nn.py 215.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
F
fengjiayi 已提交
57
    'sequence_pad',
Y
ying 已提交
58 59 60 61 62
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
63
    'reduce_prod',
Y
ying 已提交
64 65 66 67
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
68 69
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
70 71
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
72
    'topk',
Y
ying 已提交
73 74
    'warpctc',
    'sequence_reshape',
75
    'transpose',
76
    'im2sequence',
77
    'nce',
W
weixing02 已提交
78
    'hsigmoid',
Q
Qiao Longfei 已提交
79
    'beam_search',
80
    'row_conv',
81
    'multiplex',
G
guosheng 已提交
82
    'layer_norm',
83 84
    'softmax_with_cross_entropy',
    'smooth_l1',
85
    'one_hot',
Y
Yu Yang 已提交
86
    'autoincreased_step_counter',
C
caoying03 已提交
87
    'reshape',
Y
Yibing Liu 已提交
88 89
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
90
    'lod_reset',
D
dragonwarrior 已提交
91
    'lrn',
G
guosheng 已提交
92
    'pad',
C
chengduo 已提交
93
    'pad_constant_like',
94
    'label_smooth',
95
    'roi_pool',
W
whs 已提交
96
    'dice_loss',
F
fengjiayi 已提交
97 98
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
99
    'resize_bilinear',
W
whs 已提交
100
    'gather',
101
    'scatter',
102
    'random_crop',
Y
yuyang18 已提交
103 104 105
    'mean_iou',
    'relu',
    'log',
106
    'crop',
107
    'rank_loss',
J
jerrywgz 已提交
108
    'prelu',
109
    'flatten',
Q
qingqing01 已提交
110
    'sequence_mask',
S
sneaxiy 已提交
111
    'stack',
W
whs 已提交
112
    'pad2d',
D
dzhwinter 已提交
113
    'unstack',
114
    'sequence_enumerate',
Y
Yu Yang 已提交
115 116 117 118 119 120 121 122
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
123
       use_mkldnn=False,
Y
Yu Yang 已提交
124
       act=None,
J
Jacek Czaja 已提交
125
       is_test=False,
126
       name=None):
Y
Yu Yang 已提交
127
    """
128
    **Fully Connected Layer**
Y
Yu Yang 已提交
129

130 131 132 133 134 135 136 137
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
138
    to the output as well.
C
caoying03 已提交
139

C
caoying03 已提交
140
    This process can be formulated as follows:
141 142 143

    .. math::

144
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
145 146 147

    In the above equation:

C
caoying03 已提交
148 149 150 151
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
152
    * :math:`Act`: The activation function.
C
caoying03 已提交
153
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
154 155

    Args:
R
ranqiu 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
171 172
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
173
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
174
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
175 176
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
177
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
178

179
    Returns:
F
fengjiayi 已提交
180
        Variable: The transformation result.
181 182

    Raises:
C
caoying03 已提交
183
        ValueError: If rank of the input tensor is less than 2.
184 185 186 187

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
188
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
189
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
190
    """
C
caoying03 已提交
191

C
caoying03 已提交
192
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
193 194 195 196

    dtype = helper.input_dtype()

    mul_results = []
197 198
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
199 200 201
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
202

Y
Yu Yang 已提交
203
        w = helper.create_parameter(
204 205
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
206
        helper.append_op(
207 208 209
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
210
            outputs={"Out": tmp},
M
mozga-intel 已提交
211 212
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
213 214 215 216
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
217
    else:
218 219
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
220 221 222 223
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
224 225 226 227
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
228 229


230 231 232
def embedding(input,
              size,
              is_sparse=False,
233
              is_distributed=False,
234 235 236
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
237
    """
238 239
    **Embedding Layer**

240
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
241 242
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
243 244 245

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
246 247

    Args:
248 249 250 251 252
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
253
        is_distributed(bool): Whether to run lookup table from remote parameter server.
254 255
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
256
            with zeros whenever lookup encounters it in :attr:`input`. If
257
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
258 259
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
260
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
261

262 263 264
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
265

266 267
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
268

C
chengduoZH 已提交
269
          dict_size = len(dataset.ids)
270
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
271
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
272 273 274 275 276 277
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
278 279
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
280 281 282 283 284
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
285 286 287 288 289
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
290 291 292
    return tmp


Y
yi.wu 已提交
293
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
294 295
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
296 297
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
298 299 300 301 302 303 304
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
305 306
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
307
    """
Y
yi.wu 已提交
308
    ${comment}
Y
Yibing Liu 已提交
309 310

    Args:
Y
yi.wu 已提交
311 312
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
313 314 315 316 317 318 319
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

320
        param_attr(ParamAttr|None): The parameter attribute for the learnable
321
                               hidden-hidden weights.
Y
Yibing Liu 已提交
322 323 324

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
325 326
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
327
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
328 329 330
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
331

332
                              1. `use_peepholes = False`
Y
yi.wu 已提交
333 334
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
335
                              2. `use_peepholes = True`
Y
yi.wu 已提交
336
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
337
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
338
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
339 340 341 342 343 344 345 346
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
347 348

    Returns:
Y
Yibing Liu 已提交
349 350
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
351

Y
Yibing Liu 已提交
352
    Examples:
Y
Yibing Liu 已提交
353 354
        .. code-block:: python

Y
Yibing Liu 已提交
355 356
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
357
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
358 359
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
360
    """
361

Y
Yu Yang 已提交
362
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
363
    size = size // 4
Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372 373 374 375
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
376 377 378 379 380 381 382 383 384 385
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
386 387 388

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
389
        inputs=inputs,
Y
Yu Yang 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
406 407 408 409 410 411 412 413 414 415 416
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
417 418
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
419 420 421
    """
    **Dynamic LSTMP Layer**

422 423 424 425 426 427
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
428 429 430 431 432

    The formula is as follows:

    .. math::

433
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
434

435
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
436

437
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
438

439
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
440

441
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
442

443
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
444

445
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
446

Y
Yibing Liu 已提交
447 448 449 450 451 452
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
453
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
454
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
455
          bias vector).
Y
Yibing Liu 已提交
456 457 458
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
459
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
460
    * :math:`h`: The hidden state.
461
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
462 463
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
464
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
465
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
466
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
467 468
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
469 470 471 472

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
473

Y
Yibing Liu 已提交
474 475 476 477 478 479 480 481 482 483 484 485
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
486
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
487 488
                               hidden-hidden weight and projection weight.

