ProcessGroupNCCL.cc 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/distributed/collective/utils.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
20
#include "paddle/fluid/platform/place.h"
L
LiYuRio 已提交
21
#include "paddle/phi/api/lib/utils/allocator.h"
22 23 24 25 26 27 28 29 30

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

31 32 33 34 35 36 37
ProcessGroupNCCL::NCCLTask::NCCLTask(const Place& place,
                                     int rank,
                                     CommType comm_type,
                                     bool sync_op,
                                     bool use_calc_stream)
    : TaskStream(rank, comm_type, sync_op, use_calc_stream),
      comm_event_(place),
W
Wen Sun 已提交
38
      task_place_(place) {}
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() { return comm_event_.Query(); }

void ProcessGroupNCCL::NCCLTask::UpdateWaitChain(
    const phi::DeviceContext& ctx) {
  comm_event_.Record(&ctx);
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

W
Wen Sun 已提交
58 59 60
  const auto* calc_ctx =
      platform::DeviceContextPool::Instance().Get(task_place_);
  comm_event_.Wait(platform::Place2DeviceType(task_place_), calc_ctx);
61 62 63 64 65 66

  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
67
  }
68

W
Wen Sun 已提交
69
  if (IsBlockCPUInWait()) {
70 71 72 73 74 75 76 77
    // If we use the work to do barrier, we should block cpu
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
    PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
  }
  return true;
78 79
}

80 81 82 83 84 85 86
// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
                                   int rank,
                                   int size,
                                   int gid)
87
    : ProcessGroupStream(rank, size, gid), store_(store) {}
88 89

void ProcessGroupNCCL::GroupStart() {
90
  NCCL_CHECK(platform::dynload::ncclGroupStart());
91 92 93
}

void ProcessGroupNCCL::GroupEnd() {
94
  NCCL_CHECK(platform::dynload::ncclGroupEnd());
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place) const {
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place, bool use_calc_stream) const {
  const std::string& key = GetKeyFromPlace(place);
  if (use_calc_stream) {
    const auto& iter = place_to_calc_ctx_.find(key);
    return *iter->second;
  } else {
    const auto& iter = place_to_comm_ctx_.find(key);
    PADDLE_ENFORCE_NE(
        iter,
        place_to_comm_ctx_.end(),
        platform::errors::NotFound(
            "Cannot find the device context in this process group."));
    return *iter->second;
  }
}

ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  const std::string& key = GetKeyFromPlace(place);
  const auto& iter = place_to_comm_ctx_.find(key);
  PADDLE_ENFORCE_NE(
      iter,
      place_to_comm_ctx_.end(),
      platform::errors::NotFound(
          "Cannot find the NCCL commmunicator in this process group."));
  return iter->second->nccl_comm();
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
133 134
    int64_t offset,
    int64_t numel,
135 136
    bool sync_op,
    bool use_calc_stream) {
137 138 139
  // numel > 0 indicates the tensor need to be sliced
  const phi::DenseTensor& in_tensor_maybe_partial =
      numel > 0 ? GetPartialTensor(in_tensor, offset, numel) : in_tensor;
140 141
  return Collective(
      out_tensor,
142 143 144 145 146
      in_tensor_maybe_partial,
      [](phi::DenseTensor* output,
         const phi::DenseTensor& input,
         ncclComm_t comm,
         gpuStream_t stream) {
147
        NCCL_CHECK(platform::dynload::ncclAllGather(
148 149 150 151 152
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
153
            stream));
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
172
          gpuStream_t stream) {
173
        NCCL_CHECK(platform::dynload::ncclAllReduce(
174 175 176 177 178 179
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
180
            stream));
181 182 183 184 185 186
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
void CheckSizeOnEachRank(const phi::DDim& tensor_dim,
                         const std::vector<int64_t>& size_on_each_rank,
                         int world_size) {
  int length_size_on_each_rank = size_on_each_rank.size();
  PADDLE_ENFORCE_EQ(
      length_size_on_each_rank,
      world_size,
      platform::errors::InvalidArgument(
          "The length of size_on_each_rank must be equal to world_size."));

