nn.py 117.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20 21
from ..layers import nn
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator
M
minqiyang 已提交
25
from ..param_attr import ParamAttr
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
27 28
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
29
import numpy as np
30
import numbers
31
import logging
32

33
__all__ = [
34 35 36
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
37
]
M
minqiyang 已提交
38 39


X
Xin Pan 已提交
40
class Conv2D(layers.Layer):
41
    """
42 43
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
44 45 46
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
47 48 49
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
50
    and W is the width of the filter. If the groups is greater than 1,
51
    C will equal the number of input feature map divided by the groups.
52
    Please refer to UFLDL's `convolution
53
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
54
    for more details.
55 56 57 58 59 60 61 62
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

63
        Out = \\sigma (W \\ast X + b)
64 65 66

    Where:

67 68
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
69
    * :math:`\\ast`: Convolution operation.
70
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

93
    Parameters:
94
        num_channels(int): The number of channels in the input image.
95
        num_filters(int): The number of filter. It is as same as the output
96 97
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
98 99
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
100
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
101
            contain two integers, (stride_H, stride_W). Otherwise, the
102 103
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
104
            contain two integers, (padding_H, padding_W). Otherwise, the
105 106
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
107
            contain two integers, (dilation_H, dilation_W). Otherwise, the
108 109
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
110 111 112
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
113 114
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
115 116 117 118
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
119
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
120 121 122 123
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
124 125 126 127 128
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
129

130 131 132 133
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
134

135 136 137
    Returns:
        None
    
138
    Raises:
139
        ValueError: if ``use_cudnn`` is not a bool value.
140 141 142

    Examples:
        .. code-block:: python
L
lujun 已提交
143

144 145 146 147 148
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

149
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
150
          with fluid.dygraph.guard():
151
              conv2d = Conv2D(3, 2, 3)
152 153
              data = to_variable(data)
              conv = conv2d(data)
154 155 156

    """

M
minqiyang 已提交
157
    def __init__(self,
158
                 num_channels,
M
minqiyang 已提交
159 160 161 162 163 164 165 166
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
167 168 169
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
170
        assert param_attr is not False, "param_attr should not be False here."
171 172
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
173 174 175 176
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
177
        self._act = act
M
minqiyang 已提交
178 179 180
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
181 182 183 184 185
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
186

187 188 189 190 191
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
192

193
        self._num_channels = num_channels
194 195
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
196
        else:
197
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
198
                raise ValueError("num_channels must be divisible by groups.")
199 200
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
201
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
202 203

        def _get_default_param_initializer():
204 205
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
206 207 208
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

209
        self.weight = self.create_parameter(
210
            attr=self._param_attr,
M
minqiyang 已提交
211 212 213 214
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

215
        self.bias = self.create_parameter(
216 217
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
218 219
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
220 221

    def forward(self, input):
222 223 224 225 226 227 228 229 230 231 232
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
233 234
        inputs = {
            'Input': [input],
235
            'Filter': [self.weight],
236 237 238 239 240 241 242 243 244
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
M
minqiyang 已提交
245 246 247
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
248 249 250 251
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
252
                'Filter': self.weight,
M
minqiyang 已提交
253
            },
M
minqiyang 已提交
254
            outputs={"Output": pre_bias},
255
            attrs=attrs)
M
minqiyang 已提交
256

257
        if self.bias is not None:
258 259 260 261 262
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
263
                        'Y': [self.bias]},
264 265 266 267
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
268

L
lujun 已提交
269
        # Currently, we don't support inplace in dygraph mode
270
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
271 272


L
lujun 已提交
273
class Conv3D(layers.Layer):
274 275 276 277 278
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
279 280
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
281 282 283 284 285 286 287 288 289 290 291 292 293 294
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
295
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

321
    Parameters:
322
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
323
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
324
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
325
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
326 327 328
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
329
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
330 331
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
332
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
333 334
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
335
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
336 337
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
338 339 340
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
341 342
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
343 344 345
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
346 347
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
348 349 350
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
351 352 353 354 355
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
356
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
357

D
DuYao 已提交
358 359 360 361
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
362

363
    Returns:
D
DuYao 已提交
364
        None.
365 366 367 368 369 370 371 372

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

373 374 375 376 377 378
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
379
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
380 381
              ret = conv3d(fluid.dygraph.base.to_variable(data))

382 383
    """