489 490
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
491 492
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
493 494
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
495 496
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
497 498 499 500 501 502
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
503
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
504 505 506
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
507
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
508 509 510 511 512 513 514 515 516
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
517
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
518 519
                              default "tanh".
        proj_activation(str): The activation for projection output.
520
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
521 522
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
523 524
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
525 526

    Returns:
527 528 529 530
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
531 532

    Examples:
533

Y
Yibing Liu 已提交
534 535
        .. code-block:: python

536 537 538 539
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
540
            hidden_dim, proj_dim = 512, 256
541
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
542
                                     act=None, bias_attr=None)
543 544 545
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
546 547 548 549
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
550
    """
551

Y
Yibing Liu 已提交
552
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
553
    size = size // 4
Y
Yibing Liu 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
598 599 600 601 602 603 604 605 606
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
607
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
608

609
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
610
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
611

G
guosheng 已提交
612 613 614 615 616 617 618 619 620
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
621

G
guosheng 已提交
622
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
623

G
guosheng 已提交
624
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
625 626
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
627 628 629 630
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
631
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
632 633

    Args:
634 635
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
636
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
637
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
638 639
            is the hidden size.
        size(int): The dimension of the gru cell.
640
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
641 642
            hidden-hidden weight matrix. Note:

643
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
644
              :math:`D` is the hidden size.
645
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
646
              The first part are weights of the update gate and reset gate with
647
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
648
              candidate hidden state with shape :math:`(D \\times D)`.
649
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
650
            hidden-hidden bias.
651
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
652 653 654
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
655
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
656
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
657 658 659 660
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
661 662

    Returns:
G
guosheng 已提交
663
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
664
            and sequence length is the same with the input.
665

G
guosheng 已提交
666
    Examples:
667

G
guosheng 已提交
668 669
        .. code-block:: python

670 671 672 673
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
674
            hidden_dim = 512
675
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
676 677 678 679 680 681 682 683 684 685
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
686
    batch_size = input.shape[0]
G
guosheng 已提交
687 688 689
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
690 691 692
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
716 717 718
def gru_unit(input,
             hidden,
             size,
719 720
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
721
             activation='tanh',
722
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
723
    """
724
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
725

726 727
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
728

729
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
730

731
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
732

733
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
734 735

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
736 737 738
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
739 740
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

741 742
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
743 744 745
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
746 747 748 749 750

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
751 752
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
753 754 755 756
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
757

758 759 760 761 762 763
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
764

765
             # assuming we have x_t_data and prev_hidden of size=10
766
             x_t = fluid.layers.fc(input=x_t_data, size=30)
767 768
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
769 770 771 772 773 774 775 776 777 778 779 780

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
781
    size = size // 3
Y
Yu Yang 已提交
782 783

    # create weight
784 785
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
786

787 788 789 790
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
791
    # create bias
792
    if helper.bias_attr:
Y
Yu Yang 已提交
793 794 795
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
796
        inputs['Bias'] = bias
Y
Yu Yang 已提交
797 798 799

    helper.append_op(
        type='gru_unit',
800
        inputs=inputs,
Y
Yu Yang 已提交
801 802 803 804 805 806
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
807 808
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
809 810 811 812 813
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
814
@templatedoc()
815
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
816 817 818 819 820 821 822
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
823
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
824 825 826 827
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
828 829 830
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
831 832

    """
Y
Yu Yang 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
858
@templatedoc()
859
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
860 861 862 863 864
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
865

Y
yuyang18 已提交
866
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
867

Y
yuyang18 已提交
868 869 870
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
871
        Variable: ${viterbi_path_comment}
872

Y
yi.wu 已提交
873 874 875 876 877
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
878
    """
Y
Yu Yang 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
892
@templatedoc()
F
fengjiayi 已提交
893
def cos_sim(X, Y):
Y
Yu Yang 已提交
894
    """
Y
yi.wu 已提交
895 896 897
    ${comment}

    Args:
898 899
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
900

Y
yi.wu 已提交
901
    Returns:
902
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
903
    """
F
fengjiayi 已提交
904
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


918
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
919 920 921 922 923
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
924
    training. The dropout operator randomly sets (according to the given dropout
925 926 927 928
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
929 930
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
931 932 933 934 935 936 937
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
938 939

    Returns:
940
        Variable: A tensor variable is the shape with `x`.
941 942

    Examples:
943

944 945
        .. code-block:: python

946 947
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
948 949
    """

F
fengjiayi 已提交
950
    helper = LayerHelper('dropout', **locals())
951 952
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
953 954 955 956

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

957 958 959 960 961
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
962 963 964 965 966 967
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
968 969 970
    return out


971
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
972
    """
Y
Yibing Liu 已提交
973 974
    **Cross Entropy Layer**

975 976 977
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
978 979

    1) One-hot cross-entropy:
F
fengjiayi 已提交
980
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
981

Y
Yibing Liu 已提交
982
        .. math::
Y
yangyaming 已提交
983

Y
Yibing Liu 已提交
984 985 986
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
987 988
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
989 990 991 992 993

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
994
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
995 996 997
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
998 999
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1000
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1001

Y
Yibing Liu 已提交
1002
    Args:
Y
yangyaming 已提交
1003
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1004 1005 1006 1007
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1008
        label (Variable|list): the ground truth which is a 2-D tensor. When
1009 1010 1011 1012
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1013
        soft_label (bool): a flag indicating whether to
1014
                                           interpretate the given labels as soft
1015 1016 1017 1018
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1019 1020 1021 1022 1023

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1024 1025 1026 1027 1028
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1029 1030 1031 1032 1033 1034

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1035
    """
F
fengjiayi 已提交
1036
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1037 1038 1039 1040 1041 1042
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1043 1044
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1045 1046 1047
    return out


F
fengjiayi 已提交
1048
def square_error_cost(input, label):
Y
Yu Yang 已提交
1049
    """
1050 1051
    **Square error cost layer**

1052 1053
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1068 1069
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1070 1071

    Returns:
G
guosheng 已提交
1072
        Variable: The tensor variable storing the element-wise squared error \
1073
                  difference of input and label.
1074 1075 1076 1077 1078 1079 1080 1081

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1082
    """
F
fengjiayi 已提交
1083
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1093 1094
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1095 1096 1097
    return square_out


Y
yi.wu 已提交
1098
@templatedoc()
Y
Yu Yang 已提交
1099 1100 1101 1102
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1103
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1104
    """
Y
yi.wu 已提交
1105
    **Chunk Evaluator**
Y
yi.wu 已提交
1106

Y
yangyaming 已提交
1107
    This function computes and outputs the precision, recall and
1108
    F1-score of chunk detection.
Y
yi.wu 已提交
1109

Y
yi.wu 已提交
1110 1111 1112 1113 1114 1115 1116 1117
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1118

Y
yi.wu 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1144

Y
yi.wu 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1169
    Args:
1170 1171 1172 1173 1174
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1175

Y
yi.wu 已提交
1176
    Returns:
Y
update  
yi.wu 已提交
1177 1178 1179
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1180

Y
yi.wu 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1193
    """
F
fengjiayi 已提交
1194
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1195 1196 1197 1198 1199

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1200 1201 1202
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1203 1204 1205 1206 1207 1208 1209 1210

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1211 1212 1213 1214
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1215 1216 1217
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1218 1219
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1220
        })
1221 1222
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1223 1224


1225
@templatedoc()
Y
Yu Yang 已提交
1226 1227 1228 1229 1230 1231 1232
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1233
                  act=None):
Y
Yu Yang 已提交
1234 1235 1236 1237
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1248

1249 1250
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1269
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1270 1271 1272 1273 1274 1275
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1276
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1277 1278 1279
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1280
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1323
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1324
    """
1325
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1326
    has the same shape as the input.
Q
qiaolongfei 已提交
1327