  int64_t sum_size_on_each_rank =
      std::accumulate(size_on_each_rank.begin(), size_on_each_rank.end(), 0);
  PADDLE_ENFORCE_EQ(
      sum_size_on_each_rank,
      tensor_dim[0],
      platform::errors::InvalidArgument(
          "The sum of size_on_each_rank must be equal to tensor's dim[0]."));
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const std::vector<int64_t>& out_size_each_rank,
    const std::vector<int64_t>& in_size_each_rank,
    bool sync_op,
    bool use_calc_stream) {
  const phi::DDim& out_dim = out_tensor->dims();
  const phi::DDim& in_dim = in_tensor.dims();
  CheckSizeOnEachRank(out_dim, out_size_each_rank, size_);
  CheckSizeOnEachRank(in_dim, in_size_each_rank, size_);

  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          gpuStream_t stream) {
        int64_t in_row_size = input.numel() / in_dim[0],
                out_row_size = output->numel() / out_dim[0];
        int64_t in_offset = 0, in_numel = 0, out_offset = 0, out_numel = 0;
        phi::DenseTensor input_partial, output_partial;

        GroupStart();
        for (auto i = 0; i < size_; i++) {
          in_numel = in_size_each_rank[i] * in_row_size;
          input_partial = GetPartialTensor(input, in_offset, in_numel);
234
          NCCL_CHECK(platform::dynload::ncclSend(
235 236 237 238 239 240 241 242 243 244
              input_partial.data(),
              in_numel,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_numel;

          out_numel = out_size_each_rank[i] * out_row_size;
          output_partial = GetPartialTensor(*output, out_offset, out_numel);
245
          NCCL_CHECK(platform::dynload::ncclRecv(
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
              output_partial.data(),
              out_numel,
              platform::ToNCCLDataType(output->dtype()),
              i,
              comm,
              stream));
          out_offset += out_numel;
        }
        GroupEnd();
      },
      CommType::ALLTOALL,
      sync_op,
      use_calc_stream);
}

261 262
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
263 264 265 266 267
  PADDLE_ENFORCE_GE(opts.device_id,
                    0,
                    platform::errors::PreconditionNotMet(
                        "The barrier device id must greater or equal than 0."));
  platform::CUDAPlace place(opts.device_id);
268
  auto allocator = std::unique_ptr<phi::Allocator>(
269
      new paddle::experimental::DefaultAllocator(place));
270 271 272 273 274 275 276 277 278
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = AllReduce(&barrier_tensor,
                        barrier_tensor,
                        {},
                        /*sync_op*/ true,
                        /*use_calc_stream*/ false);
  auto nccl_task = dynamic_cast<NCCLTask*>(task.get());
W
Wen Sun 已提交
279
  nccl_task->SetBlockCPUInWait();
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
295
          gpuStream_t stream) {
296
        int root = opts.source_rank + opts.source_root;
297
        NCCL_CHECK(platform::dynload::ncclBroadcast(
298 299 300 301 302 303
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
304
            stream));
305 306 307 308
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
309 310
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          gpuStream_t stream) {
        NCCL_CHECK(platform::dynload::ncclReduce(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
      },
      CommType::REDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          gpuStream_t stream) {
        NCCL_CHECK(platform::dynload::ncclReduceScatter(
            input.data(),
            output->data(),
            output->numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const ScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          gpuStream_t stream) {
        int64_t numel = input.numel() / size_;
        if (rank_ == opts.root_rank) {
          int64_t offset = 0;
          phi::DenseTensor partial_tensor;
          GroupStart();
          for (auto i = 0; i < size_; i++) {
            partial_tensor = GetPartialTensor(input, offset, numel);
            NCCL_CHECK(platform::dynload::ncclSend(
                partial_tensor.data(),
                numel,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
            offset += numel;
          }
          NCCL_CHECK(platform::dynload::ncclRecv(
              output->data(),
              numel,
              platform::ToNCCLDataType(output->dtype()),
              opts.root_rank,
              comm,
              stream));
          GroupEnd();
        } else {
          NCCL_CHECK(platform::dynload::ncclRecv(
              output->data(),
              numel,
              platform::ToNCCLDataType(output->dtype()),
              opts.root_rank,
              comm,
              stream));
        }
      },
      CommType::SCATTER,
      sync_op,
      use_calc_stream);
}

