Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
18c77325
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
18c77325
编写于
7月 22, 2022
作者:
H
Haohongxiang
提交者:
GitHub
7月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support send_partial, recv_partial and allgather_partial in ProcessGroupNCCL (#44444)
上级
ea4b2c5e
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
292 addition
and
93 deletion
+292
-93
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+9
-0
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+40
-8
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+7
-1
paddle/fluid/operators/collective/partial_allgather_op.cu.cc
paddle/fluid/operators/collective/partial_allgather_op.cu.cc
+30
-15
paddle/fluid/operators/collective/partial_recv_op.cu.cc
paddle/fluid/operators/collective/partial_recv_op.cu.cc
+34
-26
paddle/fluid/operators/collective/partial_send_op.cu.cc
paddle/fluid/operators/collective/partial_send_op.cu.cc
+39
-23
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+69
-0
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
...ributed/fleet/meta_parallel/pp_utils/p2p_communication.py
+64
-20
未找到文件。
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
18c77325
...
...
@@ -137,6 +137,15 @@ class ProcessGroup {
"ProcessGroup%s does not support AllGather"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather_Partial
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
int
offset
,
int
length
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support AllGather_Partial"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
)
{
// NOLINT
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
18c77325
...
...
@@ -85,18 +85,19 @@ bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
return
true
;
}
void
ProcessGroupNCCL
::
CheckSplitSizes
(
std
::
vector
<
int64_t
>
&
split_sizes
,
void
ProcessGroupNCCL
::
CheckSplitSizes
(
std
::
vector
<
int64_t
>
*
split_sizes
,
std
::
vector
<
int64_t
>
tensor_shape
)
{
int64_t
len_size
=
split_sizes
.
size
();
int64_t
len_size
=
(
*
split_sizes
)
.
size
();
if
(
len_size
==
0
)
{
PADDLE_ENFORCE_EQ
(
tensor_shape
[
0
]
%
size_
==
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor's dim[0] must be divisible by group size "
"when split_sizes not given."
));
split_sizes
.
insert
(
split_sizes
.
end
(),
size_
,
static_cast
<
int64_t
>
(
tensor_shape
[
0
]
/
size_
));
(
*
split_sizes
)
.
insert
((
*
split_sizes
).
end
(),
size_
,
static_cast
<
int64_t
>
(
tensor_shape
[
0
]
/
size_
));
}
else
{
PADDLE_ENFORCE_EQ
(
len_size
==
size_
,
...
...
@@ -104,7 +105,7 @@ void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>& split_sizes,
platform
::
errors
::
InvalidArgument
(
"The length of split_sizes must be equal to group size."
));
auto
sum_size
=
std
::
accumulate
(
split_sizes
.
begin
(),
split_sizes
.
end
(),
static_cast
<
int64_t
>
(
0
));
(
*
split_sizes
).
begin
(),
(
*
split_sizes
)
.
end
(),
static_cast
<
int64_t
>
(
0
));
PADDLE_ENFORCE_EQ
(
sum_size
==
tensor_shape
[
0
],
true
,
...
...
@@ -626,6 +627,37 @@ void* GetPointerByOffset(void* raw_pointer,
return
nullptr
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllGather_Partial
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
int
offset
,
int
length
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All outputs should be in CudaPlace."
));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
platform
::
dynload
::
ncclAllGather
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
output
.
data
(),
length
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
comm
,
stream
);
},
CommType
::
ALLGATHER
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllToAll
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
{
...
...
@@ -695,8 +727,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
std
::
vector
<
int64_t
>
in_dims
=
phi
::
vectorize
(
input
.
dims
());
std
::
vector
<
int64_t
>
out_dims
=
phi
::
vectorize
(
output
.
dims
());
CheckSplitSizes
(
in_sizes
,
in_dims
);
CheckSplitSizes
(
out_sizes
,
out_dims
);
CheckSplitSizes
(
&
in_sizes
,
in_dims
);
CheckSplitSizes
(
&
out_sizes
,
out_dims
);
size_t
in_offset
=
0
,
out_offset
=
0
;
size_t
in_length
=
0
,
out_length
=
0
;
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
18c77325
...
...
@@ -125,6 +125,12 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather_Partial
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
int
offset
,
int
length
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
std
::
vector
<
phi
::
DenseTensor
>&
in
,
std
::
vector
<
phi
::
DenseTensor
>&
out
)
override
;
...