L
lujun 已提交
384
    def __init__(self,
385
                 num_channels,
L
lujun 已提交
386 387 388 389 390 391 392 393 394
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
395 396
                 act=None,
                 dtype='float32'):
L
lujun 已提交
397
        assert param_attr is not False, "param_attr should not be False here."
398 399
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
400 401 402
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
403
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
404 405
        self._act = act
        self._use_cudnn = use_cudnn
406 407 408 409
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
410
        self._dtype = dtype
411 412

        if self._groups is None:
413
            num_filter_channels = self._num_channels
L
lujun 已提交
414
        else:
415
            if self._num_channels % self._groups != 0:
L
lujun 已提交
416
                raise ValueError("num_channels must be divisible by groups.")
417
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
418

419 420
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
421 422 423

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
424
                2] * self._num_channels
L
lujun 已提交
425 426 427
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

428
        self.weight = self.create_parameter(
429
            attr=self._param_attr,
L
lujun 已提交
430 431 432 433
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

434
        self.bias = self.create_parameter(
435 436
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
437 438 439 440 441 442 443 444
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
445
            type='conv3d',
L
lujun 已提交
446 447
            inputs={
                'Input': input,
448
                'Filter': self.weight,
L
lujun 已提交
449 450 451 452 453 454 455 456 457 458 459
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

460
        if self.bias is not None:
461 462 463 464 465
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
466
                        'Y': [self.bias]},
467 468 469 470
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
471 472 473 474 475

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
541

542
    Parameters:
543
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
544 545
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
546
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
547
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
548
            Otherwise, the filter will be a square.
D
DuYao 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
564
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
565 566
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
567 568 569 570
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
571 572
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
573 574
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
575 576
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
577 578 579
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
580 581 582 583 584 585 586
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
587

D
DuYao 已提交
588 589 590 591
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
592

L
lujun 已提交
593
    Returns:
D
DuYao 已提交
594
        None.
L
lujun 已提交
595 596 597 598 599 600 601 602

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

603 604 605 606 607 608
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
609
                    num_channels=3,
610 611 612 613 614
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
615 616
    """

L
lujun 已提交
617
    def __init__(self,
618
                 num_channels,
L
lujun 已提交
619
                 num_filters,
620
                 filter_size,
L
lujun 已提交
621 622 623 624 625 626 627 628
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
629 630
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
631 632 633 634 635 636 637
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
638
        self._num_channels = num_channels
L
lujun 已提交
639 640 641 642 643 644
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
645
        self._dtype = dtype
L
lujun 已提交
646

647 648
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
649

650 651
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
652
        self.weight = self.create_parameter(
L
lujun 已提交
653
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
654 655 656 657 658
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
659 660 661 662 663 664 665

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
666
                    'Filter': [self.weight]},
L
lujun 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
682
                        'Y': [self.bias]},
L
lujun 已提交
683 684 685 686 687 688 689 690 691
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
692
class Pool2D(layers.Layer):
693
    """
694 695 696 697 698
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
699 700
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
701

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

746
    Parameters:
747
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
748
            it must contain two integers, (pool_size_Height, pool_size_Width).
749 750 751 752
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
753
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
754 755 756
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
757
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
758 759 760 761 762 763 764
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
765 766

    Returns:
767
        None
768 769 770 771 772 773 774 775 776 777

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
778
          import paddle.fluid as fluid
779 780
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
781 782

          with fluid.dygraph.guard():
783
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
784
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
785 786 787
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
788
             pool2d_res = pool2d(to_variable(data))
789 790 791

    """

M
minqiyang 已提交
792 793 794 795 796 797 798 799
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
800
                 exclusive=True):
M
minqiyang 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

814
        super(Pool2D, self).__init__()
M
minqiyang 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
828 829 830 831 832 833 834 835
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
                     'use_mkldnn', False, 'exclusive', self._exclusive)
            return core.ops.pool2d(input, *attrs)

836 837 838 839 840 841 842 843 844 845 846 847 848
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
849 850
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
851 852 853
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
854
            outputs={"Out": pool_out},
855
            attrs=attrs)
M
minqiyang 已提交
856
        return pool_out
M
minqiyang 已提交
857 858


S
songyouwei 已提交
859 860 861 862 863 864 865 866 867 868
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