1328 1329 1330 1331 1332 1333
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1334
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1335 1336 1337 1338 1339 1340 1341

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1342
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1377 1378 1379
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1380 1381
           stride=1,
           padding=0,
1382
           dilation=1,
Y
Yu Yang 已提交
1383 1384 1385
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1386
           use_cudnn=True,
1387
           use_mkldnn=False,
1388 1389
           act=None,
           name=None):
Y
Yu Yang 已提交
1390
    """
C
chengduoZH 已提交
1391
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1392 1393
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1394
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1395 1396 1397 1398 1399 1400 1401
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1402 1403 1404
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1405

1406
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1407

C
chengduoZH 已提交
1408 1409
    .. math::

C
refine  
chengduoZH 已提交
1410
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1411

T
tensor-tang 已提交
1412
    Where:
C
chengduoZH 已提交
1413

1414 1415 1416 1417 1418
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1419
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1420 1421 1422

    Example:

1423 1424
        - Input:

W
weixing02 已提交
1425
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1426

W
weixing02 已提交
1427
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1428

1429
        - Output:
T
tensor-tang 已提交
1430

W
weixing02 已提交
1431
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1432

C
chengduoZH 已提交
1433
        Where
1434 1435

        .. math::
C
chengduoZH 已提交
1436

W
weixing02 已提交
1437 1438
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1439 1440

    Args:
1441
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1442
        num_filters(int): The number of filter. It is as same as the output
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1465 1466
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1467 1468 1469
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1470 1471

    Returns:
G
guosheng 已提交
1472
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1473 1474
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1475
    Raises:
1476 1477
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1478

C
chengduoZH 已提交
1479 1480 1481
    Examples:
        .. code-block:: python

1482 1483
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1484 1485 1486
    """

    num_channels = input.shape[1]
1487 1488

    l_type = 'conv2d'
X
xzl 已提交
1489 1490
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1491
        l_type = 'depthwise_conv2d'
1492 1493 1494 1495

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1496 1497 1498 1499 1500
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1501
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1502

C
chengduoZH 已提交
1503 1504 1505
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1506
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1507

C
chengduoZH 已提交
1508 1509
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1510 1511

    input_shape = input.shape
M
minqiyang 已提交
1512
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1527
        type=l_type,
Y
Yu Yang 已提交
1528 1529 1530 1531 1532
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1533 1534 1535
        attrs={
            'strides': stride,
            'paddings': padding,
1536
            'dilations': dilation,
C
chengduoZH 已提交
1537
            'groups': groups,
1538 1539
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1540
        })
Y
Yu Yang 已提交
1541 1542 1543 1544 1545 1546

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1565 1566 1567 1568 1569 1570
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1580 1581
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1582 1583 1584
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1585
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1611
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1612 1613
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1614
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1615 1616
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1617
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1618 1619
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1620
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1647 1648
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1663
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1704
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1705 1706 1707 1708

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1709
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1710
    """
Y
yangyaming 已提交
1711 1712 1713
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1725
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1726 1727 1728 1729 1730
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1731
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1732 1733 1734 1735 1736 1737 1738

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1739 1740
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1741

L
Luo Tao 已提交
1742 1743
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1744
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1745 1746 1747 1748 1749 1750 1751 1752
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1753

Y
yangyaming 已提交
1754
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1755 1756 1757 1758 1759
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1760 1761
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1762
    """
F
fengjiayi 已提交
1763
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1775 1776 1777 1778 1779
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1780 1781 1782
    return pool_out


F
fengjiayi 已提交
1783
def sequence_first_step(input):
L
Luo Tao 已提交
1784
    """
L
Luo Tao 已提交
1785
    This function gets the first step of sequence.
L
Luo Tao 已提交
1786 1787 1788 1789

    .. code-block:: text

       x is a 1-level LoDTensor:
1790
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1791 1792 1793 1794 1795
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1796
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1797
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1798

L
Luo Tao 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1808

Y
yangyaming 已提交
1809
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1810 1811 1812
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1813 1814 1815
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1816
def sequence_last_step(input):
L
Luo Tao 已提交
1817
    """
L
Luo Tao 已提交
1818
    This function gets the last step of sequence.
L
Luo Tao 已提交
1819 1820 1821 1822

    .. code-block:: text

       x is a 1-level LoDTensor:
1823
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1824 1825 1826 1827 1828
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1829
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1830
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1831

L
Luo Tao 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1841

Y
yangyaming 已提交
1842
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1843 1844 1845
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1846 1847 1848
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1849
@templatedoc()
Y
Yu Yang 已提交
1850
def pool2d(input,
C
chengduoZH 已提交
1851 1852
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1853 1854
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1855
           global_pooling=False,
C
chengduoZH 已提交
1856
           use_cudnn=True,
1857
           ceil_mode=False,
1858
           use_mkldnn=False,
C
caoying03 已提交
1859
           name=None):
Y
Yu Yang 已提交
1860
    """
F
fengjiayi 已提交
1861
    ${comment}
1862 1863

    Args:
1864 1865 1866
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1867
                          feature, and W is the width of the feature.
1868
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1869
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1870
        pool_type: ${pooling_type_comment}
1871 1872
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1873 1874 1875 1876
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1877
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1878 1879
                        layer will be named automatically.

1880
    Returns:
F
fengjiayi 已提交
1881
        Variable: The pooling result.
F
fengjiayi 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1895 1896 1897 1898
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1899
                            global_pooling=False)
Y
Yu Yang 已提交
1900 1901 1902 1903 1904
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1905

C
chengduoZH 已提交
1906 1907 1908 1909 1910
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1911 1912 1913 1914
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1915 1916
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1917

C
Add doc  
chengduoZH 已提交
1918
    l_type = 'pool2d'
1919 1920

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1921 1922 1923 1924
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1954
    pooling configurations mentioned in input parameters.
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1968

1969
    Returns:
1970
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1971 1972 1973 1974 1975
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1976

C
chengduoZH 已提交
1977 1978 1979 1980 1981
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1982 1983 1984
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1985

C
chengduoZH 已提交
1986 1987
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1988

1989 1990
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1991 1992 1993 1994
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1995
        type=l_type,
Y
Yu Yang 已提交
1996 1997 1998 1999 2000 2001 2002
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2003
            "paddings": pool_padding,
2004
            "use_cudnn": use_cudnn,
2005 2006
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2019
               data_layout='NCHW',
Y
Yang Yang 已提交
2020
               in_place=False,
2021
               use_mkldnn=False,
2022 2023
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2024
               moving_variance_name=None,
2025 2026
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2027
    """
Q
qiaolongfei 已提交
2028 2029 2030 2031
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2032

Q
qiaolongfei 已提交
2033
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2034

Q
qiaolongfei 已提交
2035 2036
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2037 2038 2039
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2052 2053

    Args:
Q
qiaolongfei 已提交
2054
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2055 2056 2057 2058
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2059 2060 2061
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2062
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2063 2064 2065 2066 2067
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2068
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2069
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2070 2071