418 419 420 421
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    phi::DenseTensor* tensor,
    int src_rank,
    int64_t offset,
422
    int64_t numel,
423 424
    bool sync_op,
    bool use_calc_stream) {
425 426 427 428 429 430
  // numel > 0 indicates the tensor need to be sliced
  phi::DenseTensor partial_tensor;
  if (numel > 0) {
    partial_tensor = GetPartialTensor(*tensor, offset, numel);
    tensor = &partial_tensor;
  }
431
  return PointToPoint(
432
      tensor,
433
      src_rank,
434 435 436 437
      [](phi::DenseTensor* output,
         int src,
         ncclComm_t comm,
         gpuStream_t stream) {
438
        NCCL_CHECK(platform::dynload::ncclRecv(
439 440 441 442 443
            output->data(),
            output->numel(),
            platform::ToNCCLDataType(output->dtype()),
            src,
            comm,
444
            stream));
445 446 447 448 449 450 451 452 453 454
      },
      CommType::RECV,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    phi::DenseTensor* tensor,
    int dst_rank,
    int64_t offset,
455
    int64_t numel,
456 457
    bool sync_op,
    bool use_calc_stream) {
458 459 460 461 462 463
  // numel > 0 indicates the tensor need to be sliced
  phi::DenseTensor partial_tensor;
  if (numel > 0) {
    partial_tensor = GetPartialTensor(*tensor, offset, numel);
    tensor = &partial_tensor;
  }
464
  return PointToPoint(
465
      tensor,
466
      dst_rank,
467 468 469 470
      [](phi::DenseTensor* input,
         int dst,
         ncclComm_t comm,
         gpuStream_t stream) {
471
        NCCL_CHECK(platform::dynload::ncclSend(
472 473 474 475 476
            input->data(),
            input->numel(),
            platform::ToNCCLDataType(input->dtype()),
            dst,
            comm,
477
            stream));
478 479 480 481 482 483
      },
      CommType::SEND,
      sync_op,
      use_calc_stream);
}

484
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
485
    const Place& place,
486 487 488 489 490
    int rank,
    CommType comm_type,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
491
      place, rank, comm_type, is_sync, use_calc_stream);
492 493
}

494 495 496 497 498 499 500 501 502 503 504 505
void ProcessGroupNCCL::BroadcastUniqueNCCLID(ncclUniqueId* nccl_id) {
  const std::string key =
      "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/0";
  if (rank_ == 0) {
    std::vector<uint8_t> nccl_id_wrapper(
        reinterpret_cast<uint8_t*>(nccl_id),
        reinterpret_cast<uint8_t*>(nccl_id) + NCCL_UNIQUE_ID_BYTES);
    store_->set(key, nccl_id_wrapper);
  } else {
    const auto& nccl_id_wrapper = store_->get(key);
    std::memcpy(nccl_id, nccl_id_wrapper.data(), nccl_id_wrapper.size());
  }
506 507
}

508 509
void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
                                          const std::string& place_key) {
W
Wen Sun 已提交
510 511 512 513
  if (place_to_comm_ctx_.size() > 0) {
    VLOG(3) << "Warning: Tensors from multiple devices are not supported yet.";
  }

514 515
  ncclUniqueId nccl_id;
  if (rank_ == 0) {
516
    NCCL_CHECK(platform::dynload::ncclGetUniqueId(&nccl_id));
517 518
  }
  BroadcastUniqueNCCLID(&nccl_id);
519

520 521 522
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << place_key
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);
523

524 525 526 527
  auto* calc_ctx = static_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto comm_ctx = std::make_unique<phi::GPUContext>(place);
  ncclComm_t nccl_comm;
528
  NCCL_CHECK(platform::dynload::ncclCommInitRank(
529 530 531
      &nccl_comm, GetSize(), nccl_id, GetRank()));
  comm_ctx->set_nccl_comm(nccl_comm);