869
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
929
        if in_dygraph_mode():
930 931
            pre_bias = core.ops.mul(input, self.weight, 'x_num_col_dims',
                                    len(input.shape) - 1, 'y_num_col_dims', 1)
932 933 934 935 936 937

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
938 939 940 941 942
        attrs = {
            "x_num_col_dims": len(input.shape) - 1,
            "y_num_col_dims": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}
943

S
songyouwei 已提交
944 945
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
946
            type="mul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
961
class BatchNorm(layers.Layer):
962
    """
963 964 965 966 967
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
968 969 970 971
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

972 973 974
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
975 976 977 978 979 980 981 982

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

983 984
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
985 986 987

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
988 989 990 991 992 993
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
994

995 996
    The normalization function formula is as follows:
 
997 998 999
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1000 1001 1002 1003 1004 1005
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1006

1007
    Parameters:
1008
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1009
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1010 1011 1012 1013
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1014 1015 1016
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1017
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1018 1019 1020
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1021 1022 1023 1024 1025 1026
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1027 1028
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1029
        use_global_stats(bool, optional): Whether to use global mean and
1030 1031 1032
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1033 1034 1035 1036
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1037 1038

    Returns:
1039
        None
1040 1041 1042

    Examples:
        .. code-block:: python
L
lujun 已提交
1043 1044

          import paddle.fluid as fluid
1045 1046
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1047

1048
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1049
          with fluid.dygraph.guard():
1050
              x = to_variable(x)
1051
              batch_norm = fluid.BatchNorm(10)
1052
              hidden1 = batch_norm(x)
1053 1054
    """

M
minqiyang 已提交
1055 1056 1057 1058 1059 1060 1061 1062
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1063
                 dtype='float32',
M
minqiyang 已提交
1064 1065 1066 1067
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1068
                 do_model_average_for_mean_and_var=True,
1069 1070
                 use_global_stats=False,
                 trainable_statistics=False):
1071
        super(BatchNorm, self).__init__()
1072
        self._param_attr = param_attr
1073
        self._bias_attr = bias_attr
1074
        self._act = act
M
minqiyang 已提交
1075 1076 1077

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1078 1079
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1080 1081 1082 1083 1084 1085
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1086
        self.weight = self.create_parameter(
1087
            attr=self._param_attr,
M
minqiyang 已提交
1088 1089 1090
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1091
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1092

1093
        self.bias = self.create_parameter(
1094
            attr=self._bias_attr,
M
minqiyang 已提交
1095 1096 1097
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1098
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1099

1100
        self._mean = self.create_parameter(
M
minqiyang 已提交
1101 1102 1103 1104 1105 1106 1107
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1108
        self._mean.stop_gradient = True
M
minqiyang 已提交
1109

1110
        self._variance = self.create_parameter(
M
minqiyang 已提交
1111 1112 1113 1114 1115 1116 1117
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1118
        self._variance.stop_gradient = True
M
minqiyang 已提交
1119 1120

        self._in_place = in_place
1121
        self._data_layout = data_layout
M
minqiyang 已提交
1122 1123 1124
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1125
        self._fuse_with_relu = False
M
minqiyang 已提交
1126
        self._use_global_stats = use_global_stats
1127
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1128 1129 1130 1131 1132 1133 1134

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

        if in_dygraph_mode():
            _is_test = (not _dygraph_tracer()._train_mode) and (
                not self._trainable_statistics)
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", _is_test, "data_layout", self._data_layout,
                     "use_mkldnn", False, "fuse_with_relu",
                     self._fuse_with_relu, "use_global_stats",
                     self._use_global_stats)
            batch_norm_out, _, _, _, _ = core.ops.batch_norm(
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)

1150 1151 1152
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics
        }
M
minqiyang 已提交
1163

1164 1165 1166 1167 1168 1169 1170 1171
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1172 1173 1174 1175 1176 1177
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1178 1179 1180 1181 1182 1183 1184 1185 1186

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1187
        self._helper.append_op(
1188
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1189

L
lujun 已提交
1190
        # Currently, we don't support inplace in dygraph mode
1191
        return self._helper.append_activation(batch_norm_out, self._act)
1192 1193


1194 1195 1196 1197
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1198 1199 1200 1201 1202 1203
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1204 1205
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1206

1207
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1208 1209 1210 1211 1212 1213 1214
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1215 1216
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1230

1231
    Parameters:
L
lujun 已提交
1232 1233
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1252
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1253 1254 1255
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1256