    Returns:
Q
qiaolongfei 已提交
2072
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2073 2074 2075 2076 2077 2078 2079

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2103
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2104

2105 2106
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2107 2108 2109
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2110
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2111
        shape=param_shape,
2112 2113 2114 2115 2116 2117 2118
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2119
            trainable=False,
W
wanghaoshuang 已提交
2120
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2121
        shape=param_shape,
2122 2123
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2124 2125 2126 2127 2128 2129

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2130 2131
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2132

2133
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2151 2152 2153 2154
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2155 2156
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2157
        })
Y
Yu Yang 已提交
2158 2159 2160 2161

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2162
@templatedoc()
G
guosheng 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2173
    ${comment}
G
guosheng 已提交
2174 2175 2176

    The formula is as follows:

Y
yuyang18 已提交
2177
    ..  math::
G
guosheng 已提交
2178 2179 2180 2181 2182 2183 2184

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2185 2186 2187 2188 2189 2190 2191 2192
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2193

G
guosheng 已提交
2194 2195
    Args:
        input(Variable): The input tensor variable.
2196
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2197
            normalization.
2198
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2199
            normalization.
2200
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2201
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2202
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2203 2204 2205 2206 2207 2208
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2209
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2210 2211

    Returns:
Y
yuyang18 已提交
2212
        ${y_comment}
G
guosheng 已提交
2213 2214 2215

    Examples:

Y
yuyang18 已提交
2216 2217 2218
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2234
    if shift:
G
guosheng 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2259 2260 2261 2262
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2263 2264 2265
                     padding=0,
                     stride=1,
                     dilation=1,
2266
                     groups=None,
C
caoying03 已提交
2267
                     param_attr=None,
2268
                     bias_attr=None,
C
chengduoZH 已提交
2269
                     use_cudnn=True,
2270
                     act=None,
C
caoying03 已提交
2271
                     name=None):
Y
Yu Yang 已提交
2272
    """
2273 2274 2275 2276 2277 2278 2279 2280
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2281 2282
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2283 2284 2285
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2286 2287 2288 2289 2290

    For each input :math:`X`, the equation is:

    .. math::

2291
        Out = \sigma (W \\ast X + b)
2292

2293
    Where:
2294 2295 2296

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2297 2298 2299 2300
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2301

2302 2303 2304 2305
    Example:

        - Input:

2306
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2307

2308
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2309 2310 2311

        - Output:

2312
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2313 2314

        Where
Y
Yu Yang 已提交
2315

2316 2317 2318 2319
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2320 2321

    Args:
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2355 2356

    Returns:
2357
        Variable: The tensor variable storing the convolution transpose result.
2358 2359

    Raises:
2360 2361
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2362 2363 2364 2365

    Examples:
       .. code-block:: python

2366 2367
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2368
    """
2369 2370 2371 2372 2373 2374 2375 2376 2377

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2378 2379 2380
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2381 2382 2383
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2384

C
chengduoZH 已提交
2385 2386
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2387

Y
Yu Yang 已提交
2388 2389 2390 2391 2392
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2393

Y
Yu Yang 已提交
2394 2395
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2396

C
chengduoZH 已提交
2397
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2398
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2399
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2400
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2401
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2402 2403 2404
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2405

2406
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2407
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2408 2409 2410
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2411
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2412
    helper.append_op(
2413
        type=op_type,
Y
Yu Yang 已提交
2414 2415
        inputs={'Input': [input],
                'Filter': [img_filter]},
2416
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2417
        attrs={
2418 2419 2420 2421 2422
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2423 2424
        })

2425 2426 2427
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2428 2429


2430
def conv3d_transpose(input,
Y
Yu Yang 已提交
2431 2432 2433
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2434 2435 2436
                     padding=0,
                     stride=1,
                     dilation=1,
2437
                     groups=None,
C
caoying03 已提交
2438
                     param_attr=None,
2439
                     bias_attr=None,
C
chengduoZH 已提交
2440
                     use_cudnn=True,
2441
                     act=None,
C
caoying03 已提交
2442
                     name=None):
Y
Yu Yang 已提交
2443
    """
2444
    **Convlution3D transpose layer**
2445

2446
    The convolution3D transpose layer calculates the output based on the input,
2447
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2448 2449 2450 2451 2452 2453
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2454 2455 2456
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2457 2458 2459 2460 2461

    For each input :math:`X`, the equation is:

    .. math::

2462
        Out = \sigma (W \\ast X + b)
2463 2464 2465

    In the above equation:

2466 2467
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2468 2469 2470 2471
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2472

2473 2474 2475 2476
    Example:

        - Input:

2477
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2478

2479
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2480 2481 2482

        - Output:

2483
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2484 2485

        Where
Y
Yu Yang 已提交
2486

2487 2488
        .. math::

2489 2490 2491
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2492 2493

    Args:
2494
        input(Variable): The input image with [N, C, D, H, W] format.
2495 2496 2497
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2498
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2499 2500
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2501
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2502 2503 2504
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2505 2506
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2507
        stride(int|tuple): The stride size. If stride is a tuple, it must
2508 2509
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2510
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2511 2512 2513
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2514 2515 2516 2517 2518
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2519 2520 2521
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2522 2523 2524 2525 2526
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2527 2528

    Returns:
2529
        Variable: The tensor variable storing the convolution transpose result.
2530 2531

    Raises:
2532 2533
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2534 2535 2536 2537

    Examples:
       .. code-block:: python

2538 2539
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2540
    """
2541 2542
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2543
    if not isinstance(input, Variable):
2544
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2545 2546
    input_channel = input.shape[1]

2547 2548 2549
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2550

C
chengduoZH 已提交
2551 2552 2553
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2554 2555 2556 2557 2558 2559
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2560 2561 2562
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2563

2564
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2565
                         padding[0] - 1) // dilation[0] + 1
2566
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2567
                         padding[1] - 1) // dilation[1] + 1
2568
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2569
                         padding[2] - 1) // dilation[2] + 1
2570
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2571
    else:
2572 2573
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2574

2575
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2576
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2577 2578 2579
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2580
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2581
    helper.append_op(
2582
        type=l_type,
Y
Yu Yang 已提交
2583 2584
        inputs={'Input': [input],
                'Filter': [img_filter]},
2585
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2586 2587 2588 2589
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2590
            'groups': groups,
C
chengduoZH 已提交
2591 2592
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2593

2594 2595
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2596
    return out
Y
yangyaming 已提交
2597 2598


Y
yangyaming 已提交
2599
def sequence_expand(x, y, ref_level=-1, name=None):
2600
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2601 2602 2603 2604
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2605 2606 2607 2608 2609

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2610
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2611
                x.data = [[a], [b], [c], [d]]
2612 2613 2614
                x.dims = [4, 1]

            y is a LoDTensor:
2615 2616
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2617