W
Wen Sun 已提交
532 533 534
  place_to_calc_event_.emplace(place_key, place);
  place_to_calc_ctx_.emplace(place_key, calc_ctx);
  place_to_comm_ctx_.emplace(place_key, std::move(comm_ctx));
535 536

  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
537 538 539
  std::vector<phi::GPUContext*> comm_ctx_wrapper{
      place_to_comm_ctx_[place_key].get()};
  places_to_ctx_.emplace(place_key, comm_ctx_wrapper);
540 541
}

W
Wen Sun 已提交
542
void ProcessGroupNCCL::SyncCalcStream(const Place& place) {
543
  const std::string& key = GetKeyFromPlace(place);
W
Wen Sun 已提交
544 545 546 547 548
  auto& calc_event = place_to_calc_event_.at(key);
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto* comm_ctx = place_to_comm_ctx_.at(key).get();
  calc_event.Record(calc_ctx);
  calc_event.Wait(platform::Place2DeviceType(place), comm_ctx);
549 550
}

551 552 553 554 555 556 557 558 559 560 561
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = in_tensor.place();
  const auto& key = GetKeyFromPlace(place);

W
Wen Sun 已提交
562 563 564
  platform::CUDADeviceGuard cuda_guard(place);

  if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
565
    CreateNCCLEnvCache(place, key);
566 567
  }

568
  if (!use_calc_stream) {
W
Wen Sun 已提交
569
    SyncCalcStream(place);
570
  }
571

572 573
  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

W
Wen Sun 已提交
574 575 576
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto& comm_ctx = place_to_comm_ctx_.at(key);
  auto nccl_comm = comm_ctx->nccl_comm();
577
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
W
Wen Sun 已提交
578
  fn(out_tensor, in_tensor, nccl_comm, nccl_stream);
579 580 581 582 583

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(in_tensor.Holder(), nccl_stream);
    }
W
Wen Sun 已提交
584
    task->UpdateWaitChain(*comm_ctx);
585 586 587
  }

  return task;
588 589
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    phi::DenseTensor* tensor,
    int rank,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = tensor->place();
  const auto& key = GetKeyFromPlace(place);

  platform::CUDADeviceGuard cuda_guard(place);

  if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
    CreateNCCLEnvCache(place, key);
  }

  if (!use_calc_stream) {
    SyncCalcStream(place);
  }

  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto& comm_ctx = place_to_comm_ctx_.at(key);
  auto nccl_comm = comm_ctx->nccl_comm();
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
  fn(tensor, rank, nccl_comm, nccl_stream);

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(tensor->Holder(), nccl_stream);
    }
    task->UpdateWaitChain(*comm_ctx);
  }

  return task;
}

629
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
630
                                       std::vector<int64_t> tensor_shape) {
631
  int64_t len_size = (*split_sizes).size();
632 633 634 635 636 637
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
638 639 640 641
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
642 643 644 645 646 647 648
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
649
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
650 651 652 653 654 655 656 657
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

658 659
// TODO(sunyilun): methods below will be removed later
void SyncDefaultStream(const std::vector<Place>& places,
W
Wen Sun 已提交
660
                       platform::DeviceEvent& nccl_event,         // NOLINT
661 662 663 664
                       std::vector<phi::GPUContext*>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
W
Wen Sun 已提交
665 666
    nccl_event.Record(default_ctx);
    nccl_event.Wait(platform::Place2DeviceType(places[i]), dev_ctx[i]);
B
Baibaifan 已提交
667
  }
668 669
}

670 671 672 673 674 675 676
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
677
}
678

679 680 681 682 683 684 685 686 687
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs, is_sync, use_calc_stream);
688 689
}

690 691 692 693 694 695 696
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
    : TaskStream(rank, inputs, CommType),
      comm_event_(places[0]),
W
Wen Sun 已提交
697
      task_place_(places[0]) {}
698 699 700 701 702 703 704 705 706 707