Z
zhongpu 已提交
1257 1258
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1259

1260
    Returns:
Z
zhongpu 已提交
1261
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1262 1263

    Examples:
1264

1265 1266
        .. code-block:: python

L
lujun 已提交
1267 1268 1269 1270
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1271
          # example 1
1272 1273
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1274 1275
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1276
              emb = fluid.dygraph.Embedding(
1277 1278 1279
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1280
              static_rlt3 = emb(base.to_variable(inp_word))
1281
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1296 1297
    """

1298 1299 1300 1301 1302 1303 1304
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1305
        super(Embedding, self).__init__()
1306 1307 1308 1309
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1310
            size[0] + padding_idx)
1311 1312 1313

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1314
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1315 1316 1317
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1318
        self.weight = self.create_parameter(
1319 1320 1321 1322 1323 1324
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1325 1326 1327 1328 1329 1330
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1331 1332 1333 1334 1335 1336
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1337

1338 1339
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1340
            type='lookup_table_v2',
1341
            inputs={'Ids': input,
1342
                    'W': self.weight},
1343
            outputs={'Out': out},
1344
            attrs=attrs)
1345 1346

        return out
M
minqiyang 已提交
1347 1348


1349
class LayerNorm(layers.Layer):
1350
    """
1351 1352 1353
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1354
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1355

1356
    The formula is as follows:
1357

1358
    ..  math::
1359

1360
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1361

1362
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1363

1364
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1365

1366 1367 1368 1369 1370
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1371

1372
    Parameters:
1373 1374 1375 1376
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1377
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1378
            normalization. Default: True.
1379
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1380
            normalization. Default: True.
1381
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1382
            division by zero. Default: 1e-05.
1383
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1384 1385 1386
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1387
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1388
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1389 1390 1391
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1392
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1393
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1394
                  Default: None.
1395 1396
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1397
    Returns:
1398
        None
1399

1400
    Examples:
1401

1402 1403 1404
        .. code-block:: python

          import paddle.fluid as fluid
1405
          from paddle.fluid.dygraph.base import to_variable
1406 1407
          import numpy

1408
          x = numpy.random.random((3, 32, 32)).astype('float32')
1409
          with fluid.dygraph.guard():
1410
              x = to_variable(x)
1411
              layerNorm = fluid.LayerNorm([32, 32])
1412
              ret = layerNorm(x)
1413

1414
    """
1415

1416
    def __init__(self,
1417
                 normalized_shape,
1418 1419 1420 1421 1422
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1423 1424 1425 1426 1427
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1428

1429
        self._normalized_shape = list(normalized_shape)
1430 1431 1432 1433 1434 1435
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1436 1437
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1438
        if self._scale:
1439
            self.weight = self.create_parameter(
1440 1441 1442 1443
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1444 1445
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1446
                logging.warn("param_attr are only available with scale is True")
1447
            self.weight = None
1448

1449 1450
        if self._shift:
            assert self._bias_attr is not False
1451
            self.bias = self.create_parameter(
1452 1453 1454 1455
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1456 1457
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1458
                logging.warn("bias_attr are only available with shift is True")
1459
            self.bias = None
1460 1461

    def forward(self, input):
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1473 1474 1475 1476 1477 1478 1479 1480

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1481 1482 1483
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1484
        inputs = dict()
1485
        inputs['X'] = [input]
1486
        if self._scale:
1487
            inputs['Scale'] = [self.weight]
1488
        if self._shift:
1489 1490 1491 1492 1493 1494
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1516
        return self._helper.append_activation(layer_norm_out, act=self._act)
1517 1518


M
minqiyang 已提交
1519 1520 1521
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1522 1523 1524 1525 1526
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1537
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1563
    Parameters:
L
lujun 已提交
1564
        size (int): The input dimension value.
D
DuYao 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1574 1575 1576 1577


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1578 1579 1580 1581
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1582 1583 1584 1585 1586
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1587
            is initialized zero. The default value is None.
L
lujun 已提交
1588
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1589
                             The default value is 'tanh'.
L
lujun 已提交
1590
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1591 1592 1593
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1594

D
DuYao 已提交
1595 1596 1597 1598
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1599

M
minqiyang 已提交
1600
    Returns:
D
DuYao 已提交
1601 1602 1603 1604
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1618
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1619 1620 1621
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1622
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1623 1624 1625
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1636
        super(GRUUnit, self).__init__()
1637
        self._bias_attr = bias_attr
M
minqiyang 已提交
1638 1639 1640 1641 1642
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1643 1644
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1645