...
@@ -206,7 +212,7 @@ class ProcessGroupNCCL : public ProcessGroup {
void
CreateNCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
void
CheckSplitSizes
(
std
::
vector
<
int64_t
>
&
split_sizes
,
void
CheckSplitSizes
(
std
::
vector
<
int64_t
>
*
split_sizes
,
std
::
vector
<
int64_t
>
tensor_shape
);
};
...
...
paddle/fluid/operators/collective/partial_allgather_op.cu.cc
浏览文件 @
18c77325
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/collective/partial_allgather_op.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
...
...
@@ -61,24 +62,38 @@ class PartialAllGatherOpCUDAKernel : public framework::OpKernel<T> {
int64_t
send_numel
=
numel
/
nranks
;
int
offset
=
send_numel
*
rank
;
const
T
*
send_buff
=
in
->
data
<
T
>
()
+
offset
;
T
*
recv_buff
=
out
->
data
<
T
>
();
gpuStream_t
stream
=
nullptr
;
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
;
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
;
in_tensors
.
push_back
(
*
in
);
out_tensors
.
push_back
(
*
out
);
auto
task
=
pg
->
AllGather_Partial
(
in_tensors
,
out_tensors
,
offset
,
send_numel
);
task
->
Wait
();
}
else
{
stream
=
comm
->
stream
();
const
T
*
send_buff
=
in
->
data
<
T
>
()
+
offset
;
T
*
recv_buff
=
out
->
data
<
T
>
();
gpuStream_t
stream
=
nullptr
;
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
}
else
{
stream
=
comm
->
stream
();
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclAllGather
(
send_buff
,
recv_buff
,
send_numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
comm
->
comm
(),
stream
));
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclAllGather
(
send_buff
,
recv_buff
,
send_numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
comm
->
comm
(),
stream
));
#else
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"PaddlePaddle should compile with GPU."
));
...
...
paddle/fluid/operators/collective/partial_recv_op.cu.cc
浏览文件 @
18c77325
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/collective/partial_recv_op.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
...
...
@@ -65,37 +66,44 @@ class PartialRecvOpCUDAKernel : public framework::OpKernel<T> {
platform
::
errors
::
InvalidArgument
(
"The input numel (%d) must be divisible by num(%d)"
,
numel
,
num
));
gpuStream_t
stream
=
nullptr
;
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
}
else
{
stream
=
comm
->
stream
();
}
PADDLE_ENFORCE_LT
(
peer
,
comm
->
nranks
(),
platform
::
errors
::
InvalidArgument
(
"The value of peer (%d) you set must "
"be less than comm->nranks (%d)."
,
peer
,
comm
->
nranks
()));
out
->
mutable_data
<
T
>
(
out_dims
,
place
);
ncclDataType_t
dtype
=
platform
::
ToNCCLDataType
(
type
);
int
recv_numel
=
numel
/
num
;
int
offset
=
recv_numel
*
id
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
out
->
data
<
T
>
()
+
offset
,
recv_numel
,
dtype
,
peer
,
comm
->
comm
(),
stream
));
VLOG
(
3
)
<<
"rank "
<<
comm
->
rank
()
<<
" recv "
<<
recv_numel
<<
" from offset["
<<
offset
<<
"] from "
<<
peer
;
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
auto
task
=
pg
->
Recv_Partial
(
*
out
,
peer
,
offset
,
recv_numel
);
task
->
Wait
();
}
else
{
gpuStream_t
stream
=
nullptr
;
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
}
else
{
stream
=
comm
->
stream
();
}
PADDLE_ENFORCE_LT
(
peer
,
comm
->
nranks
(),
platform
::
errors
::
InvalidArgument
(
"The value of peer (%d) you set must "
"be less than comm->nranks (%d)."
,
peer
,
comm
->
nranks
()));
ncclDataType_t
dtype
=
platform
::
ToNCCLDataType
(
type
);
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
out
->
data
<
T
>
()
+
offset
,
recv_numel
,
dtype
,
peer
,
comm
->
comm
(),
stream
));
VLOG
(
3
)
<<
"rank "
<<
comm
->
rank
()
<<
" recv "
<<
recv_numel
<<
" from offset["
<<
offset
<<
"] from "
<<
peer
;
}
#else
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"PaddlePaddle should be compiled with NCCL and "
...