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      comm_event_(places[0]),
W
Wen Sun 已提交
708
      task_place_(places[0]) {}
709

710 711 712
// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
713 714
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
715 716 717 718
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

719
  ncclUniqueId nccl_id;
720
  if (rank_ == 0) {
721
    NCCL_CHECK(platform::dynload::ncclGetUniqueId(&nccl_id));
722
  }
723
  BroadcastUniqueNCCLID(&nccl_id);
724

725 726
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
727 728
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
729
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
730 731
  dev_ctx.resize(places.size());

732 733 734
  std::vector<phi::GPUContext*> dev_ctx_raw;
  dev_ctx_raw.resize(places.size());

735
  GroupStart();
736 737 738

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
739

L
Leo Chen 已提交
740
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
741
    ncclComm_t nccl_comm;
742
    NCCL_CHECK(platform::dynload::ncclCommInitRank(
743 744 745
        &nccl_comm, GetSize(), nccl_id, GetRank()));
    dev_ctx[i]->set_nccl_comm(nccl_comm);
    dev_ctx_raw[i] = dev_ctx[i].get();
746 747
  }

748
  GroupEnd();
749

750
  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
751 752 753 754 755 756
  place_to_calc_event_.emplace(places_key, places[0]);
  place_to_calc_ctx_.emplace(
      places_key,
      static_cast<phi::GPUContext*>(
          platform::DeviceContextPool::Instance().Get(places[0])));
  place_to_comm_ctx_.emplace(places_key, std::move(dev_ctx[0]));
757 758

  // These caches will be useful to process sync/wait/communicate
759
  places_to_ctx_.emplace(places_key, std::move(dev_ctx_raw));
760 761
}

762 763 764 765 766 767 768 769 770 771 772 773 774
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
775
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
776 777 778 779
      CreateNCCLManagerCache(key, places);
    }
  }

780
  if (!use_calc_stream) {
W
Wen Sun 已提交
781 782
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
783
  }
784

785 786
  auto task =
      CreateTask(places, rank_, comm_type, inputs, sync_op, use_calc_stream);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
802
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
803 804
      }

805 806
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
807
         places_to_ctx_.at(key)[i]->nccl_comm(),
808
         nccl_stream);
809 810 811 812 813 814 815 816 817 818 819 820 821 822
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
823
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
824 825 826 827 828 829 830 831 832 833
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
834
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
835 836 837 838 839 840
    }
  }

  return task;
}

841 842
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
843
    std::vector<phi::DenseTensor>& inputs,
844 845 846
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
847 848 849 850 851
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
852
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
853 854 855 856
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
857 858
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
859 860 861 862 863 864

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
865 866
  {
    platform::NCCLGroupGuard nccl_guard;
867 868
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
869
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
870 871
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
872
         places_to_ctx_.at(key)[i]->nccl_comm(),
873
         nccl_stream);
874 875 876
    }
  }

S
ShenLiang 已提交
877
  if (FLAGS_use_stream_safe_cuda_allocator) {
878 879
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
880
      memory::RecordStream(inputs[i].Holder(),
W
Wen Sun 已提交
881
                           places_to_ctx_.at(key)[i]->stream());
882 883 884 885 886
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
887
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
888 889 890 891
  }
  return task;
}

892 893
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
894 895
                                  phi::DenseTensor* out,
                                  Fn fn,
896 897 898
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
899
  const std::string& key = GetKeyFromPlaces(places);
900 901 902

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
903
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
904 905 906 907
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
908 909
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
910 911 912 913 914 915

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
916
    memory::RecordStream(in->Holder(), places_to_ctx_.at(key)[0]->stream());
917 918 919 920 921
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
922 923
    const auto& nccl_stream = places_to_ctx_.at(key)[0]->stream();
    fn(in, out, places_to_ctx_.at(key)[0]->nccl_comm(), nccl_stream);
924 925 926 927 928
  }

  cuda_guard.SetDevice(places[0]);
}

929 930 931 932 933 934 935 936 937 938 939 940 941
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(tensors);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
942
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
943 944 945 946 947
      CreateNCCLManagerCache(key, places);
    }
  }

  if (!use_calc_stream) {
W
Wen Sun 已提交
948 949
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
950 951 952 953 954 955 956
  }

  auto task =
      CreateTask(places, rank_, op_type, tensors, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