M
minqiyang 已提交
1646
        self._dtype = dtype
M
minqiyang 已提交
1647 1648
        size = size // 3
        # create weight
1649
        self.weight = self.create_parameter(
M
minqiyang 已提交
1650
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1651 1652

        # create bias
M
minqiyang 已提交
1653
        bias_size = [1, 3 * size]
1654
        self._bias_size = bias_size
1655
        self.bias = self.create_parameter(
M
minqiyang 已提交
1656
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1657

M
minqiyang 已提交
1658
    def forward(self, input, hidden):
1659 1660 1661 1662 1663 1664
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1665 1666 1667 1668 1669
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1670
        if self.bias is not None:
1671 1672 1673 1674 1675
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }
M
minqiyang 已提交
1676 1677 1678 1679 1680
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1690 1691
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1692 1693 1694
            })

        return updated_hidden, reset_hidden_pre, gate
1695 1696 1697 1698


class NCE(layers.Layer):
    """
1699 1700 1701 1702 1703
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1704
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1705

1706
    Parameters:
1707 1708
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1709
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1710 1711 1712
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1713
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1714 1715 1716 1717
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1718
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1719
        sampler (str, optional): The sampler used to sample class from negative classes.
1720 1721
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1722
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1723
                       It is used when sampler is set to 'custom_dist'.
1724
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1725
                       Default: None.
1726 1727
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1728
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1729

1730 1731
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1732

1733 1734
        **bias** (Parameter or None): the learnable bias of this layer.
    
1735
    Returns:
1736
        None
1737 1738 1739 1740

    Examples:
        .. code-block:: python

1741 1742 1743
            import numpy as np
            import paddle.fluid as fluid

1744
            window_size = 5
1745 1746
            dict_size = 20
            label_word = int(window_size // 2) + 1
1747
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1769
                nce = fluid.NCE(
1770
                             num_total_classes=dict_size,
1771
                             dim=embs3.shape[1],
1772 1773 1774 1775 1776 1777 1778
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1779 1780
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1781 1782 1783 1784 1785

    """

    def __init__(self,
                 num_total_classes,
1786
                 dim,
1787
                 sample_weight=None,
1788 1789 1790 1791 1792 1793
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1794 1795 1796
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1797 1798 1799
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1800
        self._dtype = dtype
1801
        self._inputs = dict()
1802
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1890
        self.weight = self.create_parameter(
1891 1892 1893
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1894
            dtype=self._dtype)
1895
        if self._bias_attr:
1896
            self.bias = self.create_parameter(
1897 1898 1899
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1900
                dtype=self._dtype)
1901 1902
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
1933 1934 1935 1936
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1937 1938 1939 1940 1941
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1942
    Parameters:
L
lujun 已提交
1943
        mode (str): The mode for weight sharing. It supports all, channel
1944 1945 1946
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1947 1948 1949
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1950
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1951 1952
          This argument is required when mode is "element".
          Default: None.
1953 1954
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1955
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1956

1957 1958 1959
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
1960
    Returns:
1961
        None
1962 1963 1964 1965 1966

    Examples:

        .. code-block:: python

L
lujun 已提交
1967
          import paddle.fluid as fluid
1968
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1969 1970 1971 1972
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1973
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1985
                 input_shape=inp_np.shape,
L
lujun 已提交
1986
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1987
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1988

1989 1990
    """

S
songyouwei 已提交
1991 1992 1993 1994 1995
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
1996
                 dtype='float32'):
1997 1998
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
1999 2000
        self._mode = mode
        self._param_attr = param_attr
2001
        self._dtype = dtype
S
songyouwei 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2016
        self.weight = self.create_parameter(
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2028
                    'Alpha': self.weight},
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2049
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2050

2051
    Parameters:
2052 2053 2054 2055 2056
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2057 2058 2059 2060
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2061
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2062
           If it is set to None, the bias is initialized zero. The default value is None.
2063
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2064

D
DuYao 已提交
2065 2066 2067 2068
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2069

