pybind.cc 43.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
39
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
41
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/platform/enforce.h"
43
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
44 45
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
46
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
49
#include "paddle/fluid/pybind/imperative.h"
50 51
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
52
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
54

55
#include "paddle/fluid/string/to_string.h"
56

D
Dong Zhihong 已提交
57
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
58
#ifndef _WIN32
Y
Yi Wang 已提交
59
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
60
#endif
Y
Yi Wang 已提交
61 62
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
63 64
#endif

M
minqiyang 已提交
65 66
#include "pybind11/stl.h"

67 68 69 70
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
71 72 73
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

74
namespace paddle {
75
namespace pybind {
76
bool IsCompiledWithCUDA() {
77
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
78 79 80 81 82 83
  return false;
#else
  return true;
#endif
}

84 85 86 87 88 89 90 91
bool IsCompiledWithBrpc() {
#if defined(PADDLE_WITH_BRPC) || defined(PADDLE_WITH_BRPC_RDMA)
  return true;
#else
  return false;
#endif
}

Y
update  
Yancey1989 已提交
92
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
93
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
94 95 96 97 98 99
  return true;
#else
  return false;
#endif
}

100
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
101 102 103
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
104
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
105
  m.doc() = "C++ core of PaddlePaddle";
106

107 108 109 110
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

111
  BindException(&m);
Y
Yu Yang 已提交
112

113 114 115 116 117 118 119
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
      .def(py::init<>())
      .def("_run_backward",
           [](imperative::VarBase &self, framework::Scope *scope) {
             self.RunBackward(scope);
           })
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
120 121 122 123 124 125
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

155 156 157
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
158
      .def("_get_dims",
159
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
160
      .def("_set_dims",
Q
qijun 已提交
161
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
162
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
163
           })
Y
yuyang18 已提交
164
      .def("_set_layout",
D
dzhwinter 已提交
165 166 167
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
168
      .def("_alloc_float",
D
dzhwinter 已提交
169
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
170
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
171
           })
Y
yuyang18 已提交
172
      .def("_alloc_float",
Y
Yu Yang 已提交
173
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
174
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
175
           })
Y
yuyang18 已提交
176
      .def("_alloc_int",
Y
Yu Yang 已提交
177
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
178
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
179
           })
Y
yuyang18 已提交
180
      .def("_alloc_int",
D
dzhwinter 已提交
181
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
182
             self.mutable_data<int>(place);
Q
qijun 已提交
183
           })
Y
yuyang18 已提交
184
      .def("_alloc_int",
C
chengduoZH 已提交
185 186 187
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
188
      .def("_alloc_float",
C
chengduoZH 已提交
189 190 191
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
192 193
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
194
      .def("set", PyCPUTensorSetFromArray<double>)
195
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
196
      .def("set", PyCPUTensorSetFromArray<bool>)
197
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
198
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
199
      .def("set", PyCPUTensorSetFromArray<int8_t>)
200
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
201 202
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
203
      .def("set", PyCUDATensorSetFromArray<double>)
204
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
205
      .def("set", PyCUDATensorSetFromArray<bool>)
206
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
207
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
208
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
209 210 211 212 213 214
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
215
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
216
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
217
#endif
218
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
219 220 221 222
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
223
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
224

X
Xin Pan 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
238
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
239
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
240
     columns, hence [5, 2].
X
Xin Pan 已提交
241 242 243

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
244 245
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
269 270
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
271 272 273 274 275 276 277 278 279 280 281 282 283 284
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
285
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
286 287 288 289 290
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
291
      .def("set_lod",
292
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
293
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
294
             LoD new_lod;
295 296
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
297 298
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
299
             self.set_lod(new_lod);
D
dangqingqing 已提交
300
           })
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
326
      // Set above comments of set_lod.
327 328 329 330 331 332 333 334 335 336 337 338 339
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
340 341
      });

Q
qijun 已提交
342 343 344 345 346 347 348 349 350 351 352
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
353 354
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
355 356
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
357 358 359 360 361 362 363 364 365
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
366
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
367
      .def("rows", [](SelectedRows &self) {
368 369 370 371 372
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
373
      });
Q
qijun 已提交
374

375
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
376 377 378

All parameter, weight, gradient are variables in Paddle.
)DOC")
379
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
380
      .def("set_int",
381 382
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
383 384 385 386 387 388 389
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
390
      .def("get_tensor",
391 392
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
393 394
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
395 396 397
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
398 399 400 401 402
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
403 404 405
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
406
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
407 408 409 410 411
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
412
#endif
Y
Refine  
Yu Yang 已提交
413 414 415 416 417
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
418
           py::return_value_policy::reference);
419

Y
Refine  
Yu Yang 已提交
420
  py::class_<framework::ReaderHolder>(m, "Reader", "")
421
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
422

S
sneaxiy 已提交
423 424 425 426
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
427 428
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
429
      .def("push",
S
sneaxiy 已提交
430
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
431
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
432
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
433
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
434
           })
S
sneaxiy 已提交
435 436 437 438
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
439

S
sneaxiy 已提交
440
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
441
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
442
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
443
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
444 445 446 447 448 449
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
450 451
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
452
              return holder->GetQueue();
S
sneaxiy 已提交
453
            },
S
sneaxiy 已提交
454
        py::return_value_policy::copy);
S
sneaxiy 已提交
455

Q
Qiao Longfei 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
476
      .def("var",
477
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
478
             return self.Var(name);
Y
Yu Yang 已提交
479
           },
480
           py::return_value_policy::reference)
481
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
482
      .def(py::init<>())
483
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
484
           py::return_value_policy::reference)
Y
Yu Yang 已提交
485
      .def("drop_kids", &Scope::DropKids);
486

Y
Yu Yang 已提交
487 488
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
489 490
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
491 492 493 494 495 496 497 498 499 500
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
501 502
    return ret_values;
  });
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
519
  m.def("prune", [](const ProgramDesc &origin,
520
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
521
    ProgramDesc prog_with_targets(origin);
522
    for (const auto &t : targets) {
523
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
524
    }
525
    proto::ProgramDesc pruned_desc;
526
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
527
    return new ProgramDesc(pruned_desc);
528
  });
529 530 531 532
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
533 534 535
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
536 537
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
538
  // clang-format off
Y
Yu Yang 已提交
539
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
540 541
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
542
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
543 544 545
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
546
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
547
                      -> paddle::platform::DeviceContext* {
548
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
549
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
550
#else
Q
qijun 已提交
551
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
552
#endif
C
chengduoZH 已提交
553 554 555 556 557 558 559 560 561 562 563
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
564
// clang-format on
P
peizhilin 已提交
565
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
566 567
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
568
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
569
      .def(py::init<int>())
D
dzhwinter 已提交
570
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
571

572 573 574
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
575

C
chengduoZH 已提交
576 577 578 579
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
580 581 582 583 584 585 586
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
587
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
588
             self = gpu_place;
C
chengduoZH 已提交
589 590
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
591 592
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
593
      });
Y
Yu Yang 已提交
594

Y
Yu Yang 已提交
595 596 597
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
598
                    proto::OpDesc desc;
Y
Yu Yang 已提交
599 600 601 602 603
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
604
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
605
                  })
606
      .def("run",
607
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
608 609 610
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
611
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
612 613 614 615 616
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
617 618 619 620 621 622 623
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
624 625
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
626
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
627
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
628 629 630 631
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
632

F
fengjiayi 已提交
633
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
634
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
635
      .def("close", &Executor::Close)
S
sneaxiy 已提交
636 637 638 639 640
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
641

D
dzhwinter 已提交
642
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
643
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
644 645
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
646

647
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
648
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
649
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
650 651 652 653 654 655
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
656

657
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
658
  m.def("get_fetch_variable", framework::GetFetchVariable);
659
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
660

X
Xin Pan 已提交
661 662
  m.def("_is_program_version_supported", IsProgramVersionSupported);

663 664 665 666 667
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
668

Y
Yu Yang 已提交
669 670 671 672 673 674 675 676 677
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
678
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
679 680
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
697 698 699
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
700
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
701
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
702
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
703

P
peizhilin 已提交
704
#ifndef _WIN32
D
dangqingqing 已提交
705 706 707
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
708
#endif
P
peizhilin 已提交
709
#endif
Y
Yu Yang 已提交
710

711 712 713 714
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
715
      .value("kAll", platform::ProfilerState::kAll)
716 717 718 719 720 721 722 723 724 725 726 727 728
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
729
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
730
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
731

732 733
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
734 735 736 737 738
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
739 740 741
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
742

X
fix  
Xin Pan 已提交
743 744
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
745 746 747 748 749 750 751 752 753 754 755 756 757 758
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
759
  // -- python binds for parallel executor.
Y
yuyang18 已提交
760
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
761 762 763 764
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
765 766 767 768 769 770 771 772 773 774 775
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
776 777 778

        )DOC");

Y
yuyang18 已提交
779
  exec_strategy.def(py::init())
Y
yuyang18 已提交
780 781 782 783 784
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
785 786 787 788 789 790 791 792 793 794
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
795
      .def_property(
796 797 798 799
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
800 801 802 803
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
804 805 806 807 808
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
809 810 811 812
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
813 814 815 816 817 818 819
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
820 821 822 823 824 825 826 827 828 829 830
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
831 832 833 834 835 836
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
837

Y
yuyang18 已提交
838
  exec_strategy.def_property(
Y
yuyang18 已提交
839 840 841 842 843 844 845
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
846 847
      });

C
chengduo 已提交
848 849 850 851
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
852 853 854 855 856 857 858 859 860 861 862
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
863
)DOC");
Y
yuyang18 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
880
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
881
            self.reduce_ = strategy;
C
chengduo 已提交
882 883 884 885 886 887 888
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
889 890 891 892 893
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
894
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
895
            self.gradient_scale_ = strategy;
C
chengduo 已提交
896 897 898 899 900 901
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
902 903 904 905
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
906
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
907
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
908 909 910 911
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
912 913 914
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
915
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
916
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
917 918
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
919 920 921 922 923 924
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
925
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
926 927 928 929 930 931 932 933 934
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
935
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
936 937 938
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
939 940 941 942 943 944
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
945 946 947 948 949 950 951 952 953 954 955 956
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
957 958 959 960 961 962
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
963
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
964 965 966 967 968
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
969 970 971 972 973 974 975 976
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
977
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
978
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
979 980 981 982 983
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
984 985 986 987

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
988
                  const std::string &, Scope *, std::vector<Scope *> &,
989 990
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
991 992 993 994
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
995 996 997 998 999
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1000 1001 1002 1003
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1004 1005 1006 1007 1008 1009
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1010

1011
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1012
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1013
}
1014
}  // namespace pybind
1015
}  // namespace paddle