Y
yangyaming 已提交
2618
            ref_level: 0
2619

Y
yangyaming 已提交
2620
            then output is a 1-level LoDTensor:
2621
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2622
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2623 2624 2625 2626
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2627
                x.data = [[a], [b], [c]]
2628 2629 2630
                x.dims = [3, 1]

            y is a LoDTensor:
2631
                y.lod = [[2, 0, 3]]
2632

Y
yangyaming 已提交
2633
            ref_level: -1
2634

Y
yangyaming 已提交
2635 2636 2637
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2638 2639 2640
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2641 2642
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2643
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2644
                        will be named automatically.
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2655
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2656
    """
Y
yangyaming 已提交
2657
    helper = LayerHelper('sequence_expand', input=x, **locals())
2658 2659 2660
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2661 2662 2663 2664 2665
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2666
    return tmp
2667 2668


F
fengjiayi 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2714 2715 2716 2717 2718 2719 2720 2721 2722
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2723 2724
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2725 2726 2727

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2728 2729

    This layer does the search in beams for one time step. Specifically, it
2730 2731 2732 2733 2734 2735
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2736

2737 2738 2739 2740 2741 2742 2743 2744
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2745

2746
    Args:
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2772

2773
    Returns:
2774 2775
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2776 2777 2778 2779

    Examples:
        .. code-block:: python

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2808
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2826 2827 2828 2829 2830 2831 2832
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2833

2834 2835 2836 2837 2838 2839 2840 2841 2842
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2843

2844 2845 2846 2847 2848 2849
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2876 2877 2878 2879
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2880
              param_attr=None,
C
caoying03 已提交
2881 2882
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2883 2884 2885 2886
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2887
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2888

2889
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2890

2891
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2892

2893
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2894 2895 2896

            h_t & = o_t tanh(c_t)

2897 2898 2899 2900 2901 2902
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2903 2904 2905

        .. math::

2906
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2907 2908 2909 2910 2911 2912 2913 2914

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2915
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2916 2917

    Args:
Y
yangyaming 已提交
2918 2919 2920 2921 2922 2923
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2924
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2925 2926
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2927 2928
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2929 2930
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2931 2932

    Returns:
Y
yangyaming 已提交
2933
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2934 2935

    Raises:
2936 2937 2938 2939
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2940 2941 2942 2943 2944 2945

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2946
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2947
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2948
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2965
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2966 2967 2968 2969
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2970 2971
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2972 2973 2974
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2975
    size = cell_t_prev.shape[1]
2976
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2977 2978
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2979
                param_attr=param_attr,
2980
                bias_attr=bias_attr)
Y
yangyaming 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2993
    return h, c
G
guosheng 已提交
2994 2995


C
caoying03 已提交
2996
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2997
    """
Y
yangyaming 已提交
2998
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2999 3000 3001

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3002
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3003 3004
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3005 3006
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3007
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3008
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3009
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3010 3011
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3012 3013 3014

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3015

G
guosheng 已提交
3016 3017 3018 3019 3020 3021
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3022
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3023 3024 3025 3026
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3027 3028 3029 3030

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3031
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3032 3033 3034
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3035 3036 3037
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3038 3039
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3040 3041 3042 3043 3044
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3045
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3046 3047 3048 3049
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3050 3051


C
caoying03 已提交
3052
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3053
    """
Y
Yibing Liu 已提交
3054
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3055 3056 3057

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3058 3059 3060
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3061
            must be in the range :math:`[-rank(input), rank(input))`. If
3062
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3063
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3064 3065
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3066
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3067
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3068
                       will be named automatically.
G
guosheng 已提交
3069 3070

    Returns:
Y
Yibing Liu 已提交
3071
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3072

G
guosheng 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3083 3084
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3085 3086 3087 3088 3089 3090 3091

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3092 3093 3094
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3095 3096
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3097 3098 3099 3100 3101
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3102
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3103 3104 3105 3106
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3107 3108


C
caoying03 已提交
3109
def reduce_max(input, dim=None, keep_dim=False, name=None):
3110
    """
Y
yangyaming 已提交
3111
    Computes the maximum of tensor elements over the given dimension.
3112 3113 3114

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3115
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3116 3117 3118
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3119
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3120 3121
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3122
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3123 3124
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3125 3126 3127

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3140 3141 3142 3143 3144 3145 3146

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3147 3148 3149
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3150 3151
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3152 3153 3154 3155 3156
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3157
            'dim': dim if dim != None else [0],
3158 3159 3160 3161 3162 3163
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3164
def reduce_min(input, dim=None, keep_dim=False, name=None):
3165
    """
Y
yangyaming 已提交
3166
    Computes the minimum of tensor elements over the given dimension.
3167 3168 3169

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3170
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3171 3172 3173
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3174
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3175 3176
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3177
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3178 3179
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3180 3181 3182

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3183

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3195 3196 3197 3198 3199 3200 3201

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3202 3203 3204
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3205 3206
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3207 3208 3209 3210 3211
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3212
            'dim': dim if dim != None else [0],
3213 3214 3215 3216
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3217 3218


3219 3220 3221 3222 3223 3224
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3225
        dim (list|int|None): The dimensions along which the product is performed. If
3226 3227
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3228 3229
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3230 3231 3232
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3233
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3234
            layer will be named automatically.
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3249
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3250
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3251 3252 3253 3254 3255 3256 3257

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3258 3259 3260
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3261 3262
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3263 3264 3265 3266 3267
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3268
            'dim': dim if dim != None else [0],
3269 3270 3271 3272 3273 3274
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3275
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3276
    """
C
caoying03 已提交
3277
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3278 3279 3280

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3281 3282 3283 3284 3285
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3286
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3287
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3288
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3289 3290
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3291 3292

    Returns:
D
dzhwinter 已提交
3293
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3303 3304
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3343
    .. math::
3344 3345

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3346 3347 3348 3349 3350

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3351
        x(Variable|list): The input tensor to l2_normalize layer.
3352
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3353 3354
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3355
        epsilon(float): The epsilon value is used to avoid division by zero, \
3356
            the defalut value is 1e-10.
3357
        name(str|None): A name for this layer(optional). If set None, the layer \
3358
            will be named automatically.
C
caoying03 已提交
3359 3360

    Returns:
3361
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3362 3363

    Examples:
3364

C
caoying03 已提交
3365 3366
        .. code-block:: python

3367 3368 3369 3370
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3371 3372
    """

F
fengjiayi 已提交
3373 3374
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3375 3376
    helper = LayerHelper("l2_normalize", **locals())

3377 3378
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3379
    helper.append_op(
3380 3381 3382 3383
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3384
        attrs={
3385 3386
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3387 3388
        })
    return out
3389 3390


3391
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3392
    """
Y
ying 已提交
3393 3394 3395 3396
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3397

C
chengduoZH 已提交
3398
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3399
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3400

3401 3402 3403 3404 3405
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3406
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3407

C
chengduoZH 已提交
3408
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3409
      performs in the following way.
G
guosheng 已提交
3410

3411
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3412
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3413
        last two dimensions and a batched matrix multiply supporting broadcast
3414
        applies on the two tensors.
G
guosheng 已提交
3415

Y
ying 已提交
3416 3417
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3418
    removed after matrix multiplication.
G
guosheng 已提交
3419 3420 3421