2070 2071 2072 2073 2074 2075
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2076 2077 2078 2079 2080 2081 2082
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2083
                    input1_dim=5, input2_dim=4, output_dim=1000)
2084 2085
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2086 2087 2088
    """

    def __init__(self,
2089 2090 2091
                 input1_dim,
                 input2_dim,
                 output_dim,
2092 2093 2094
                 name=None,
                 act=None,
                 param_attr=None,
2095 2096 2097
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2098 2099 2100 2101
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2102 2103 2104
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2105
        self._inputs = dict()
2106
        self._dtype = dtype
2107

2108
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2109
        self.weight = self.create_parameter(
2110 2111 2112 2113
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2114
        bias_size = [1, self._output_dim]
2115
        self.bias = self.create_parameter(
2116 2117 2118 2119
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2120 2121

    def forward(self, x, y):
2122
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2123
        if self.bias is not None:
2124
            self._inputs["Bias"] = self.bias
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2139
        return self._helper.append_activation(out, act=self._act)
2140 2141 2142 2143


class Conv2DTranspose(layers.Layer):
    """
2144 2145
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2146
    The convolution2D transpose layer calculates the output based on the input,
2147 2148 2149
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2150 2151
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2152 2153
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2154 2155 2156
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2157 2158
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2159 2160 2161 2162 2163 2164 2165 2166 2167

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2168 2169
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2170
    * :math:`\\ast`: Convolution operation.
2171
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2196
    Parameters:
2197
        num_channels(int): The number of channels in the input image.
2198
        num_filters(int): The number of the filter. It is as same as the output
2199
            feature map.
2200 2201 2202
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2203
        output_size(int or tuple, optional): The output image size. If output size is a
2204 2205 2206
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2207
            should follow the formula above. Default: None.
2208
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2209
            contain two integers, (padding_H, padding_W). Otherwise, the
2210 2211
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2212
            contain two integers, (stride_H, stride_W). Otherwise, the
2213 2214
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2215
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2216 2217
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2218 2219 2220 2221
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2222 2223
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2224 2225 2226
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2227
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2228 2229 2230 2231
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2232
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2233
            library is installed. Default: True.
2234
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2235
            Default: None.
2236
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2237

2238 2239
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2240

2241
        **bias** (Parameter or None): the learnable bias of this layer.
2242

2243 2244
    Returns:
        None
2245 2246 2247 2248

    Examples:
       .. code-block:: python

2249
          import paddle.fluid as fluid
2250
          import numpy as np
2251 2252

          with fluid.dygraph.guard():
2253
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2254
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2255
                    num_channels=32, num_filters=2, filter_size=3)
2256 2257
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2258 2259 2260
    """

    def __init__(self,
2261
                 num_channels,
2262
                 num_filters,
2263
                 filter_size,
2264 2265 2266 2267 2268 2269 2270 2271
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2272 2273 2274
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2275 2276 2277
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2278
        self._act = act
2279
        self._groups = groups
2280
        self._num_channels = num_channels
2281 2282 2283 2284 2285 2286 2287
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2288
        self._dtype = dtype
2289

2290 2291 2292
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2293
            self._op_type = 'depthwise_conv2d_transpose'
2294 2295
        else:
            self._op_type = 'conv2d_transpose'
2296 2297 2298 2299 2300

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2301 2302
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2314
        filter_shape = [self._num_channels, self._num_filters // self._groups
2315 2316
                        ] + self._filter_size

2317
        self.weight = self.create_parameter(
2318
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2319

2320
        self.bias = self.create_parameter(
2321 2322 2323 2324 2325
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2326
    def forward(self, input):
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2349 2350 2351 2352
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2353
            inputs=inputs,
2354
            outputs={'Output': pre_bias},
2355
            attrs=attrs)
2356

2357
        if self.bias is not None:
2358 2359 2360 2361 2362
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2363
                        'Y': [self.bias]},
2364 2365 2366 2367 2368 2369
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2370 2371 2372 2373 2374 2375 2376 2377 2378
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2379
    Parameters:
L
lujun 已提交
2380
        name_scope(str): The name of this class.
2381
        num_filters (int): number of filters.
L
lujun 已提交
2382 2383 2384
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2397 2398 2399 2400
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2414
        assert not in_dygraph_mode(
2415
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2416 2417 2418 2419 2420 2421 2422
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2423
        self._act = act
2424

2425
    def _build_once(self, input):
2426 2427
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2428
        self.weight = self.create_parameter(
2429
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2430