957 958
  {
    platform::NCCLGroupGuard nccl_guard;
959 960 961 962 963 964 965 966 967
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
968
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
969
      }
970
      fn(tensors[i],
W
Wen Sun 已提交
971
         places_to_ctx_.at(key)[i]->nccl_comm(),
972 973
         nccl_stream,
         dst_rank);
974 975 976
    }
  }

977
  if (FLAGS_use_stream_safe_cuda_allocator) {
978 979 980 981 982 983 984 985 986
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
987
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
988
      }
989
      memory::RecordStream(tensors[i].Holder(), nccl_stream);
990 991 992 993 994 995
    }
  }

  if (!use_calc_stream) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
996
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
997 998 999 1000 1001 1002
    }
  }

  return task;
}

B
Baibaifan 已提交
1003 1004
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
1005 1006 1007
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
1008
    CommType op_type) {
B
Baibaifan 已提交
1009 1010 1011 1012 1013
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
1014
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
B
Baibaifan 已提交
1015 1016 1017 1018
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
1019 1020
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
B
Baibaifan 已提交
1021 1022 1023 1024 1025 1026

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

1027 1028
  {
    platform::NCCLGroupGuard nccl_guard;
B
Baibaifan 已提交
1029 1030
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
1031
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
1032
      fn(tensors[i],
W
Wen Sun 已提交
1033
         places_to_ctx_.at(key)[i]->nccl_comm(),
1034 1035
         nccl_stream,
         dst_rank);
B
Baibaifan 已提交
1036 1037 1038
    }
  }

1039
  if (FLAGS_use_stream_safe_cuda_allocator) {
B
Baibaifan 已提交
1040 1041
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
1042
      memory::RecordStream(tensors[i].Holder(),
W
Wen Sun 已提交
1043
                           places_to_ctx_.at(key)[i]->stream());
B
Baibaifan 已提交
1044 1045 1046 1047 1048
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
1049
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
B
Baibaifan 已提交
1050 1051 1052 1053
  }
  return task;
}

1054
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
1055
    std::vector<phi::DenseTensor>& in_tensors,
1056 1057
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
1058
  PADDLE_ENFORCE_EQ(
1059 1060
      CheckTensorsInCudaPlace(in_tensors),
      true,
1061
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
1062
  return Collective(
1063 1064 1065 1066 1067 1068
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1069
        return platform::dynload::ncclAllReduce(
1070 1071 1072
            input.data(),
            output.data(),
            input.numel(),
1073
            platform::ToNCCLDataType(input.type()),
1074 1075 1076
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
1077 1078
      },
      CommType::ALLREDUCE);
1079 1080 1081
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
1082
    std::vector<phi::DenseTensor>& in_tensors,
1083 1084
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
1085
  PADDLE_ENFORCE_EQ(
1086 1087
      CheckTensorsInCudaPlace(in_tensors),
      true,
1088 1089
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

1090
  return Collective(
1091 1092 1093 1094 1095
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1096 1097 1098 1099
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
1100 1101 1102 1103 1104 1105 1106
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
1107 1108
      },
      CommType::BROADCAST);
1109 1110
}

1111 1112
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
1113
  PADDLE_ENFORCE_EQ(
1114 1115
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
1116 1117
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
1118 1119
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
1120 1121 1122 1123 1124 1125
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
1126 1127
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
1128 1129 1130
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

1131
    const auto inserted = used_devices.insert(t.place()).second;
1132 1133
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
1134 1135 1136 1137 1138 1139
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
1140
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
1141 1142
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

1143 1144
  auto task = PointToPoint(
      tensors,
1145 1146 1147
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
1148 1149
          int dst_rank) {
        return platform::dynload::ncclSend(
1150 1151 1152 1153 1154 1155
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
1156
      },
1157 1158
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
1159 1160 1161 1162
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
1163
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
1164 1165
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