...
paddle/fluid/operators/collective/partial_send_op.cu.cc
浏览文件 @
18c77325
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/collective/partial_send_op.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
...
...
@@ -61,32 +62,47 @@ class PartialSendCUDAKernel : public framework::OpKernel<T> {
platform
::
errors
::
InvalidArgument
(
"The input numel (%d) must be divisible by num(%d)"
,
numel
,
num
));
gpuStream_t
stream
=
nullptr
;
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
}
else
{
stream
=
comm
->
stream
();
}
PADDLE_ENFORCE_LT
(
peer
,
comm
->
nranks
(),
platform
::
errors
::
InvalidArgument
(
"The value of peer (%d) you set must "
"be less than comm->nranks (%d)."
,
peer
,
comm
->
nranks
()));
ncclDataType_t
dtype
=
platform
::
ToNCCLDataType
(
framework
::
TransToProtoVarType
(
x
->
dtype
()));
int
send_numel
=
numel
/
num
;
int
offset
=
send_numel
*
id
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
x
->
data
<
T
>
()
+
offset
,
send_numel
,
dtype
,
peer
,
comm
->
comm
(),
stream
));
VLOG
(
3
)
<<
"rank "
<<
comm
->
rank
()
<<
" send "
<<
send_numel
<<
" from offset["
<<
offset
<<
"] to "
<<
peer
;
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
phi
::
DenseTensor
tmp
=
*
x
;
auto
task
=
pg
->
Send_Partial
(
tmp
,
peer
,
offset
,
send_numel
);
task
->
Wait
();
}
else
{
gpuStream_t
stream
=
nullptr
;
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
}
else
{
stream
=
comm
->
stream
();
}
PADDLE_ENFORCE_LT
(
peer
,
comm
->
nranks
(),
platform
::
errors
::
InvalidArgument
(
"The value of peer (%d) you set must "
"be less than comm->nranks (%d)."
,
peer
,
comm
->
nranks
()));
ncclDataType_t
dtype
=
platform
::
ToNCCLDataType
(
framework
::
TransToProtoVarType
(
x
->
dtype
()));
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
x
->
data
<
T
>
()
+
offset
,
send_numel
,
dtype
,
peer
,
comm
->
comm
(),
stream
));
VLOG
(
3
)
<<
"rank "
<<
comm
->
rank
()
<<
" send "
<<
send_numel
<<
" from offset["
<<
offset
<<
"] to "
<<
peer
;
}
#else
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"PaddlePaddle should be compiled with NCCL "
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
18c77325
...
...
@@ -172,6 +172,27 @@ void BindDistributed(py::module *m) {
py
::
arg
(
"dst"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"send_partial"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
dst_rank
,
int
nranks
,
int
rank_id
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
int
numel
=
(
*
dense
).
numel
();
int
send_numel
=
numel
/
nranks
;
int
offset
=
send_numel
*
rank_id
;
return
self
.
Send_Partial
(
*
dense
,
dst_rank
,
offset
,
send_numel
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"num"
),
py
::
arg
(
"id"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"recv"
,
[](
distributed
::
ProcessGroup
&
self
,
...
...
@@ -187,6 +208,27 @@ void BindDistributed(py::module *m) {
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"recv_partial"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
src_rank
,
int
nranks
,
int
rank_id
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
int
numel
=
(
*
dense
).
numel
();
int
recv_numel
=
numel
/
nranks
;
int
offset
=
recv_numel
*
rank_id
;
return
self
.
Recv_Partial
(
*
dense
,
src_rank
,
offset
,
recv_numel
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
py
::
arg
(
"num"
),
py
::
arg
(
"id"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_gather"
,
[](
distributed
::
ProcessGroup
&
self
,
...
...
@@ -206,6 +248,33 @@ void BindDistributed(py::module *m) {
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_gather_partial"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
int
nranks
,
int
rank_id
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
int
numel
=
(
*
in_dense
).
numel
();
int
send_numel
=
numel
/
nranks
;
int
offset
=
send_numel
*
rank_id
;
return
self
.
AllGather_Partial
(
in_tensors
,
out_tensors
,
offset
,
send_numel
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"num"
),
py
::
arg
(
"id"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"alltoall"
,
[](
distributed
::
ProcessGroup
&
self
,
...