2431
        self.bias = self.create_parameter(
2432 2433 2434 2435 2436
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2437 2438 2439 2440 2441 2442
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2443
                'Filter': [self.weight],
2444 2445 2446 2447 2448 2449 2450
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2451

2452
        if self.bias is not None:
2453 2454 2455 2456 2457
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2458
                        'Y': [self.bias]},
2459 2460 2461 2462 2463 2464
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2465 2466 2467


class RowConv(layers.Layer):
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2486
    Parameters:
L
lujun 已提交
2487
        name_scope(str): The name of this class.
2488 2489 2490
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2491 2492
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2493

2494 2495 2496
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2497
    Returns:
L
lujun 已提交
2498 2499
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2515 2516 2517 2518 2519
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2520
        assert not in_dygraph_mode(
2521
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2522 2523 2524 2525 2526
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2527
    def _build_once(self, input):
L
lujun 已提交
2528 2529
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2530
        self.weight = self.create_parameter(
2531 2532 2533 2534
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2535 2536 2537 2538 2539 2540

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2541
                    'Filter': [self.weight]},
L
lujun 已提交
2542 2543 2544 2545 2546 2547
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2548 2549 2550 2551 2552 2553
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2554
        channels(int): The number of channels of input.
2555 2556 2557 2558 2559 2560 2561 2562 2563
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2564
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2578
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2579
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2580 2581 2582 2583

    """

    def __init__(self,
2584
                 channels,
L
lujun 已提交
2585 2586 2587 2588 2589
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2590 2591 2592
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2593 2594 2595
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2596
        self._channels = channels
L
lujun 已提交
2597 2598
        self._groups = groups
        self._act = act
2599
        self._dtype = dtype
L
lujun 已提交
2600 2601 2602
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2603
        param_shape = [self._channels]
L
lujun 已提交
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2616 2617 2618

    def forward(self, input):
        inputs = {'X': input}
2619
        if self.bias is not None:
2620
            inputs['Bias'] = self.bias
2621
        if self.weight is not None:
2622
            inputs['Scale'] = self.weight
L
lujun 已提交
2623 2624

        # create output
2625
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2647
    """
2648 2649
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2660
    :attr:`power_iters` should be a positive integer, do following
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2681
    Parameters:
2682
        weight_shape(list or tuple): The shape of weight parameter.
2683 2684 2685 2686
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2687
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2688 2689

    Returns:
2690
        None
2691 2692 2693 2694 2695

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2696
            import numpy as np
2697 2698

            with fluid.dygraph.guard():
2699 2700 2701
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2702 2703 2704

    """

2705 2706 2707 2708 2709 2710 2711
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2712 2713 2714
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2715
        self._dtype = dtype
L
lujun 已提交
2716

2717 2718 2719
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2720

2721
        self.weight_u = self.create_parameter(
L
lujun 已提交
2722 2723 2724 2725
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2726
        self.weight_u.stop_gradient = True
L
lujun 已提交
2727

2728
        self.weight_v = self.create_parameter(
L
lujun 已提交
2729 2730 2731 2732
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2733
        self.weight_v.stop_gradient = True
L
lujun 已提交
2734 2735

    def forward(self, weight):
2736
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2752
    """
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2763
        feature_size(int): last dimension of nodes_vector.
2764 2765 2766 2767 2768 2769 2770
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2771
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2772

2773 2774
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2775

2776
        **bias** (Parameter or None): the learnable bias of this layer.
2777

2778 2779
    Returns:
        None
L
lujun 已提交
2780

2781
    Examples:
L
lujun 已提交
2782

2783
        .. code-block:: python
2784

2785 2786
          import paddle.fluid as fluid
          import numpy
2787

2788 2789 2790 2791
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2792
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2793
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2794 2795
    """

L
lujun 已提交
2796
    def __init__(self,
2797
                 feature_size,
L
lujun 已提交
2798 2799 2800 2801 2802 2803
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2804 2805 2806
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2807
        self._name = name
2808
        self._feature_size = feature_size
L
lujun 已提交
2809 2810 2811 2812 2813 2814
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2815 2816
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2817
        if self._bias_attr:
2818
            self.bias = self.create_parameter(
L
lujun 已提交
2819 2820 2821 2822
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2823
        self.weight = self.create_parameter(
L
lujun 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2841
                'Filter': self.weight
L
lujun 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2851
                        'Y': [self.bias]},
L
lujun 已提交
2852 2853 2854 2855 2856
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)