1166 1167
  auto task = PointToPoint(
      tensors,
1168 1169 1170
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
1171 1172
          int src_rank) {
        return platform::dynload::ncclRecv(
1173 1174 1175 1176 1177 1178
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
1179
      },
1180 1181
      src_rank,
      CommType::RECV);
1182 1183 1184
  return task;
}

1185
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
1186 1187
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1188
  PADDLE_ENFORCE_EQ(
1189 1190
      CheckTensorsInCudaPlace(in_tensors),
      true,
1191 1192
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1193 1194
      CheckTensorsInCudaPlace(out_tensors),
      true,
1195
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
1196
  return Collective(
1197 1198 1199 1200 1201 1202
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1203
        return platform::dynload::ncclAllGather(
1204 1205 1206 1207 1208 1209
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
1210 1211
      },
      CommType::ALLGATHER);
1212 1213
}

1214 1215
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
1216 1217 1218 1219 1220 1221 1222
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
1223 1224 1225
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
1226 1227 1228 1229 1230 1231
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
1232 1233 1234 1235 1236 1237 1238 1239
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
1240
                                   offset);
1241 1242 1243
  } else if (type == experimental::DataType::BFLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<uint16_t*>(raw_pointer) +
                                   offset);
1244 1245
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
1246
        "Datatype %s in NCCL is not supported.", type));
1247
  }
1248
  return nullptr;
1249 1250 1251
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
1252 1253
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1254
  PADDLE_ENFORCE_EQ(
1255 1256
      CheckTensorsInCudaPlace(in_tensors),
      true,
1257 1258
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1259 1260
      CheckTensorsInCudaPlace(out_tensors),
      true,
1261 1262
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1263 1264 1265 1266 1267
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1268 1269
          const gpuStream_t& stream) {
        size_t offset = 0;
1270
        GroupStart();
1271 1272
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1273
              GetPointerByOffset(input.data(), offset, input.dtype()),
1274 1275 1276 1277 1278
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1279
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1280
              GetPointerByOffset(output.data(), offset, input.dtype()),
1281 1282 1283 1284 1285
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1286
          offset += input.numel() / size_;
1287
        }
1288
        GroupEnd();
1289
      },
1290 1291 1292
      CommType::ALLTOALL);
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        size_t offset = 0;
1314
        GroupStart();
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          offset += input.numel() / size_;
        }
1332
        GroupEnd();
1333 1334 1335 1336 1337 1338
      },
      CommType::ALLTOALL,
      sync_op,
      use_calc_stream);
}

1339
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
1340
    std::vector<phi::DenseTensor>& in_tensors,
1341 1342
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
1343
  PADDLE_ENFORCE_EQ(
1344 1345
      CheckTensorsInCudaPlace(in_tensors),
      true,
1346 1347
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1348 1349 1350 1351 1352 1353
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1354
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
1355 1356 1357
            input.data(),
            output.data(),
            input.numel(),
1358
            platform::ToNCCLDataType(input.dtype()),
1359 1360 1361 1362
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
1363 1364 1365 1366 1367
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
1368
    std::vector<phi::DenseTensor>& in_tensors,
1369 1370
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
1371
  PADDLE_ENFORCE_EQ(
1372 1373
      CheckTensorsInCudaPlace(in_tensors),
      true,
1374 1375
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1376 1377
      CheckTensorsInCudaPlace(out_tensors),
      true,
1378 1379
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1380 1381 1382 1383 1384
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1385 1386 1387
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
1388
          GroupStart();
1389 1390
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1391
                GetPointerByOffset(input.data(), offset, input.dtype()),
1392 1393 1394 1395 1396
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
1397
            offset += input.numel() / size_;
1398 1399
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1400 1401 1402 1403 1404
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1405
              stream));
1406
          GroupEnd();
1407 1408
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1409 1410 1411 1412 1413
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1414 1415 1416 1417 1418 1419
              stream));
        }
      },
      CommType::SCATTER);
}

1420 1421
}  //  namespace distributed
}  //  namespace paddle