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3422 3423 3424
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3425
        name(str|None): A name for this layer(optional). If set None, the layer
3426
            will be named automatically.
G
guosheng 已提交
3427 3428

    Returns:
3429
        Variable: The product Tensor variable.
G
guosheng 已提交
3430

G
guosheng 已提交
3431 3432 3433
    Examples:
        .. code-block:: python

3434
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3435 3436
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3437

3438 3439
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3440

3441 3442
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3443

3444 3445
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3446 3447 3448 3449

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3450 3451
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3452

Y
ying 已提交
3453
            # x: [M], y: [N]
3454
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3455
    """
Y
ying 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3468
            y_shape = y_shape + [1]
Y
ying 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3485
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3486
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3487
    helper.append_op(
3488 3489 3490 3491 3492 3493 3494
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3495 3496


3497
def topk(input, k, name=None):
Q
qingqing01 已提交
3498 3499 3500 3501
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3502
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3503 3504 3505 3506 3507 3508
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3530 3531 3532
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3533
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3534
                 of input.
3535
        name(str|None): A name for this layer(optional). If set None, the layer
3536
                       will be named automatically.
F
fengjiayi 已提交
3537
                       Default: None
Q
qingqing01 已提交
3538 3539

    Returns:
3540 3541 3542
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3543
        within the last dimension of input.
Q
qingqing01 已提交
3544

F
fengjiayi 已提交
3545 3546
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3567
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3568
    """
Y
ying 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3578

Y
ying 已提交
3579
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3580

3581
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3582 3583
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3584
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3585

3586
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3587 3588
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3589

3590 3591 3592
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3593
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3594
                          the length of reference string.
3595
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3596
                                     calculating edit distance.
3597
        name (str): The name of this layer. It is optional.
3598

W
wanghaoshuang 已提交
3599
    Returns:
W
wanghaoshuang 已提交
3600
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3601 3602 3603 3604 3605

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3606
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3607
            cost = fluid.layers.edit_distance(input=x,label=y)
3608
    """
3609
    helper = LayerHelper("edit_distance", **locals())
3610

3611
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3612
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3613 3614 3615 3616 3617 3618 3619
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3620
            attrs={"tokens": ignored_tokens})
3621 3622 3623 3624 3625
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3626
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3627
            attrs={"tokens": ignored_tokens})
3628 3629
        label = erased_label

3630 3631
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3632
    sequence_num = helper.create_tmp_variable(dtype="int64")
3633 3634 3635 3636
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3637 3638
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3639 3640
        attrs={"normalized": normalized})

3641
    return edit_distance_out, sequence_num
3642 3643 3644 3645 3646


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3647

Y
ying 已提交
3648 3649 3650 3651
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3669
        input.lod = [[4, 4]]
3670 3671 3672 3673 3674 3675 3676

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3677
        output.lod = [[2, 1]]
3678 3679 3680

    Args:

Y
ying 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3690
        name (str): The name of this layer. It is optional.
3691 3692

    Returns:
3693
        Variable: CTC greedy decode result. If all the sequences in result were
3694
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3695 3696 3697 3698 3699

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3700

3701
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3702
    """
3703
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3704
    _, topk_indices = topk(input, k=1)
3705 3706 3707 3708 3709 3710

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3711
        outputs={"Output": [ctc_out]},
3712 3713
        attrs={"merge_repeated": True,
               "blank": blank})
3714
    return ctc_out
3715 3716


F
fengjiayi 已提交
3717
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3718
    """
3719 3720
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3721
    to compute Connectionist Temporal Classification (CTC) loss.
3722 3723
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3724 3725 3726
    input tensor.

    Args:
3727
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3728 3729 3730 3731
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3732
       label (Variable): The ground truth of variable-length sequence,
3733 3734 3735
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3736 3737
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3738 3739 3740
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3741
         follewed by a mean_op.
W
wanghaoshuang 已提交
3742 3743

    Returns:
3744 3745
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3746 3747

    Examples:
3748

W
wanghaoshuang 已提交
3749
        .. code-block:: python
3750

3751 3752 3753
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3754 3755

    """
F
fengjiayi 已提交
3756
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3783 3784 3785
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3786 3787 3788 3789 3790
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3791

3792
            out.lod  = [[0, 1, 3]]
3793 3794 3795 3796

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3797 3798 3799 3800 3801 3802 3803
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3804 3805 3806

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3807 3808

    Returns:
3809

3810 3811 3812 3813 3814
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3815
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3816
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3817 3818 3819 3820 3821 3822 3823 3824 3825
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3826 3827


3828 3829 3830 3831
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3832 3833 3834 3835 3836 3837 3838
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3839 3840 3841 3842 3843 3844 3845
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3846 3847
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3848
            sample is 1.0.
3849 3850 3851
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3852

3853
    Returns:
Y
Yibing Liu 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3881
    """
Y
Yang Yu 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3926
    return cost / (num_neg_samples + 1)
3927 3928


G
guosheng 已提交
3929
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3930 3931
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3932
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3942

W
weixing02 已提交
3943
    Args:
M
minqiyang 已提交
3944
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3945 3946 3947 3948 3949
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3950 3951
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3952
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3953 3954
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3955 3956 3957 3958 3959 3960 3961 3962

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3963 3964 3965
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3966 3967 3968 3969 3970 3971 3972 3973
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3974
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3975 3976 3977 3978 3979
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3980 3981 3982 3983 3984 3985 3986 3987
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3988 3989
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3990
        inputs=inputs,
W
weixing02 已提交
3991 3992 3993 3994 3995 3996
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3997
def transpose(x, perm, name=None):
Y
ying 已提交
3998 3999 4000 4001 4002 4003 4004
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4005 4006 4007
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4008 4009 4010 4011 4012 4013 4014 4015

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4016
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4017 4018
    """

Y
fix ci.  
ying 已提交
4019
    if len(perm) != len(x.shape):
Y
ying 已提交
4020 4021 4022
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4023 4024 4025 4026 4027 4028
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4029 4030

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4031
    out = helper.create_tmp_variable(x.dtype)
4032
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4033
    helper.append_op(
4034
        type='transpose2',
Y
fix ci.  
ying 已提交
4035
        inputs={'X': [x]},
4036 4037
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4038 4039
        attrs={'axis': perm})
    return out
4040 4041


4042 4043 4044 4045 4046 4047 4048
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4049
    """
4050 4051 4052 4053 4054 4055 4056
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4085 4086 4087 4088 4089 4090 4091 4092 4093
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4094 4095 4096
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4097 4098 4099 4100 4101
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4129 4130 4131
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4144
            output.dims = {8, 8}
4145

4146
            output.lod = [[4, 4]]
4147

D
dzhwinter 已提交
4148
     Examples:
4149 4150 4151

        .. code-block:: python

4152 4153
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4154 4155

    """
W
wanghaoshuang 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4166 4167 4168 4169 4170 4171 4172
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4173
    helper = LayerHelper('im2sequence', **locals())
4174 4175
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4176
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4177
    return out
4178 4179


Y
yuyang18 已提交
4180
@templatedoc()
4181
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4182 4183
    """
    ${comment}
4184 4185