...
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
浏览文件 @
18c77325
...
...
@@ -158,14 +158,26 @@ _send_recv_meta = SendRecvMeta()
def
_is_valid_send_recv_partial
(
tensor
,
mp_degree
):
tensor_numel
=
np
.
prod
(
tensor
.
shape
)
assert
tensor_numel
!=
0
,
"can't send/recv zero element"
return
mp_degree
>
1
and
tensor_numel
%
mp_degree
==
0
def
_partial_send_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
dst
,
nranks
,
rank_id
):
if
_in_legacy_dygraph
():
tensor_numel
=
np
.
prod
(
tensor
.
shape
)
assert
tensor_numel
!=
0
,
"can't send/recv zero element"
return
mp_degree
>
1
and
tensor_numel
%
mp_degree
==
0
return
_C_ops
.
partial_send
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
dst
,
'num'
,
nranks
,
'id'
,
rank_id
)
elif
in_dygraph_mode
():
# TODO(shenliang03) support mp+pp optimizer in future.
# (partial_send/partial_recv/partial_allgather_)
return
False
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
task
=
group
.
process_group
.
send_partial
(
tensor
,
dst
,
nranks
,
rank_id
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
def
send_partial
(
tensor
,
...
...
@@ -180,9 +192,8 @@ def send_partial(tensor,
ring_id
=
0
if
group
is
None
else
group
.
id
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
return
_C_ops
.
partial_send
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
dst
,
'num'
,
nranks
,
'id'
,
rank_id
)
return
_partial_send_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
dst
,
nranks
,
rank_id
)
else
:
return
paddle
.
distributed
.
send
(
tensor
.
detach
(),
dst
=
group
.
ranks
[
dst
],
...
...
@@ -190,6 +201,24 @@ def send_partial(tensor,
use_calc_stream
=
use_calc_stream
)
def
_partial_recv_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
src
,
nranks
,
rank_id
):
if
_in_legacy_dygraph
():
return
_C_ops
.
partial_recv
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
src
,
'num'
,
nranks
,
'id'
,
rank_id
,
'dtype'
,
tensor
.
dtype
,
'out_shape'
,
tensor
.
shape
)
elif
in_dygraph_mode
():
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
task
=
group
.
process_group
.
recv_partial
(
tensor
,
src
,
nranks
,
rank_id
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
def
recv_partial
(
tensor
,
src
=
0
,
nranks
=
1
,
...
...
@@ -202,15 +231,31 @@ def recv_partial(tensor,
ring_id
=
0
if
group
is
None
else
group
.
id
if
_is_valid_send_recv_partial
(
tensor
,
nranks
):
_C_ops
.
partial_recv
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'peer'
,
src
,
'num'
,
nranks
,
'id'
,
rank_id
,
'dtype'
,
tensor
.
dtype
,
'out_shape'
,
tensor
.
shape
)
return
_partial_recv_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
src
,
nranks
,
rank_id
)
else
:
paddle
.
distributed
.
recv
(
tensor
.
detach
(),
src
=
group
.
ranks
[
src
],
group
=
group
,
use_calc_stream
=
use_calc_stream
)
return
paddle
.
distributed
.
recv
(
tensor
.
detach
(),
src
=
group
.
ranks
[
src
],
group
=
group
,
use_calc_stream
=
use_calc_stream
)
def
_partial_allgather_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
nranks
,
rank_id
):
if
_in_legacy_dygraph
():
return
_C_ops
.
partial_allgather_
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'nranks'
,
nranks
,
'rank'
,
rank_id
)
elif
in_dygraph_mode
():
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
task
=
group
.
process_group
.
all_gather_partial
(
tensor
,
tensor
,
nranks
,
rank_id
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
def
allgather_partial
(
tensor
,
...
...
@@ -224,9 +269,8 @@ def allgather_partial(tensor,
return
ring_id
=
0
if
group
is
None
else
group
.
id
return
_C_ops
.
partial_allgather_
(
tensor
.
detach
(),
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'nranks'
,
nranks
,
'rank'
,
rank_id
)
return
_partial_allgather_op
(
tensor
,
group
,
use_calc_stream
,
ring_id
,
nranks
,
rank_id
)
def
_p2p_helper
(
tensor_send_next
,
tensor_send_prev
,
recv_prev
,
recv_next
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录