438 439 440
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
441 442

        with self.dynamic_graph():
443 444 445
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
446 447 448
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
449 450
                dy_eager_ret_value = dy_eager_ret.numpy()

451 452
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
453
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
454
            dy_ret_value = dy_ret.numpy()
455

456 457
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
458

M
minqiyang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
472 473
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
474
            static_ret = self.get_static_graph_result(
475 476 477
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
478 479 480 481 482

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
483 484
                input=x, hidden=hidden, size=D * 3
            )
485
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
486 487 488
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
489 490 491
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
492 493

        with self.dynamic_graph():
494 495
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
496 497 498
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
499 500 501 502
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

503
            gru = nn.GRUUnit(size=D * 3)
504 505 506
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
507 508 509
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
510 511

        for i in range(len(static_ret)):
512 513 514 515 516 517 518 519 520
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
521

522
        with self.dynamic_graph():
523 524 525 526
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
527 528 529
                        custom_weight
                    )
                )
530 531
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
532 533 534 535 536 537
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
538
                self.assertFalse(
539 540
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
541 542 543 544
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
545 546 547 548 549 550
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
551
                for o1, o2 in zip(dy_ret1, dy_ret2):
552
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
553 554 555

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
556 557 558 559 560 561
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
562

563
            custom_weight = np.random.randn(D, D * 3).astype("float32")
564 565 566 567 568
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
569 570
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
571 572 573 574 575 576
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
577
            self.assertFalse(
578 579
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
580 581 582 583
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
584 585 586 587 588 589
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
590
            for o1, o2 in zip(dy_ret1, dy_ret2):
591
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
592 593 594

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
595 596 597
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
598
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
599

X
Xin Pan 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
617
            ret = paddle.pow(ret, t3)
X
Xin Pan 已提交
618 619 620 621
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

622 623 624 625
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
626 627

        with self.dynamic_graph():
628 629
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
630
                ret = paddle.pow(ret, to_variable(n3))
631 632 633 634 635
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

636
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
637
            ret = paddle.pow(ret, to_variable(n3))
638 639 640
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
641
            dy_ret_value = dy_ret.numpy()
642

643 644
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
645 646 647 648 649 650

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
651
            with _test_eager_guard():
652
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
653
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
654 655 656
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

657
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
658
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
659 660
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
661

662 663 664 665
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
666

667 668 669 670 671 672 673
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
674 675 676 677 678 679 680
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
681
            out = layers.sequence_conv(seq, 2, act='sigmoid')
682 683 684 685 686 687 688 689 690
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
691 692

        with self.static_graph():
693 694 695 696 697 698 699
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
700
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
701
            out = seq_conv(seq)
702 703 704 705 706 707 708 709 710 711 712 713
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
714 715 716 717 718 719

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
720 721
                input=img,
                num_filters=10,
722
                filter_size=27,
723
                act='sigmoid',
724 725 726 727 728
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
729 730 731
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
732
                num_channels=3,
733
                num_filters=10,
734
                filter_size=27,
735
                act='sigmoid',
736 737
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
738
            out = conv2d_transpose(img)
739 740 741
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
742
        with self.dynamic_graph():
743 744 745 746 747 748
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
749 750
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
751 752 753
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

754
            conv2d_transpose = nn.Conv2DTranspose(
755
                num_channels=3,
756
                num_filters=10,
757
                filter_size=27,
758
                act='sigmoid',
759 760
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
761
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
762
            dy_rlt_value = dy_rlt.numpy()
763 764 765
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
766

767
        with self.dynamic_graph():
768 769 770 771 772
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
773 774 775 776 777 778 779 780 781 782 783 784
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
785 786 787
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
788 789
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
790 791 792 793

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
794 795
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
796
                conv2d2.weight.set_value(conv2d1_weight_np)
797 798 799
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
800 801 802
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
803
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
804 805 806

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
807 808 809 810 811 812
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
813

814 815
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
816 817 818 819 820 821 822 823 824 825 826 827 828 829
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
830 831 832 833 834 835 836
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
837 838
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
839
            conv2d2.weight.set_value(conv2d1_weight_np)
840 841 842
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
843 844 845
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
846
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
847 848 849

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
850 851 852 853 854 855
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
856

857 858 859 860 861
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
862 863 864
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
865 866 867 868 869 870 871
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
872 873 874 875 876 877
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
878 879 880 881
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

882 883 884 885 886
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
887 888 889 890 891 892
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
893 894 895 896 897
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
898 899
                act='sigmoid',
            )
900

901 902 903
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
904

905
        with self.static_graph():
906 907 908 909 910 911
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
912
            btp = nn.BilinearTensorProduct(
913 914
                3,
                3,
915 916
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
917 918
                act='sigmoid',
            )
919
            out = btp(data_x, data_y)
920 921 922
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
923
        with self.dynamic_graph():
924 925 926 927 928 929
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
930 931 932 933 934
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
935 936
                dy_eager_rlt_value = dy_eager_rlt.numpy()

937
            btp = nn.BilinearTensorProduct(
938 939
                3,
                3,
940 941
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
942 943
                act='sigmoid',
            )
944
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
945
            dy_rlt_value = dy_rlt.numpy()
946

947
        with self.dynamic_graph():
948 949
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
950 951 952
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
953 954
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

955
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
956 957 958
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
959
            dy_rlt2_value = dy_rlt2.numpy()
960

961
        with self.static_graph():
962 963 964 965 966 967 968 969 970 971 972 973 974
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
975

976 977 978 979 980
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
981

982
        with self.dynamic_graph():
983 984 985 986
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
987 988 989
                        custom_weight
                    )
                )
990
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
991 992 993 994 995 996 997 998 999
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1000
                self.assertFalse(
1001 1002
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1003 1004
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1005 1006 1007 1008 1009 1010
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1011
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1012 1013 1014

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1015 1016 1017 1018 1019 1020
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1021

1022
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1023 1024 1025 1026 1027
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1028
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1029 1030 1031 1032 1033 1034 1035 1036 1037
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1038 1039 1040
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1041 1042 1043 1044 1045 1046
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1047
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1048 1049 1050

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1051 1052 1053
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1054
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1055

1056
    def prelu_test(self, mode):
1057 1058
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1071 1072

        with self.static_graph():
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1085
            out = prelu(data_t)
1086 1087 1088
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1089 1090

        with self.dynamic_graph():
1091 1092 1093 1094 1095
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1096 1097
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1098 1099 1100
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1101 1102 1103 1104 1105 1106
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1107
            dy_rlt = prelu(base.to_variable(inp_np))
1108
            dy_rlt_value = dy_rlt.numpy()
1109

1110 1111 1112
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1113

1114
        with self.dynamic_graph():
1115 1116 1117 1118 1119 1120 1121
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1122 1123
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1124 1125 1126 1127
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1128 1129
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1130 1131 1132
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1133 1134
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1135
                self.assertFalse(
1136 1137
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1138 1139 1140
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1141
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1142 1143

                prelu2.weight = prelu1.weight
1144 1145 1146
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1147

1148 1149
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1162 1163 1164
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1165 1166
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1167 1168 1169 1170
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1171
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1172 1173

            prelu2.weight = prelu1.weight
1174 1175 1176
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1177

1178 1179 1180 1181 1182
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1183 1184 1185 1186 1187
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1188 1189 1190 1191 1192 1193 1194 1195 1196
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1197 1198
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1199 1200 1201
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1202
            emb_rlt = emb2(data_t)
1203 1204 1205
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1206
        with self.dynamic_graph():
1207
            with _test_eager_guard():
1208 1209 1210 1211 1212
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1213 1214 1215
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1216 1217 1218
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1219 1220
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1221 1222

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1223
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1224
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1225

1226
        with self.dynamic_graph():
1227 1228 1229 1230
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1231 1232 1233
                        custom_weight
                    )
                )
1234
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1235 1236 1237 1238 1239
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1240 1241 1242
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1243 1244 1245 1246 1247
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1248 1249 1250
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1251
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1252 1253

                emb2.weight = emb1.weight
1254 1255 1256
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1257

1258
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1259 1260 1261 1262 1263
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1264
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1265 1266 1267
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1268 1269 1270
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1271
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1272 1273 1274
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1275
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1276 1277

            emb2.weight = emb1.weight
1278 1279 1280
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1281

1282 1283 1284 1285
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1286
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1287 1288 1289 1290 1291 1292
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1293 1294 1295 1296 1297 1298 1299
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1300 1301 1302 1303 1304
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1305 1306 1307 1308 1309 1310
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1311 1312 1313
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1314
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
            nce_loss = layers.nce(
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1327 1328 1329
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1330 1331 1332
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1333

1334 1335 1336 1337
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1369

1370 1371
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1372 1373 1374 1375
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1376 1377 1378
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1379

L
Leo Chen 已提交
1380
        with self.dynamic_graph():
W
Weilong Wu 已提交
1381 1382 1383 1384
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1385 1386 1387 1388 1389 1390 1391 1392
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1416 1417 1418 1419 1420

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1421 1422 1423
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1424 1425 1426 1427 1428 1429
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1430 1431 1432 1433 1434 1435 1436 1437 1438

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1453

1454 1455
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1456
            dy_rlt_value = dy_rlt.numpy()
1457

1458 1459 1460
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1461

L
Leo Chen 已提交
1462
        with self.dynamic_graph():
W
Weilong Wu 已提交
1463
            with _test_eager_guard():
1464 1465 1466
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1467 1468
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1469 1470 1471
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1472 1473 1474 1475 1476 1477
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1478 1479 1480 1481 1482 1483 1484
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1518 1519 1520 1521 1522

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1523 1524
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1525 1526 1527 1528
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1529 1530 1531
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1532 1533 1534

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1535 1536 1537 1538 1539 1540
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1541

1542
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1543 1544 1545 1546 1547
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1548 1549 1550 1551
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1552 1553
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1554 1555 1556 1557 1558
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1592

1593 1594 1595
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1596
            self.assertFalse(
1597 1598
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1599 1600
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1601 1602
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1603
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1604 1605 1606

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1607 1608 1609
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1610
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1611

S
songyouwei 已提交
1612 1613
    def test_one_hot(self):
        with self.dynamic_graph():
1614
            with _test_eager_guard():
1615 1616 1617
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1618 1619
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1620 1621 1622 1623 1624
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1625

S
songyouwei 已提交
1626 1627 1628
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1629 1630 1631 1632 1633
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1634 1635 1636

    def test_split(self):
        with self.dynamic_graph():
1637 1638 1639
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1640 1641 1642 1643 1644
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1645 1646
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1647

S
songyouwei 已提交
1648 1649
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1650 1651 1652 1653 1654
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1655 1656
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1657 1658 1659

    def test_topk(self):
        with self.dynamic_graph():
1660 1661 1662 1663
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1664 1665 1666 1667 1668 1669 1670 1671
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1672

S
songyouwei 已提交
1673 1674 1675
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1676 1677 1678 1679 1680 1681 1682 1683
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1684

L
lujun 已提交
1685 1686
    def test_conv3d(self):
        with self.static_graph():
1687 1688 1689
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1690
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1691
            static_ret = self.get_static_graph_result(
1692
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1693 1694
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1695 1696

        with self.static_graph():
1697 1698 1699
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1700
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1701 1702
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1703
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1704 1705
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1706 1707

        with self.dynamic_graph():
1708 1709 1710 1711 1712 1713
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1714
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1715
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1716
            dy_ret = conv3d(base.to_variable(images))
1717
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1718

1719 1720 1721
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1722

1723
        with self.dynamic_graph():
1724 1725 1726 1727 1728
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1741 1742 1743
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1744 1745
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1746 1747 1748 1749

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1750 1751
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1752
                conv3d2.weight.set_value(conv3d1_weight_np)
1753 1754 1755
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1756 1757 1758
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1759
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1760 1761 1762

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1763 1764 1765 1766 1767 1768
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1769

1770 1771
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1772 1773 1774 1775 1776
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1777
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1778 1779 1780 1781 1782 1783
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1784 1785 1786 1787 1788 1789 1790
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1791 1792
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1793
            conv3d2.weight.set_value(conv3d1_weight_np)
1794 1795 1796
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1797 1798 1799
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1800
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1801 1802 1803

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1804 1805 1806 1807 1808 1809
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1810

L
lujun 已提交
1811 1812 1813 1814 1815 1816 1817 1818
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1819 1820 1821 1822 1823 1824 1825
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1826
            ret = layers.row_conv(input=x, future_context_size=2)
1827 1828 1829 1830 1831 1832 1833 1834 1835
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1836 1837

        with self.static_graph():
1838 1839 1840 1841 1842 1843 1844
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1845 1846
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1847 1848 1849 1850 1851 1852 1853 1854 1855
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1856

1857
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1858

1859
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1860

1861
    def func_group_norm(self):
L
lujun 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1872 1873 1874 1875 1876 1877 1878
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1879 1880 1881
            ret = layers.group_norm(
                input=X,
                groups=2,
1882
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1894 1895

        with self.static_graph():
1896 1897 1898 1899 1900 1901 1902
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1903 1904 1905
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1906
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1907 1908
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1909
            ret = groupNorm(X)
1910 1911 1912 1913 1914 1915 1916 1917 1918
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1919 1920

        with self.dynamic_graph():
1921 1922 1923
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1924
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1925 1926
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1927
            dy_ret = groupNorm(base.to_variable(input))
1928
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1929

1930 1931
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1932

1933 1934 1935 1936 1937
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1949 1950 1951
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1952
            ret = layers.instance_norm(input=X)
1953 1954 1955
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1956 1957

        with self.static_graph():
1958 1959 1960
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1961 1962
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1963 1964 1965
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1966 1967

        with self.dynamic_graph():
1968 1969 1970 1971 1972
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1973 1974 1975 1976 1977
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1978 1979 1980 1981 1982
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1983
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1984 1985 1986
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1987 1988 1989 1990 1991
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1992 1993 1994 1995

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1996
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1997 1998 1999 2000 2001 2002 2003
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2004
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2005 2006 2007 2008
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2020 2021 2022 2023 2024 2025 2026
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2027
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2028 2029 2030 2031 2032 2033 2034 2035 2036
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2037 2038

        with self.static_graph():
2039 2040 2041 2042 2043 2044 2045
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2046
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2047
            ret = spectralNorm(Weight)
2048 2049 2050 2051 2052 2053 2054 2055 2056
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2057 2058

        with self.dynamic_graph():
2059 2060 2061 2062 2063
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2064
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2065
            dy_ret = spectralNorm(base.to_variable(input))
2066
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2067

2068 2069 2070
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2115 2116

        with self.static_graph():
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2134
            ret = treeConv(NodesVector, EdgeSet)
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2147 2148

        with self.dynamic_graph():
2149
            with _test_eager_guard():
2150 2151 2152 2153 2154 2155
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2156 2157
                dy_eager_rlt_value = dy_eager_ret.numpy()

2158 2159 2160
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2161
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2162
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2163

2164 2165 2166
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2167

2168
        with self.dynamic_graph():
2169 2170 2171 2172
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2197
                self.assertFalse(
2198 2199
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2200 2201
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2202 2203 2204 2205 2206 2207
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2208
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2209 2210 2211

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2212 2213 2214 2215 2216 2217
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2218

2219
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2246 2247 2248
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2249 2250 2251 2252 2253 2254
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2255
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2256 2257 2258

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2259 2260 2261 2262 2263 2264
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2265

L
lujun 已提交
2266
    def test_conv3d_transpose(self):
2267 2268 2269
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2270 2271 2272

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2273 2274 2275
            out = layers.conv3d_transpose(
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2276
            static_rlt = self.get_static_graph_result(
2277 2278
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2279 2280
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2281 2282 2283
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2284 2285
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2286 2287
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2288
        with self.dynamic_graph():
2289
            with _test_eager_guard():
2290 2291 2292 2293 2294 2295
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2296 2297 2298
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2299 2300 2301
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2302
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2303
            dy_rlt_value = dy_rlt.numpy()
2304 2305 2306
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2307

2308
        with self.dynamic_graph():
2309 2310 2311 2312 2313
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2332 2333 2334
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2335 2336
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2337 2338 2339 2340

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2341 2342
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2343
                conv3d2.weight.set_value(conv3d1_weight_np)
2344 2345 2346
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2347 2348 2349
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2350
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2351 2352 2353

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2354 2355 2356 2357 2358 2359
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2360

2361 2362
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2383 2384 2385 2386 2387 2388 2389
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2390 2391
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2392
            conv3d2.weight.set_value(conv3d1_weight_np)
2393 2394 2395
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2396 2397 2398
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2399
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2400 2401 2402

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2403 2404 2405 2406 2407 2408
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2409

2410
    def func_while_loop(self):
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2428
            def cond1(i):
2429 2430
                return layers.less_than(i, ten)

2431
            def body1(i):
2432 2433
                return i + 1

2434
            dy_ret = layers.while_loop(cond1, body1, [i])
2435 2436 2437 2438 2439 2440
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2441
                layers.while_loop(cond1, body2, [j])
2442

2443
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2444

2445 2446 2447 2448 2449
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2450 2451 2452 2453 2454 2455 2456 2457
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2458 2459 2460
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2461
        with self.dynamic_graph():
2462 2463 2464 2465 2466 2467 2468 2469
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2470 2471 2472 2473
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2474 2475
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2476 2477 2478 2479 2480 2481

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2482 2483 2484
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2485
        with self.dynamic_graph():
2486 2487 2488 2489 2490 2491 2492 2493
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2494 2495 2496 2497 2498 2499 2500
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2501
        # greater than
2502 2503 2504 2505
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2506 2507 2508
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2509
        with self.dynamic_graph():
2510 2511 2512 2513 2514 2515 2516 2517
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2518 2519 2520 2521 2522 2523 2524
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2525
        # greater equal
2526 2527 2528 2529
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2530 2531 2532
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2533
        with self.dynamic_graph():
2534 2535 2536 2537 2538 2539 2540 2541
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2554 2555 2556
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2557
        with self.dynamic_graph():
2558 2559 2560 2561 2562 2563 2564 2565
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2578 2579 2580
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2581
        with self.dynamic_graph():
2582 2583 2584 2585 2586 2587 2588 2589
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2590 2591 2592 2593 2594 2595 2596
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2597 2598 2599 2600 2601 2602 2603 2604
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2621 2622 2623 2624 2625
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2626 2627 2628
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2641 2642
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2643 2644 2645
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2646 2647 2648 2649 2650
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2651 2652
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2663 2664
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2665
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2666 2667 2668 2669 2670
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2671 2672
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2673

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2693 2694 2695
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2696 2697
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2698 2699 2700 2701 2702
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2703 2704 2705 2706
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2707 2708 2709 2710 2711 2712 2713 2714 2715
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2716 2717 2718 2719 2720 2721
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2722 2723 2724
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2725 2726 2727 2728 2729 2730 2731 2732
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2733 2734 2735
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2736 2737 2738 2739
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2740 2741 2742 2743
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2779 2780
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2781 2782
                fetch_list=[out_1, out_2, out_3]
            )
2783 2784

        with self.dynamic_graph():
2785
            with _test_eager_guard():
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2807 2808 2809 2810 2811

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2812 2813 2814
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2829 2830 2831 2832 2833

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2834 2835 2836 2837 2838 2839
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2840

2841 2842 2843 2844
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2845 2846 2847 2848 2849 2850
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2851
            crop_shape1 = (1, 2, 4, 4)
2852 2853 2854
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2855 2856
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2857 2858 2859
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2860 2861
            crop_offsets3 = [0, dim1, dim2, 0]

2862 2863 2864 2865 2866 2867 2868 2869 2870
            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1
            )
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2
            )
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3
            )
2871 2872 2873 2874 2875

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2876 2877 2878
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2879 2880 2881
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2882 2883 2884

        self.assertIsNotNone(shard_label)

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2898 2899
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2900 2901 2902
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2903

L
Leo Chen 已提交
2904
        with self.dynamic_graph(force_to_use_cpu=True):
2905 2906 2907 2908 2909 2910
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2911
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2912

Y
Yu Yang 已提交
2913

2914
class TestBook(LayerTest):
H
hong 已提交
2915 2916
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_gaussian_random_batch_size_like",
                "make_kldiv_loss",
                "make_prelu",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2927
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2928

2929
    def func_all_layers(self):
2930 2931 2932 2933 2934
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2935 2936 2937
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2950 2951
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2952

2953 2954 2955
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2956 2957
            if method.__name__ in self.only_static_set:
                continue
2958 2959 2960 2961 2962

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2963
                dy_result_value = dy_result.numpy()
2964

2965
            if method.__name__ in self.all_close_compare:
2966 2967 2968 2969 2970 2971
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2972 2973 2974
                        method.__name__
                    ),
                )
2975 2976
                continue

H
hong 已提交
2977
            if method.__name__ not in self.not_compare_static_dygraph_set:
2978 2979 2980 2981
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2982 2983 2984
                        method.__name__
                    ),
                )
2985

2986 2987 2988 2989 2990
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2991 2992 2993
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2994
            shape = [self._batch_size] + shape
2995 2996 2997 2998 2999
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3000 3001 3002
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3003
        elif dtype == 'int64':
3004 3005 3006 3007 3008 3009 3010
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3011
        if base.enabled():
3012 3013 3014 3015 3016
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3017 3018
        else:
            if set_feed_dict:
3019
                self._feed_dict[name] = self._get_np_data(
3020 3021 3022 3023 3024 3025 3026 3027
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3028 3029

    def make_fit_a_line(self):
3030 3031 3032 3033
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3034
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3035
            y_predict = layers.fc(input=x, size=1, act=None)
3036
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3037
            cost = layers.square_error_cost(input=y_predict, label=y)
3038
            avg_cost = paddle.mean(cost)
3039
            return avg_cost
Y
Yu Yang 已提交
3040

3041
    def make_recognize_digits_mlp(self):
3042 3043 3044
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3045
            # Change g_program, so the rest layers use `g_program`
3046 3047
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3048 3049
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3050 3051 3052 3053 3054 3055
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3056
            cost = layers.cross_entropy(input=predict, label=label)
3057
            avg_cost = paddle.mean(cost)
3058
            return avg_cost
Y
Yu Yang 已提交
3059

3060
    def make_conv2d_transpose(self):
3061 3062 3063
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3064
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3065 3066 3067
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28
            )
3068

3069
    def make_recognize_digits_conv(self):
3070 3071 3072 3073 3074 3075
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3076
            label = self._get_data(name='label', shape=[1], dtype='int64')
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3093 3094 3095

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3096
            avg_cost = paddle.mean(cost)
3097
            return avg_cost
Y
Yu Yang 已提交
3098

3099
    def make_word_embedding(self):
3100 3101 3102
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3103 3104
            dict_size = 10000
            embed_size = 32
3105
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3106 3107 3108
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3109 3110 3111
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3138 3139 3140

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3141 3142
                axis=1,
            )
Y
Yu Yang 已提交
3143 3144

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3145 3146 3147
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3148
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3149
            avg_cost = paddle.mean(cost)
3150
            return avg_cost
Y
Yu Yang 已提交
3151

3152
    def make_sigmoid_cross_entropy(self):
3153 3154 3155
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3156 3157
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3158
            ignore_index = -1
3159 3160 3161
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3162 3163

    def make_pool2d(self):
3164 3165 3166
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3167
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3168 3169 3170
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3171

K
Kaipeng Deng 已提交
3172
    def make_pool2d_infershape(self):
3173 3174 3175
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3176
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3177 3178 3179
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3180 3181 3182
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3183 3184

    def make_pool3d(self):
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32'
            )
            return layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1),
            )
K
Kaipeng Deng 已提交
3197

3198
    def make_lstm_unit(self):
3199 3200 3201 3202 3203 3204
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3205
            x_t = layers.fc(input=x_t_data, size=10)
3206 3207 3208
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3209
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3210 3211 3212
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3213
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3214 3215 3216
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3217

3218
    def make_softmax(self):
3219 3220 3221
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3222
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3223
            hid = layers.fc(input=data, size=20)
3224
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3225

3226
    def make_space_to_depth(self):
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data',
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.space_to_depth(data, 3)
J
JiabinYang 已提交
3237

3238
    def make_get_places(self):
3239 3240 3241
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3242
            get_places(device_count=1)
X
xuezhong 已提交
3243

3244
    @prog_scope()
3245
    def make_nce(self):
Y
Yang Yu 已提交
3246 3247
        window_size = 5
        words = []
3248
        for i in range(window_size):
Y
Yang Yu 已提交
3249
            words.append(
3250 3251 3252 3253
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3254 3255

        dict_size = 10000
M
minqiyang 已提交
3256
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3257 3258

        embs = []
3259
        for i in range(window_size):
Y
Yang Yu 已提交
3260 3261 3262
            if i == label_word:
                continue

3263 3264 3265 3266 3267 3268
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3269 3270 3271 3272

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3273 3274 3275 3276 3277 3278 3279
        loss = layers.nce(
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3280
        avg_loss = paddle.mean(loss)
3281
        return avg_loss
Y
Yang Yu 已提交
3282

3283
    def make_multiplex(self):
3284 3285 3286
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3287 3288 3289
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3290
            out = layers.multiplex(inputs=[x1, x2], index=index)
3291
            return out
3292 3293

    def make_softmax_with_cross_entropy(self):
3294 3295 3296
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3297 3298
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3299
            loss, softmax = layers.softmax_with_cross_entropy(
3300 3301
                x, y, return_softmax=True
            )
3302 3303 3304
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3305
            loss = layers.softmax_with_cross_entropy(x, y)
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3320
            return loss4
3321 3322

    def make_smooth_l1(self):
3323 3324 3325
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3326 3327
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3328
            loss = layers.smooth_l1(x, y)
3329
            return loss
3330

3331
    def make_scatter(self):
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3347
            out = layers.scatter(input=x, index=idx, updates=updates)
3348
            return out
Y
yangyaming 已提交
3349

3350 3351 3352 3353
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3354
            return one_hot_label
3355

3356 3357 3358 3359 3360
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3361
            one_hot_label = layers.one_hot(input=label, depth=10)
3362 3363 3364 3365
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="int32"
            )
            return smooth_label
3366

3367
    def make_topk(self):
3368 3369 3370
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3371 3372
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3373 3374
            return values
            return indices
J
jerrywgz 已提交
3375

3376
    def make_resize_bilinear(self):
3377 3378 3379
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3380
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3381
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3382
            return output
K
Kaipeng Deng 已提交
3383 3384

    def make_resize_bilinear_by_scale(self):
3385 3386 3387
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3388 3389
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3390
            return output
3391

3392
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3393
        try:
3394 3395 3396
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3397 3398 3399 3400 3401 3402
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3403 3404 3405 3406 3407 3408
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3409 3410 3411 3412
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3413 3414 3415
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3416
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3417
            output = layers.resize_nearest(x, out_shape=[12, 12])
3418
            return output
K
Kaipeng Deng 已提交
3419 3420

    def make_resize_nearest_by_scale(self):
3421 3422 3423
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3424 3425
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3426
            return output
K
Kaipeng Deng 已提交
3427 3428 3429

    def make_resize_trilinear(self):
        try:
3430 3431 3432
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3433 3434 3435 3436 3437 3438
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3439 3440 3441 3442 3443 3444
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3445 3446 3447 3448
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3449 3450 3451
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3452 3453
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3454
            return output
K
Kaipeng Deng 已提交
3455 3456

    def make_resize_trilinear_by_scale(self):
3457 3458 3459
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3460 3461
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3462
            return output
3463

3464
    def make_polygon_box_transform(self):
3465 3466 3467
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3468
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3469
            output = layers.polygon_box_transform(input=x)
3470
            return output
3471

3472
    def make_l2_normalize(self):
3473 3474 3475
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3476
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3477
            output = layers.l2_normalize(x, axis=1)
3478
            return output
3479

3480 3481 3482
    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
3483 3484
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
3485
            return iou
W
whs 已提交
3486

3487
    def make_argsort(self):
3488 3489 3490
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3491
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3492
            out, ids = layers.argsort(input=data, axis=1)
3493 3494
            return out
            return ids
3495 3496

    def make_shape(self):
3497 3498 3499 3500 3501 3502
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3503
            out = layers.shape(input)
3504
            return out
B
Bai Yifan 已提交
3505

3506
    def make_pad2d(self):
3507 3508 3509 3510 3511 3512
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
3513
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            return out
            return out_1
W
whs 已提交
3530

3531
    def make_prelu(self):
3532 3533 3534 3535 3536 3537
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[5, 200, 100, 100], dtype="float32"
            )
J
jerrywgz 已提交
3538
            mode = 'channel'
3539 3540 3541 3542 3543 3544 3545
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu',
            )
            return out
J
jerrywgz 已提交
3546

K
Kaipeng Deng 已提交
3547
    def make_mish(self):
3548 3549 3550
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3551 3552
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3553
            return out
K
Kaipeng Deng 已提交
3554

3555
    def make_cross_entropy(self):
3556 3557 3558
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3559 3560
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3561 3562
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3563
            return out
3564

3565
    def make_expand(self):
3566 3567 3568
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3569
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
3570
            out = layers.expand(x, [1, 2])
3571
            return out
W
whs 已提交
3572

3573
    def make_uniform_random_batch_size_like(self):
3574 3575 3576 3577 3578 3579
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3580
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3581
            return out
G
fix  
gongweibao 已提交
3582

3583
    def make_gaussian_random(self):
3584 3585 3586
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3587
            out = layers.gaussian_random(shape=[20, 30])
3588
            return out
G
fix  
gongweibao 已提交
3589

3590
    def make_sampling_id(self):
3591 3592 3593 3594 3595 3596 3597 3598 3599
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3600 3601

            out = layers.sampling_id(x)
3602
            return out
G
fix  
gongweibao 已提交
3603

3604
    def make_gaussian_random_batch_size_like(self):
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0
            )
            return out
G
fix  
gongweibao 已提交
3616

3617
    def make_sum(self):
3618 3619 3620 3621 3622 3623
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3624 3625

            out = layers.sum(input)
3626
            return out
G
fix  
gongweibao 已提交
3627

3628
    def make_slice(self):
G
fix  
gongweibao 已提交
3629 3630 3631 3632
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3633 3634 3635 3636 3637 3638
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3639 3640

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3641
            return out
G
merge  
gongweibao 已提交
3642

3643
    def make_scale_variable(self):
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3656
            out = layers.scale(input, scale=scale_var)
3657 3658
            return out

M
minqiyang 已提交
3659
    def make_iou_similarity(self):
3660 3661 3662
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3663 3664
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3665
            out = layers.iou_similarity(x, y, name='iou_similarity')
3666
            return out
3667 3668

    def make_grid_sampler(self):
3669 3670 3671
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3672 3673
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3674
            out = layers.grid_sampler(x, grid)
3675
            return out
3676 3677

    def make_bilinear_tensor_product_layer(self):
3678 3679 3680
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3681 3682 3683 3684
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3685
            return out
3686 3687

    def make_batch_norm(self):
3688 3689 3690 3691 3692 3693
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3694
            out = layers.batch_norm(data)
3695
            return out
3696

3697
    def make_batch_norm_momentum_variable(self):
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3710
            out = layers.batch_norm(data, momentum=momentum)
3711
            return out
3712

K
Kaipeng Deng 已提交
3713
    def make_inplace_abn(self):
3714 3715 3716 3717 3718 3719
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
K
Kaipeng Deng 已提交
3720
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
3721
            return out
K
Kaipeng Deng 已提交
3722 3723

    def make_inplace_abn_momentum_variable(self):
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.inplace_abn(
                data, momentum=momentum, act='elu', act_alpha=2.0
            )
            return out
K
Kaipeng Deng 已提交
3740

3741
    def make_range(self):
3742 3743 3744
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
3745 3746 3747
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
3748 3749 3750
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
3751
            y = paddle.arange(start, end, step, 'float64')
3752 3753 3754
            return y

    def make_spectral_norm(self):
3755 3756 3757 3758 3759 3760 3761 3762 3763
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
3764
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
3765
            return out
3766 3767

    def make_kldiv_loss(self):
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
3783
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
3784
            return loss
3785 3786

    def make_temporal_shift(self):
3787 3788 3789
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3790 3791
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
3792
            return out
3793 3794

    def make_shuffle_channel(self):
3795 3796 3797
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3798 3799
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
3800
            return out
3801

M
minqiyang 已提交
3802
    def make_fsp_matrix(self):
3803 3804 3805
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3806 3807 3808
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
3809
            return out
3810

M
minqiyang 已提交
3811
    def make_pixel_shuffle(self):
3812 3813 3814
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3815 3816
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
3817
            return out
M
minqiyang 已提交
3818

R
ruri 已提交
3819
    def make_mse_loss(self):
3820 3821 3822
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
3823 3824 3825
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
3826
            return out
R
ruri 已提交
3827

3828
    def make_square_error_cost(self):
3829 3830 3831
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3832 3833 3834
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
3835
            return out
3836

3837 3838 3839 3840
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3841 3842 3843
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3844 3845
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3846 3847 3848 3849
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
3850 3851 3852 3853 3854 3855

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3856 3857 3858 3859 3860 3861 3862 3863
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
3864 3865 3866 3867

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3868
            # case 1
3869
            x = layers.data(name='x', shape=[10], dtype='float32')
3870 3871 3872
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
3873 3874 3875
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3876
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3877 3878 3879 3880 3881 3882
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3883

W
whs 已提交
3884
    def test_affine_grid(self):
3885
        with self.static_graph():
W
whs 已提交
3886 3887 3888 3889
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3890
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
3891 3892
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3893 3894 3895

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3896

W
wangchaochaohu 已提交
3897 3898 3899 3900 3901 3902 3903
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3904 3905 3906
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3907 3908
            return out

3909 3910
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3911 3912 3913 3914 3915 3916
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3917 3918
            return out

3919 3920 3921 3922
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3923 3924 3925
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1
            )
3926
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
3927
            return output
3928

3929 3930 3931 3932
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3933 3934 3935 3936
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3937

3938 3939 3940 3941 3942
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3943
            return out
3944

3945 3946 3947 3948
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3949
            length = layers.data(name='length', shape=[], dtype='int64')
3950
            return layers.sequence_unpad(x=x, length=length)
3951

3952 3953 3954
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3955 3956 3957
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3958
            seq = layers.fc(input=seq_data, size=20)
3959
            return layers.sequence_softmax(seq)
3960

3961 3962 3963 3964 3965
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3966
            return out
3967

3968 3969 3970
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3988
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3989
            return out
W
whs 已提交
3990

3991 3992 3993 3994
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3995 3996 3997 3998

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3999 4000
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
4001 4002 4003 4004
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
4005

Z
zhoushiyu 已提交
4006 4007 4008
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4009 4010 4011
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
4012 4013 4014 4015 4016
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
4017
            return out1
Z
zhoushiyu 已提交
4018

4019 4020 4021 4022
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4023 4024 4025 4026
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
4027

S
ShenLiang 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
4037 4038
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
4039 4040 4041 4042
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
4043 4044 4045 4046 4047
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
4048

S
ShenLiang 已提交
4049 4050 4051
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4052 4053 4054
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
4055 4056 4057 4058 4059 4060 4061
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
4062 4063 4064 4065 4066
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
4067

4068
    def test_roi_pool(self):
4069 4070 4071 4072
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4073
        with self.static_graph():
4074 4075 4076 4077
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4078 4079 4080 4081
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4082 4083

        with self.dynamic_graph():
4084 4085 4086 4087
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4088 4089 4090
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
                )
4091 4092
                dy_eager_res_value = dy_eager_res[0].numpy()

4093 4094 4095
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4096 4097 4098
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
            )
4099
            dy_res_value = dy_res[0].numpy()
4100 4101
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4102 4103 4104 4105 4106 4107 4108 4109

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4110 4111 4112 4113
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4114
        with self.static_graph():
4115 4116 4117 4118
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4119 4120 4121 4122
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4123 4124

        with self.dynamic_graph():
4125 4126 4127 4128
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4129 4130 4131
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
                )
4132 4133
                dy_eager_res_value = dy_eager_res.numpy()

4134 4135 4136
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4137 4138 4139
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
            )
4140
            dy_res_value = dy_res.numpy()
4141 4142
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4143

4144 4145 4146 4147 4148 4149 4150
    def test_dice_loss(self):
        num_classes = 4
        eps = 1e-6
        input_np = np.random.rand(2, 3, num_classes).astype('float32')
        label_np = np.random.randint(0, num_classes, [2, 3, 1], dtype=np.int64)

        with self.static_graph():
4151 4152 4153 4154 4155 4156
            input_ = layers.data(
                name="input", shape=[None, 3, num_classes], dtype="float32"
            )
            label_ = layers.data(
                name="label", shape=[None, 3, 1], dtype="int64"
            )
4157
            output = layers.dice_loss(input_, label_, eps)
4158 4159 4160
            static_res = self.get_static_graph_result(
                feed={'input': input_np, 'label': label_np}, fetch_list=[output]
            )[0]
4161 4162

        with self.dynamic_graph():
4163 4164 4165 4166 4167 4168
            with _test_eager_guard():
                input_ = base.to_variable(input_np)
                label_ = base.to_variable(label_np)
                dy_eager_res = layers.dice_loss(input_, label_, eps)
                dy_eager_res_value = dy_eager_res.numpy()

4169 4170 4171 4172
            input_ = base.to_variable(input_np)
            label_ = base.to_variable(label_np)
            dy_res = layers.dice_loss(input_, label_, eps)
            dy_res_value = dy_res.numpy()
4173 4174
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4175

4176 4177 4178 4179
    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4180 4181 4182
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
4183
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
4184
            return output
4185 4186 4187 4188 4189 4190

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
4191
            return out
4192 4193 4194 4195

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4196 4197 4198 4199 4200 4201
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
4202 4203 4204 4205 4206 4207

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
4208
            return out
4209 4210 4211 4212

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4213 4214 4215 4216 4217 4218
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
4219
            out = layers.flatten(x, axis=1, name="flatten")
4220
            return out
4221

Z
zhoukunsheng 已提交
4222 4223 4224 4225 4226 4227 4228
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4229 4230 4231 4232
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4233
            return out
4234

4235 4236 4237 4238
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4239 4240 4241 4242 4243 4244
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4245 4246
            return concat1, concat2

C
cjt222 已提交
4247
    def test_deform_roi_pooling(self):
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4280

4281
    def test_retinanet_target_assign(self):
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4344

4345
    def test_sigmoid_focal_loss(self):
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4368

4369
    def test_addmm(self):
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4385 4386

            out = paddle.addmm(input=input, x=x, y=y)
4387
            return out
4388

4389
    def test_retinanet_detection_output(self):
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4417 4418 4419 4420 4421 4422 4423 4424 4425
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4426 4427 4428
                nms_eta=1.0,
            )
            return nmsed_outs
4429

4430 4431 4432
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4433 4434 4435 4436 4437 4438
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64'
            )
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64'
            )
4439
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length,
            )
            return output
4450

4451 4452 4453 4454
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4455 4456 4457 4458 4459 4460 4461 4462 4463
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4475 4476
                        batch_first=batch_first,
                    )
4477

Y
Yu Yang 已提交
4478

4479 4480 4481 4482
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4504 4505 4506 4507 4508 4509
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4510 4511
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4512
        super().__init__()
4513
        self.weight = self.create_parameter(
4514 4515
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4546 4547
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4548
        super().__init__()
J
Jiabin Yang 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4560
        super().__init__()
J
Jiabin Yang 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4576
if __name__ == '__main__':
4577
    paddle.enable_static()
Y
Yu Yang 已提交
4578
    unittest.main()