    Args:
Y
yuyang18 已提交
4186
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4187 4188
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4189 4190 4191 4192 4193
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4194
        ${out_comment}.
4195 4196

    Examples:
Y
yuyang18 已提交
4197 4198 4199 4200
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4213
    return helper.append_activation(out)
4214 4215


Y
yuyang18 已提交
4216
@templatedoc()
4217 4218
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4219 4220 4221 4222 4223 4224 4225
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4226 4227

    Args:
Y
yuyang18 已提交
4228 4229
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4230 4231

    Returns:
Y
yuyang18 已提交
4232
        ${out_comment}.
4233 4234
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4235 4236 4237 4238 4239 4240

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4241 4242 4243 4244 4245 4246
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4247 4248


4249 4250 4251 4252
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4253 4254
    """
    **Softmax With Cross Entropy Operator.**
4255

4256 4257 4258 4259
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4260

4261 4262 4263
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4264

4265 4266 4267
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4268

4269
    The equation is as follows:
4270

4271
    1) Hard label (one-hot label, so every sample has exactly one class)
4272

4273 4274 4275 4276
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4277

4278 4279 4280
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4281

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4294 4295 4296 4297
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4298 4299 4300 4301 4302 4303 4304 4305 4306
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4307 4308
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4319 4320
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4321 4322 4323 4324 4325
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4326 4327
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4328
    For each instance, it computes the smooth L1 loss element by element first
4329
    and then sums all the losses. So the shape of ouput Variable is
4330
    [batch_size, 1].
4331

4332 4333
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4334
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4335
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4336
            L1 loss op with same shape as :attr:`x`.
4337
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4338 4339
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4340
            by this tensor element by element.
4341
        outside_weight (Variable|None): A tensor with rank at least 2. This
4342 4343
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4344
            element by element.
4345
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4346 4347
           scalar with default value 1.0.

4348
    Returns:
4349
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4350 4351 4352 4353 4354

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4355 4356
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4357
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4358
            out = fluid.layers.smooth_l1(x=fc, y=label)
4359
    """
4360

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4376 4377 4378 4379


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4380
    This layer creates the one-hot representations for input indices.
4381 4382

    Args:
Y
Yibing Liu 已提交
4383 4384
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4385 4386

    Returns:
Y
Yibing Liu 已提交
4387
        Variable: The one-hot representations of input.
4388 4389

    Examples:
C
caoying03 已提交
4390
        .. code-block:: python
4391

Y
Yibing Liu 已提交
4392 4393
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4394 4395 4396 4397 4398 4399 4400 4401 4402
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4403 4404


Y
Yu Yang 已提交
4405
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4406
    """
Y
yi.wu 已提交
4407 4408 4409
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4410 4411 4412 4413 4414 4415

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4416 4417
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4418 4419 4420 4421 4422 4423

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4424 4425
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4426 4427
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4428 4429 4430 4431 4432
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4433
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4434
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4435 4436
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4437 4438
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4439 4440 4441
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4442 4443


4444
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4445
    """
C
caoying03 已提交
4446 4447
    Gives a new shape to the input Tensor without changing its data.

4448 4449 4450 4451 4452
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4453

4454
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4455

4456 4457 4458 4459
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4460
    2. 0 means the actual dimension value is going to be copied from the
4461 4462 4463 4464
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4465 4466

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4467
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4468
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4469

4470
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4471 4472
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4473 4474
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4475
    dimensions.
C
caoying03 已提交
4476

4477
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4478 4479 4480 4481
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4482 4483

    Args:
4484
        x(variable): The input tensor.
C
caoying03 已提交
4485 4486
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4487 4488 4489 4490 4491
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4492
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4493 4494 4495 4496
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4497
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4498

4499 4500
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4501

X
Xin Pan 已提交
4502 4503 4504
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4505 4506
    Examples:
        .. code-block:: python
G
guosheng 已提交
4507

4508
            data = fluid.layers.data(
4509
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4510
            reshaped = fluid.layers.reshape(
4511
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4512 4513 4514
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4515
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4516 4517 4518 4519 4520
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4521

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4537
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4538
    out = helper.create_tmp_variable(dtype=x.dtype)
4539
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4540
    helper.append_op(
4541
        type="reshape2",
X
Xin Pan 已提交
4542
        inputs=inputs,
D
dzhwinter 已提交
4543
        attrs={"shape": shape},
4544 4545
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4546

D
dzhwinter 已提交
4547
    return helper.append_activation(out)
4548

4549

4550
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4574
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4575
        axes (list): List of integers, indicating the dimensions to be squeezed.
4576
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4577 4578 4579 4580 4581 4582 4583 4584

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4585
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4586 4587
    """
    helper = LayerHelper("squeeze", **locals())
4588
    out = helper.create_tmp_variable(dtype=input.dtype)
4589
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4590
    helper.append_op(
4591
        type="squeeze2",
4592
        inputs={"X": input},
Y
Yibing Liu 已提交
4593
        attrs={"axes": axes},
4594 4595
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4596

4597 4598 4599
    return out


4600
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4611
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4612
        axes (list): List of integers, indicating the dimensions to be inserted.
4613
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4614 4615 4616 4617 4618 4619 4620 4621

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4622
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4623 4624
    """
    helper = LayerHelper("unsqueeze", **locals())
4625
    out = helper.create_tmp_variable(dtype=input.dtype)
4626
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4627
    helper.append_op(
4628
        type="unsqueeze2",
4629
        inputs={"X": input},
Y
Yibing Liu 已提交
4630
        attrs={"axes": axes},
4631 4632
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4633

4634 4635
    return out

4636

Y
yangyaming 已提交
4637
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4638
    """
Y
Yibing Liu 已提交
4639
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4640 4641 4642 4643
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4644
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4645 4646 4647 4648 4649 4650

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4651
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4652 4653 4654
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4655
            target_lod: [4, 2]
Y
yangyaming 已提交
4656 4657

            then we get a 1-level LoDTensor:
4658
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4659 4660 4661 4662 4663 4664
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4665
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4666 4667 4668 4669
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4670
                y.data = [[2, 4]]
Y
yangyaming 已提交
4671 4672 4673
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4674
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4675 4676 4677 4678 4679 4680
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4681
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4682 4683 4684 4685
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4686
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4687 4688 4689 4690
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4691
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4692 4693 4694 4695 4696
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4697
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4698
                           from :attr:`y`.
Y
yangyaming 已提交
4699
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4700
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4701 4702

    Returns:
Y
Yibing Liu 已提交
4703
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4704 4705

    Raises:
Y
Yibing Liu 已提交
4706
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4742
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4771 4772
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4800 4801 4802 4803


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4804
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4805
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4806

G
guosheng 已提交
4807 4808 4809 4810
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4833
                         The length of :attr:paddings must be
G
guosheng 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4844

G
guosheng 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4859 4860


C
chengduo 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4941 4942 4943 4944 4945 4946 4947
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4948 4949
    called label-smoothing regularization (LSR).

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4973
                              be :math:`(1, class\_num)`.
4974 4975
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4976
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5004 5005


Y
yi.wu 已提交
5006
@templatedoc()
5007 5008
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5009
    ${comment}
5010 5011

    Args:
Y
yi.wu 已提交
5012 5013
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5014 5015 5016
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5017 5018

    Returns:
Y
update  
yi.wu 已提交
5019
        Variable: ${out_comment}.
5020 5021

    Examples:
5022 5023
        .. code-block:: python

5024
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5070 5071
        .. code-block:: python

W
whs 已提交
5072 5073 5074 5075
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5076
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5077 5078 5079 5080 5081 5082
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5083 5084


5085 5086 5087 5088 5089
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5090
    """
Q
qiaolongfei 已提交
5091
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5092

5093
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5094 5095 5096
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5097

5098
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5099

5100
    Args:
5101
        input (Variable): The input tensor of image resize layer,
5102 5103
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5104
        out_shape(list|tuple|Variable|None): Output shape of image resize
5105 5106
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5107
        scale(float|None): The multiplier for the input height or width.
5108 5109 5110
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5111 5112
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5113 5114
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5115 5116

    Returns:
Q
update  
qiaolongfei 已提交
5117 5118
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5119

5120 5121 5122
    Examples:
        .. code-block:: python

5123
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5124
    """
5125 5126 5127 5128
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5129 5130
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5131 5132
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5133 5134 5135 5136

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5137 5138 5139
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5140
    if out_shape is not None:
B
baiyf 已提交
5141 5142 5143
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5144 5145 5146 5147 5148 5149
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5150 5151 5152 5153
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5154 5155
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5156
        type=resample_methods[resample],
5157
        inputs=inputs,
5158 5159 5160 5161
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5162 5163


Y
yuyang18 已提交
5164
@templatedoc(op_type="bilinear_interp")
5165 5166
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5167 5168 5169 5170 5171 5172
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5173

Y
yuyang18 已提交
5174 5175 5176 5177 5178 5179 5180 5181
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5182 5183 5184 5185 5186 5187 5188
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5189 5190 5191
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5192 5193 5194 5195 5196 5197 5198
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5199
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5200

5201
    Returns:
Q
update  
qiaolongfei 已提交
5202
        Variable: The output is a 4-D tensor of the shape
5203
        (num_batches, channls, out_h, out_w).
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5214 5215 5216
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5217 5218 5219
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5220 5221
def gather(input, index):
    """
Q
qiaolongfei 已提交
5222 5223
    **Gather Layer**

5224
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5225 5226 5227 5228
    of X indexed by `index` and concatenate them together.

    .. math::

5229
        Out = X[Index]
W
whs 已提交
5230 5231 5232 5233 5234 5235 5236


    .. code-block:: text


                Given:

5237 5238
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5249
        input (Variable): The source input with rank>=1.
W
whs 已提交
5250 5251 5252 5253 5254 5255
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5256

W
whs 已提交
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5326

5327 5328 5329
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5330
    """
F
stash  
fengjiayi 已提交
5331
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5332
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5333
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5334
    if seed is None:
5335
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5336
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5337
    if isinstance(seed, int):
F
fengjiayi 已提交
5338 5339 5340 5341 5342
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5343 5344 5345 5346
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5347
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5348 5349
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5350 5351
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5352
    return out
W
whs 已提交
5353 5354


5355
def log(x, name=None):
W
wanghaoshuang 已提交
5356 5357 5358 5359 5360
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5361
        Out = \\ln(x)
W
wanghaoshuang 已提交
5362 5363

    Args:
5364
        x (Variable): Input tensor.
5365 5366
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5367 5368 5369 5370 5371 5372 5373 5374

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5375
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5376 5377
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5378
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5379
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5380
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5381 5382 5383
    return out


5384
def relu(x, name=None):
W
wanghaoshuang 已提交
5385 5386
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5387
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5388 5389 5390 5391
    the tensor elementwise.

    .. math::

5392
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5393 5394

    Args:
5395
        x (Variable): The input tensor.
5396 5397
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5398 5399 5400 5401 5402 5403 5404 5405

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5406
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5407 5408
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5409
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5410
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5411
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5412
    return out
5413 5414


W
whs 已提交
5415 5416 5417
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5418 5419 5420 5421
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5422
    .. math::
5423 5424

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5425

5426
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5427 5428 5429 5430 5431
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5432
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5433
                           Its shape should be the same as input.
5434
        num_classes (int): The possible number of labels.
W
whs 已提交
5435 5436 5437 5438

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5439
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5440 5441 5442 5443

    Examples:

        .. code-block:: python
5444

W
whs 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5454 5455
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5456
        outputs={
W
whs 已提交
5457 5458 5459
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5460 5461 5462
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5537
                    isinstance(shape, Variable)):
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5571

5572 5573
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5574

5575 5576 5577 5578
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5579

5580 5581 5582 5583 5584
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5585 5586 5587

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5632 5633


W
whs 已提交
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5736 5737
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5788

5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5799 5800
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5816
        ValueError: If axis is not in range [0, rank(x)].
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
5834
    x_shape = helper.create_tmp_variable(x.dtype)
5835
    helper.append_op(
5836
        type='flatten2',
5837
        inputs={"X": x},
5838 5839
        outputs={'Out': out,
                 'XShape': x_shape},
5840 5841
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5842 5843


C
chenweihang 已提交
5844
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
5845
    """
C
chenweihang 已提交
5846
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
5847 5848 5849
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
5850 5851 5852 5853 5854
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
5855
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
5856 5857 5858 5859 5860 5861
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
5862
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
5863 5864 5865
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
5866 5867 5868
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
5880
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
5881 5882 5883 5884 5885 5886
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
5887

5888

S
sneaxiy 已提交
5889 5890 5891 5892 5893 5894 5895 5896 5897
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
5898

S
sneaxiy 已提交
5899
    .. math::
5900

S
sneaxiy 已提交
5901 5902 5903
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
5904
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
5905 5906 5907 5908
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
5909 5910 5911
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
5912 5913
    Returns:
        Variable: The output sequence mask.
5914

S
sneaxiy 已提交
5915 5916
    """

Q
qingqing01 已提交
5917
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
5918 5919 5920 5921 5922
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
5923 5924 5925
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
5926 5927 5928 5929 5930 5931
        outputs={'Y': out},
        attrs={
            'max_len': maxlen if maxlen is not None else -1,
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
5932 5933


X
Xin Pan 已提交
5934
def stack(x, axis=0):
S
sneaxiy 已提交
5935 5936 5937 5938
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
5939 5940 5941 5942 5943 5944 5945

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
5946
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
5947
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
5948 5949

    Args:
5950
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
5951
        axis (int|None): The axis along which all inputs are stacked.
5952

S
sneaxiy 已提交
5953 5954
    Returns:
        Variable: The stacked variable.
5955

S
sneaxiy 已提交
5956 5957
    """

X
Xin Pan 已提交
5958 5959 5960 5961 5962 5963 5964 5965
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
5966 5967
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
5968

X
Xin Pan 已提交
5969
    return out
D
dzhwinter 已提交
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs