Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1e56ca8a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1e56ca8a
编写于
4月 13, 2022
作者:
L
lilong12
提交者:
GitHub
4月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use densetensor instead of Tensor for ProcessGroup (#41403)
上级
1cdd88f6
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
501 addition
and
554 deletion
+501
-554
paddle/fluid/distributed/collective/Common.cc
paddle/fluid/distributed/collective/Common.cc
+7
-11
paddle/fluid/distributed/collective/Common.h
paddle/fluid/distributed/collective/Common.h
+4
-4
paddle/fluid/distributed/collective/ProcessGroup.cc
paddle/fluid/distributed/collective/ProcessGroup.cc
+2
-1
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+17
-20
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
+98
-85
paddle/fluid/distributed/collective/ProcessGroupGloo.h
paddle/fluid/distributed/collective/ProcessGroupGloo.h
+16
-10
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
+35
-82
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
+10
-13
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
+77
-148
paddle/fluid/distributed/collective/ProcessGroupHeter.h
paddle/fluid/distributed/collective/ProcessGroupHeter.h
+5
-6
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+107
-131
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+27
-21
paddle/fluid/distributed/collective/reducer.cc
paddle/fluid/distributed/collective/reducer.cc
+35
-7
paddle/fluid/operators/collective/c_allgather_op.cu.cc
paddle/fluid/operators/collective/c_allgather_op.cu.cc
+14
-0
paddle/fluid/operators/collective/c_broadcast_op.cu.cc
paddle/fluid/operators/collective/c_broadcast_op.cu.cc
+6
-1
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+36
-14
python/paddle/fluid/tests/unittests/init_process_group.py
python/paddle/fluid/tests/unittests/init_process_group.py
+5
-0
未找到文件。
paddle/fluid/distributed/collective/Common.cc
浏览文件 @
1e56ca8a
...
...
@@ -17,11 +17,11 @@
namespace
paddle
{
namespace
distributed
{
std
::
vector
<
Place
>
GetPlaceList
(
const
std
::
vector
<
Tensor
>&
tensors
)
{
std
::
vector
<
Place
>
GetPlaceList
(
const
std
::
vector
<
phi
::
Dense
Tensor
>&
tensors
)
{
std
::
vector
<
Place
>
places
;
places
.
reserve
(
tensors
.
size
());
for
(
auto
&
tensor
:
tensors
)
{
places
.
push_back
(
tensor
.
inner_
place
());
places
.
push_back
(
tensor
.
place
());
}
return
places
;
}
...
...
@@ -40,15 +40,11 @@ std::string GetKeyFromPlaces(const std::vector<Place>& places) {
return
placeList
;
}
static
bool
CheckTensorsInPlace
(
const
std
::
vector
<
Tensor
>&
tensors
,
phi
::
AllocationType
type
)
{
return
std
::
all_of
(
tensors
.
cbegin
(),
tensors
.
cend
(),
[
&
](
const
Tensor
&
t
)
{
return
t
.
place
().
GetType
()
==
type
;
});
}
bool
CheckTensorsInCudaPlace
(
const
std
::
vector
<
Tensor
>&
tensors
)
{
return
CheckTensorsInPlace
(
tensors
,
phi
::
AllocationType
::
GPU
);
bool
CheckTensorsInCudaPlace
(
const
std
::
vector
<
phi
::
DenseTensor
>&
tensors
)
{
return
std
::
all_of
(
tensors
.
cbegin
(),
tensors
.
cend
(),
[
&
](
const
phi
::
DenseTensor
&
t
)
{
return
platform
::
is_gpu_place
(
t
.
place
());
});
}
}
// namespace distributed
...
...
paddle/fluid/distributed/collective/Common.h
浏览文件 @
1e56ca8a
...
...
@@ -16,18 +16,18 @@
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
paddle
{
namespace
distributed
{
using
Tensor
=
paddle
::
experimental
::
Tensor
;
using
Place
=
paddle
::
platform
::
Place
;
// Get the list of devices from list of tensors
std
::
vector
<
Place
>
GetPlaceList
(
const
std
::
vector
<
Tensor
>&
tensors
);
std
::
vector
<
Place
>
GetPlaceList
(
const
std
::
vector
<
phi
::
Dense
Tensor
>&
tensors
);
// Get the deviceList String from the list of devices
std
::
string
GetKeyFromPlaces
(
const
std
::
vector
<
Place
>&
places
);
bool
CheckTensorsInCudaPlace
(
const
std
::
vector
<
Tensor
>&
tensors
);
bool
CheckTensorsInCudaPlace
(
const
std
::
vector
<
phi
::
Dense
Tensor
>&
tensors
);
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroup.cc
浏览文件 @
1e56ca8a
...
...
@@ -17,7 +17,8 @@
namespace
paddle
{
namespace
distributed
{
ProcessGroup
::
Task
::
Task
(
int
rank
,
const
std
::
vector
<
Tensor
>&
inputTensors
,
ProcessGroup
::
Task
::
Task
(
int
rank
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputTensors
,
CommType
comm_type
)
:
rank_
(
rank
),
comm_type_
(
comm_type
)
{}
...
...
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
1e56ca8a
...
...
@@ -54,7 +54,7 @@ class ProcessGroup {
public:
class
Task
{
public:
Task
(
int
rank
,
const
std
::
vector
<
Tensor
>&
inputTensors
,
Task
(
int
rank
,
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputTensors
,
CommType
opType
=
CommType
::
UNKNOWN
);
virtual
~
Task
();
...
...
@@ -79,25 +79,21 @@ class ProcessGroup {
virtual
const
std
::
string
GetBackendName
()
const
=
0
;
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
Tensor
>&
/* tensors */
,
std
::
vector
<
phi
::
DenseTensor
>&
/* input tensors */
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
/* output tensors */
,
// NOLINT
const
AllreduceOptions
&
=
AllreduceOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support allreduce"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
Tensor
>&
/* tensors */
,
std
::
vector
<
phi
::
DenseTensor
>&
/* input tensors */
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
/* output tensors */
,
// NOLINT
const
BroadcastOptions
&
=
BroadcastOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support broadcast"
,
GetBackendName
()));
}
virtual
void
Broadcast
(
const
phi
::
DenseTensor
*
in
,
phi
::
DenseTensor
*
out
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"ProcessGroup%s does not support broadcast for static mode runtime"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
...
...
@@ -105,42 +101,43 @@ class ProcessGroup {
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
Tensor
>&
tensors
/* tensors */
,
int
dst_rank
)
{
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
int
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support send"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
Tensor
>&
tensors
/* tensors */
,
int
src_rank
)
{
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
int
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support receive"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
/* tensors */
,
// NOLINT
std
::
vector
<
Tensor
>&
out_tensors
/* tensors */
)
{
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support AllGather"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
std
::
vector
<
Tensor
>&
in
/* tensors */
,
// NOLINT
std
::
vector
<
Tensor
>&
out
/* tensors */
)
{
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support AllToAll"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
Tensor
>&
tensors
/* tensors */
,
// NOLINT
const
ReduceOptions
&
opts
)
{
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
const
ReduceOptions
&
opts
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support Reduce"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
/* tensors */
,
// NOLINT
std
::
vector
<
Tensor
>&
out_tensors
/* tensors */
,
// NOLINT
const
ScatterOptions
&
)
{
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
const
ScatterOptions
&
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support Scatter"
,
GetBackendName
()));
}
...
...
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
浏览文件 @
1e56ca8a
...
...
@@ -27,6 +27,7 @@
#include <gloo/broadcast.h>
#include <gloo/reduce.h>
#include <gloo/scatter.h>
#include "paddle/fluid/distributed/collective/Common.h"
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -105,107 +106,104 @@ reduce_func get_function(const ReduceOp& r) {
exit
(
-
1
);
}
bool
CheckTensorsInCPUPlace
(
const
std
::
vector
<
Tensor
>&
tensors
)
{
return
std
::
all_of
(
tensors
.
cbegin
(),
tensors
.
cend
(),
[
&
](
const
Tensor
&
t
)
{
return
t
.
place
()
==
PlaceType
::
kCPU
;
});
}
template
<
typename
T
>
T
*
get_data
(
const
Tensor
&
tensor
)
{
auto
raw_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
return
static_cast
<
T
*>
(
raw_tensor
->
data
());
T
*
get_data
(
phi
::
DenseTensor
&
tensor
)
{
// NOLINT
return
reinterpret_cast
<
T
*>
(
tensor
.
data
());
}
template
<
typename
T
>
std
::
vector
<
T
*>
get_multi_data
(
const
std
::
vector
<
Tensor
>&
tensors
)
{
std
::
vector
<
T
*>
ret
(
tensors
.
size
());
std
::
vector
<
T
*>
get_multi_data
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
)
{
// NOLINT
std
::
vector
<
T
*>
ret
;
ret
.
reserve
(
tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
ret
[
i
]
=
get_data
<
T
>
(
tensors
[
i
]
);
ret
.
push_back
(
get_data
<
T
>
(
tensors
[
i
])
);
}
return
ret
;
}
template
<
typename
T
,
typename
P
>
void
set_output
(
P
&
opts
,
const
Tensor
&
tensor
)
{
// NOLINT
void
set_output
(
P
&
opts
,
phi
::
Dense
Tensor
&
tensor
)
{
// NOLINT
opts
.
setOutput
(
get_data
<
T
>
(
tensor
),
tensor
.
numel
());
}
template
<
typename
T
,
typename
P
>
void
set_input
(
P
&
opts
,
const
Tensor
&
tensor
)
{
// NOLINT
void
set_input
(
P
&
opts
,
phi
::
Dense
Tensor
&
tensor
)
{
// NOLINT
opts
.
setInput
(
get_data
<
T
>
(
tensor
),
tensor
.
numel
());
}
template
<
typename
T
,
typename
P
>
void
set_outputs
(
P
&
opts
,
const
std
::
vector
<
Tensor
>&
tensors
)
{
// NOLINT
void
set_outputs
(
P
&
opts
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
tensors
)
{
// NOLINT
opts
.
setOutputs
(
get_multi_data
<
T
>
(
tensors
),
tensors
[
0
].
numel
());
}
template
<
typename
T
,
typename
P
>
void
set_inputs
(
P
&
opts
,
const
std
::
vector
<
Tensor
>&
tensors
)
{
// NOLINT
void
set_inputs
(
P
&
opts
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
tensors
)
{
// NOLINT
opts
.
setInputs
(
get_multi_data
<
T
>
(
tensors
),
tensors
[
0
].
numel
());
}
template
<
typename
T
,
typename
P
>
void
set_inputs_for_scatter
(
P
&
opts
,
// NOLINT
const
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
void
set_inputs_for_scatter
(
P
&
opts
,
// NOLINT
phi
::
DenseTensor
&
tensor
,
// NOLINT
int
nranks
)
{
std
::
vector
<
T
*>
ret
(
nranks
);
auto
raw_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
0
].
impl
());
T
*
raw_pointer
=
reinterpret_cast
<
T
*>
(
raw_tensor
->
data
());
std
::
vector
<
T
*>
ret
;
ret
.
reserve
(
nranks
);
T
*
raw_pointer
=
reinterpret_cast
<
T
*>
(
tensor
.
data
());
size_t
offset
=
0
;
for
(
int
i
=
0
;
i
<
nranks
;
i
++
)
{
ret
[
i
]
=
raw_pointer
+
offset
;
offset
+=
tensor
s
[
0
]
.
numel
()
/
nranks
;
ret
.
push_back
(
raw_pointer
+
offset
)
;
offset
+=
tensor
.
numel
()
/
nranks
;
}
opts
.
setInputs
(
ret
,
tensor
s
[
0
]
.
numel
()
/
nranks
);
opts
.
setInputs
(
ret
,
tensor
.
numel
()
/
nranks
);
}
ProcessGroupGloo
::
GlooTask
::
GlooTask
(
int
rank
,
const
std
::
vector
<
Tensor
>&
inputs
,
CommType
comm_type
)
:
ProcessGroup
::
Task
(
rank
,
inputs
,
comm_type
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCPUPlace
(
inputs
),
true
,
platform
::
errors
::
Fatal
(
"Only CPU place is supported for ProcessGroupGloo."
));
}
ProcessGroupGloo
::
GlooTask
::
GlooTask
(
int
rank
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
CommType
comm_type
)
:
ProcessGroup
::
Task
(
rank
,
inputs
,
comm_type
)
{}
ProcessGroupGloo
::
ProcessGroupGloo
(
const
std
::
shared_ptr
<
paddle
::
distributed
::
Store
>&
store
,
int
rank
,
int
world_size
,
int
gid
,
const
std
::
shared_ptr
<
GlooOptions
>
options
)
const
std
::
shared_ptr
<
distributed
::
Store
>&
store
,
int
rank
,
int
world_size
,
int
gid
,
const
std
::
shared_ptr
<
GlooOptions
>
options
)
:
ProcessGroup
(
rank
,
world_size
,
gid
),
_tag
(
0
),
_store
(
new
GlooStore
(
store
))
{
_context
=
std
::
make_shared
<
gloo
::
rendezvous
::
Context
>
(
rank
,
world_size
);
auto
prefix_store
=
::
gloo
::
rendezvous
::
PrefixStore
(
std
::
to_string
(
0
),
*
_store
);
::
gloo
::
rendezvous
::
PrefixStore
(
std
::
to_string
(
gid
),
*
_store
);
_context
->
connectFullMesh
(
prefix_store
,
options
->
device
);
}
class
BroadcastGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
BroadcastGlooTask
(
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
const
std
::
vector
<
Tensor
>&
inputs
,
int
rank
,
int
root
,
uint32_t
tag
)
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
int
rank
,
int
root
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
BROADCAST
),
_context
(
context
),
_root
(
root
),
_inputs
(
inputs
),
_outputs
(
outputs
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_broadcast
(
_inputs
[
0
]);
}
void
Run
()
override
{
_do_broadcast
(
_inputs
[
0
]
,
_outputs
[
0
]
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
const
int
_root
;
std
::
vector
<
Tensor
>
_inputs
{};
std
::
vector
<
phi
::
DenseTensor
>
_inputs
{};
std
::
vector
<
phi
::
DenseTensor
>
_outputs
{};
const
uint32_t
_tag
;
void
_do_broadcast
(
const
Tensor
&
tensor
)
{
void
_do_broadcast
(
phi
::
DenseTensor
&
in
,
phi
::
DenseTensor
&
out
)
{
// NOLINT
gloo
::
BroadcastOptions
opts
(
_context
);
const
auto
&
dtype
=
tensor
.
type
();
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
tensor
);
const
auto
&
dtype
=
in
.
dtype
();
if
(
rank_
==
_root
)
{
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
in
);
}
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
out
);
opts
.
setRoot
(
_root
);
opts
.
setTag
(
_tag
);
gloo
::
broadcast
(
opts
);
...
...
@@ -213,12 +211,14 @@ class BroadcastGlooTask : public ProcessGroupGloo::GlooTask {
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Broadcast
(
std
::
vector
<
Tensor
>&
inputs
,
const
BroadcastOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
BroadcastOptions
&
opts
)
{
auto
root
=
opts
.
source_rank
;
std
::
unique_ptr
<
BroadcastGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_unique
<
BroadcastGlooTask
>
(
context
,
inputs
,
rank_
,
root
,
tag
);
task
=
std
::
make_unique
<
BroadcastGlooTask
>
(
context
,
inputs
,
outputs
,
rank_
,
root
,
tag
);
task
->
Run
();
return
task
;
}
...
...
@@ -226,19 +226,22 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Broadcast(
class
AllreduceGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
AllreduceGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
inputs
,
ReduceOp
reduce_op
,
// NOLINT
uint32_t
tag
)
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
ReduceOp
reduce_op
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
ALLREDUCE
),
_context
(
context
),
_inputs
(
inputs
),
_outputs
(
outputs
),
_reduce_op
(
reduce_op
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_allreduce
(
_inputs
);
}
void
Run
()
override
{
_do_allreduce
(
_inputs
,
_outputs
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
phi
::
DenseTensor
>
_inputs
;
std
::
vector
<
phi
::
DenseTensor
>
_outputs
;
const
ReduceOp
_reduce_op
;
uint32_t
_tag
;
...
...
@@ -255,11 +258,12 @@ class AllreduceGlooTask : public ProcessGroupGloo::GlooTask {
fn
=
get_function
<
T
>
(
op
);
}
void
_do_allreduce
(
std
::
vector
<
Tensor
>&
tensors
)
{
// NOLINT
const
auto
&
dtype
=
tensors
[
0
].
type
();
void
_do_allreduce
(
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outs
)
{
// NOLINT
const
auto
&
dtype
=
ins
[
0
].
dtype
();
gloo
::
AllreduceOptions
opts
(
_context
);
GENERATE_FUNC
(
dtype
,
set_inputs
,
opts
,
tensor
s
);
GENERATE_FUNC
(
dtype
,
set_outputs
,
opts
,
tensor
s
);
GENERATE_FUNC
(
dtype
,
set_inputs
,
opts
,
in
s
);
GENERATE_FUNC
(
dtype
,
set_outputs
,
opts
,
out
s
);
opts
.
setReduceFunction
(
_get_function
(
dtype
,
_reduce_op
));
opts
.
setTag
(
_tag
);
gloo
::
allreduce
(
opts
);
...
...
@@ -267,11 +271,12 @@ class AllreduceGlooTask : public ProcessGroupGloo::GlooTask {
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
AllReduce
(
std
::
vector
<
Tensor
>&
inputs
,
const
AllreduceOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
AllreduceOptions
&
opts
)
{
auto
tag
=
next_tag
();
std
::
shared_ptr
<
GlooTask
>
task
;
auto
context
=
get_context
();
task
=
std
::
make_shared
<
AllreduceGlooTask
>
(
rank_
,
context
,
inputs
,
task
=
std
::
make_shared
<
AllreduceGlooTask
>
(
rank_
,
context
,
inputs
,
outputs
,
opts
.
reduce_op
,
tag
);
task
->
Run
();
return
task
;
...
...
@@ -280,7 +285,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllReduce(
class
BarrierGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
BarrierGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
std
::
vector
<
Tensor
>
{},
:
ProcessGroupGloo
::
GlooTask
(
rank
,
std
::
vector
<
phi
::
Dense
Tensor
>
{},
CommType
::
BARRIER
),
_context
(
context
)
{}
...
...
@@ -307,8 +312,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Barrier(
class
AllgatherGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
AllgatherGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
,
// NOLINT
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
ALLGATHER
),
_context
(
context
),
...
...
@@ -320,13 +325,13 @@ class AllgatherGlooTask : public ProcessGroupGloo::GlooTask {
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
Tensor
>
_outputs
;
std
::
vector
<
phi
::
Dense
Tensor
>
_inputs
;
std
::
vector
<
phi
::
Dense
Tensor
>
_outputs
;
uint32_t
_tag
;
void
_do_allgather
(
std
::
vector
<
Tensor
>&
in
,
// NOLINT
std
::
vector
<
Tensor
>&
out
)
{
// NOLINT
const
auto
&
dtype
=
in
[
0
].
type
();
void
_do_allgather
(
std
::
vector
<
phi
::
Dense
Tensor
>&
in
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
out
)
{
// NOLINT
const
auto
&
dtype
=
in
[
0
].
d
type
();
gloo
::
AllgatherOptions
opts
(
_context
);
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
in
[
0
]);
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
out
[
0
]);
...
...
@@ -336,7 +341,8 @@ class AllgatherGlooTask : public ProcessGroupGloo::GlooTask {
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
{
std
::
shared_ptr
<
AllgatherGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
...
...
@@ -349,20 +355,23 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllGather(
class
ReduceGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
ReduceGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
in
,
ReduceOp
reduce_op
,
// NOLINT
int
dst
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
in
,
CommType
::
REDUCE
),
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
ReduceOp
reduce_op
,
int
dst
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
REDUCE
),
_context
(
context
),
_inputs
(
in
),
_inputs
(
inputs
),
_outputs
(
outputs
),
_reduce_op
(
reduce_op
),
_dst
(
dst
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_reduce
(
_inputs
,
_dst
);
}
void
Run
()
override
{
_do_reduce
(
_inputs
,
_
outputs
,
_
dst
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
phi
::
DenseTensor
>
_inputs
;
std
::
vector
<
phi
::
DenseTensor
>
_outputs
;
const
ReduceOp
_reduce_op
;
int
_dst
;
uint32_t
_tag
;
...
...
@@ -380,11 +389,13 @@ class ReduceGlooTask : public ProcessGroupGloo::GlooTask {
fn
=
get_function
<
T
>
(
op
);
}
void
_do_reduce
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst
)
{
// NOLINT
const
auto
&
dtype
=
tensors
[
0
].
type
();
void
_do_reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
int
dst
)
{
const
auto
&
dtype
=
inputs
[
0
].
dtype
();
gloo
::
ReduceOptions
opts
(
_context
);
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
tensor
s
[
0
]);
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
tensor
s
[
0
]);
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
input
s
[
0
]);
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
output
s
[
0
]);
opts
.
setReduceFunction
(
_get_function
(
dtype
,
_reduce_op
));
opts
.
setTag
(
_tag
);
opts
.
setRoot
(
dst
);
...
...
@@ -393,11 +404,12 @@ class ReduceGlooTask : public ProcessGroupGloo::GlooTask {
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
ReduceOptions
&
opts
)
{
std
::
shared_ptr
<
ReduceGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_shared
<
ReduceGlooTask
>
(
rank_
,
context
,
tensor
s
,
task
=
std
::
make_shared
<
ReduceGlooTask
>
(
rank_
,
context
,
inputs
,
output
s
,
opts
.
reduce_op
,
opts
.
root_rank
,
tag
);
task
->
Run
();
return
task
;
...
...
@@ -406,8 +418,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Reduce(
class
ScatterGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
ScatterGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
,
// NOLINT
int
src
,
int
size
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
SCATTER
),
_context
(
context
),
...
...
@@ -421,18 +433,19 @@ class ScatterGlooTask : public ProcessGroupGloo::GlooTask {
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
Tensor
>
_outputs
;
std
::
vector
<
phi
::
Dense
Tensor
>
_inputs
;
std
::
vector
<
phi
::
Dense
Tensor
>
_outputs
;
int
_src
;
int
_size
;
uint32_t
_tag
;
void
_do_scatter
(
std
::
vector
<
Tensor
>&
in
,
std
::
vector
<
Tensor
>&
out
,
// NOLINT
void
_do_scatter
(
std
::
vector
<
phi
::
DenseTensor
>&
in
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out
,
// NOLINT
int
src
)
{
const
auto
&
dtype
=
in
[
0
].
type
();
const
auto
&
dtype
=
in
[
0
].
d
type
();
gloo
::
ScatterOptions
opts
(
_context
);
if
(
rank_
==
src
)
{
GENERATE_FUNC
(
dtype
,
set_inputs_for_scatter
,
opts
,
in
,
_size
);
GENERATE_FUNC
(
dtype
,
set_inputs_for_scatter
,
opts
,
in
[
0
]
,
_size
);
}
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
out
[
0
]);
opts
.
setRoot
(
src
);
...
...
@@ -442,8 +455,8 @@ class ScatterGlooTask : public ProcessGroupGloo::GlooTask {
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out
_tensors
,
const
ScatterOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in
_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ScatterOptions
&
opts
)
{
std
::
shared_ptr
<
ScatterGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
...
...
paddle/fluid/distributed/collective/ProcessGroupGloo.h
浏览文件 @
1e56ca8a
...
...
@@ -36,7 +36,8 @@ class ProcessGroupGloo : public ProcessGroup {
class
GlooTask
:
public
ProcessGroup
::
Task
,
public
std
::
enable_shared_from_this
<
GlooTask
>
{
public:
explicit
GlooTask
(
int
rank
,
const
std
::
vector
<
Tensor
>&
input_tensors
,
explicit
GlooTask
(
int
rank
,
const
std
::
vector
<
phi
::
DenseTensor
>&
input_tensors
,
CommType
comm_type
);
~
GlooTask
()
=
default
;
...
...
@@ -106,26 +107,31 @@ class ProcessGroupGloo : public ProcessGroup {
~
ProcessGroupGloo
()
=
default
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
Tensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
Tensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
AllreduceOptions
&
opts
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
override
;
std
::
vector
<
phi
::
Dense
Tensor
>&
in_tensors
,
std
::
vector
<
phi
::
Dense
Tensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
,
const
ScatterOptions
&
)
override
;
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ScatterOptions
&
)
override
;
std
::
shared_ptr
<::
gloo
::
Context
>
get_context
()
{
return
_context
;
}
uint64_t
next_tag
()
{
return
_tag
++
;
}
...
...
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
浏览文件 @
1e56ca8a
...
...
@@ -44,14 +44,14 @@ void SyncDefaultStream(
std
::
shared_ptr
<
ProcessGroupHCCL
::
HCCLTask
>
ProcessGroupHCCL
::
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
Tensor
>&
inputs
)
{
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
)
{
return
std
::
make_shared
<
ProcessGroupHCCL
::
HCCLTask
>
(
places
,
rank
,
comm_type
,
inputs
);
}
ProcessGroupHCCL
::
HCCLTask
::
HCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
)
ProcessGroupHCCL
::
HCCLTask
::
HCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
)
:
Task
(
rank
,
inputs
,
CommType
),
places_
(
places
)
{
control_events_
.
resize
(
places
.
size
());
hcclComms_
.
resize
(
places
.
size
());
...
...
@@ -60,8 +60,8 @@ ProcessGroupHCCL::HCCLTask::HCCLTask(const std::vector<Place>& places, int rank,
ProcessGroupHCCL
::
HCCLTask
::~
HCCLTask
()
{}
void
ProcessGroupHCCL
::
HCCLTask
::
SetOutputs
(
std
::
vector
<
Tensor
>&
outputs
)
{
// NOLINT
outputs_
=
std
::
make_shared
<
std
::
vector
<
Tensor
>>
(
outputs
);
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
)
{
// NOLINT
outputs_
=
std
::
make_shared
<
std
::
vector
<
phi
::
Dense
Tensor
>>
(
outputs
);
}
void
ProcessGroupHCCL
::
HCCLTask
::
SynchronizeStreams
()
{
...
...
@@ -166,8 +166,8 @@ void ProcessGroupHCCL::CreateHCCLManagerCache(
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
Collective
(
std
::
vector
<
Tensor
>&
inputs
,
std
::
vector
<
Tensor
>&
outputs
,
Fn
fn
,
CommType
op_type
)
{
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
Fn
fn
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
inputs
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
...
...
@@ -208,91 +208,44 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupHCCL::Collective(
return
task
;
}
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
Fn
fn
,
int
dst_rank
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
tensors
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
places_to_hcclcomm_
.
find
(
key
)
==
places_to_hcclcomm_
.
end
())
{
CreateHCCLManagerCache
(
key
,
places
);
}
}
auto
&
hccl_comms
=
places_to_hcclcomm_
[
key
];
SyncDefaultStream
(
places
,
places_to_events_
[
key
],
places_to_ctx_
[
key
]);
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
tensors
);
// construct uninitialize guard for device
// if (FLAGS_use_stream_safe_npu_allocator) {
// for (size_t i = 0; i < tensors.size(); ++i) {
// platform::NPUDeviceGuard guard(places[i].GetDeviceId());
// auto dense_tensor =
// std::dynamic_pointer_cast<phi::DenseTensor>(tensors[i].impl());
// memory::RecordStream(dense_tensor->Holder(),
// places_to_ctx_[key][i]->stream());
// }
// }
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
const
auto
&
hccl_stream
=
places_to_ctx_
[
key
][
i
]
->
stream
();
fn
(
tensors
[
i
],
hccl_comms
[
i
]
->
GetHcclComm
(),
hccl_stream
,
dst_rank
);
}
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
task
->
control_events_
[
i
].
Record
(
*
places_to_ctx_
[
key
][
i
]);
}
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
opts
)
{
// PADDLE_ENFORCE_EQ(
// CheckTensorsInNPUPlace(tensors), true,
// platform::errors::InvalidArgument("All inputs should be in
// NPUPlace."));
return
Collective
(
tensors
,
tensors
,
[
&
](
const
Tensor
&
input
,
Tensor
&
output
,
HcclComm
comm
,
const
aclrtStream
&
stream
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
HcclAllReduce
(
input_tensor
->
data
(),
output_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToHCCLDataType
(
input
.
type
()),
ToHCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
);
},
CommType
::
ALLREDUCE
);
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
const
AllreduceOptions
&
opts
)
{
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
HcclComm
comm
,
const
aclrtStream
&
stream
)
{
return
platform
::
dynload
::
HcclAllReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToHCCLDataType
(
input
.
dtype
()),
ToHCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
);
},
CommType
::
ALLREDUCE
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
const
BroadcastOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
const
BroadcastOptions
&
opts
)
{
// PADDLE_ENFORCE_EQ(
// CheckTensorsInNPUPlace(tensors), true,
// platform::errors::InvalidArgument("All inputs should be in
// CudaPlace."));
return
Collective
(
tensors
,
tensors
,
[
&
](
Tensor
&
input
,
Tensor
&
output
,
HcclComm
comm
,
in_tensors
,
out_
tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
Dense
Tensor
&
output
,
HcclComm
comm
,
const
aclrtStream
&
stream
)
{
const
auto
root
=
opts
.
source_rank
*
tensors
.
size
()
+
opts
.
source_root
;
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
HcclBroadcast
(
input_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToHCCLDataType
(
input
.
type
()),
root
,
comm
,
stream
);
int
root
=
opts
.
source_rank
*
in_tensors
.
size
()
+
opts
.
source_root
;
if
(
rank_
==
root
)
{
return
platform
::
dynload
::
HcclBroadcast
(
input
.
data
(),
input
.
numel
(),
platform
::
ToHCCLDataType
(
input
.
dtype
()),
root
,
comm
,
stream
);
}
else
{
return
platform
::
dynload
::
HcclBroadcast
(
output
.
data
(),
output
.
numel
(),
platform
::
ToHCCLDataType
(
output
.
dtype
()),
root
,
comm
,
stream
);
}
},
CommType
::
BROADCAST
);
}
...
...
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
浏览文件 @
1e56ca8a
...
...
@@ -46,7 +46,7 @@ class ProcessGroupHCCL : public ProcessGroup {
public
std
::
enable_shared_from_this
<
HCCLTask
>
{
public:
HCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
);
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
);
bool
IsCompleted
();
...
...
@@ -56,7 +56,7 @@ class ProcessGroupHCCL : public ProcessGroup {
void
Synchronize
();
void
SetOutputs
(
std
::
vector
<
Tensor
>&
outputs
);
// NOLINT
void
SetOutputs
(
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
);
// NOLINT
virtual
~
HCCLTask
();
...
...
@@ -65,7 +65,7 @@ class ProcessGroupHCCL : public ProcessGroup {
protected:
std
::
vector
<
Place
>
places_
;
std
::
vector
<
std
::
shared_ptr
<
HCCLCommManager
>>
hcclComms_
;
std
::
shared_ptr
<
std
::
vector
<
Tensor
>>
outputs_
;
std
::
shared_ptr
<
std
::
vector
<
phi
::
Dense
Tensor
>>
outputs_
;
private:
};
...
...
@@ -78,17 +78,19 @@ class ProcessGroupHCCL : public ProcessGroup {
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
AllreduceOptions
&
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupHCCL
::
HCCLTask
>
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
opType
,
const
std
::
vector
<
Tensor
>&
inputs
);
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
);
std
::
shared_ptr
<
Store
>
store_
;
std
::
shared_ptr
<
HCCLCommManager
>
hccl_comm_
;
...
...
@@ -113,15 +115,10 @@ class ProcessGroupHCCL : public ProcessGroup {
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Collective
(
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
Fn
fn
,
int
dst_rank
,
CommType
op_type
);
void
CreateHCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
};
...
...
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
浏览文件 @
1e56ca8a
...
...
@@ -26,13 +26,13 @@ namespace distributed {
using
Place
=
paddle
::
platform
::
Place
;
std
::
shared_ptr
<
ProcessGroupHeter
::
HeterTask
>
ProcessGroupHeter
::
CreateTask
(
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
Tensor
>&
inputs
)
{
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
)
{
return
std
::
make_shared
<
ProcessGroupHeter
::
HeterTask
>
(
rank
,
comm_type
,
inputs
);
}
ProcessGroupHeter
::
HeterTask
::
HeterTask
(
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
)
ProcessGroupHeter
::
HeterTask
::
HeterTask
(
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
)
:
Task
(
rank
,
inputs
,
CommType
)
{}
ProcessGroupHeter
::
HeterTask
::~
HeterTask
()
{}
...
...
@@ -86,248 +86,177 @@ static void _do_add(T* dst, T* src, size_t size) {
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
AllreduceOptions
&
opts
)
{
#if defined(PADDLE_WITH_NCCL)
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
tensors
),
true
,
CheckTensorsInCudaPlace
(
in_
tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All outputs should be in CudaPlace."
));
#endif
// Step1: do allreduce in inner cluster
auto
task
=
inner_pg_
->
AllReduce
(
tensors
,
opts
);
auto
task
=
inner_pg_
->
AllReduce
(
in_tensors
,
in_
tensors
,
opts
);
task
->
Wait
();
// Step2: copy tensors to CPU
if
(
local_rank_
==
0
)
{
std
::
vector
<
Tensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
auto
dense_gpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
dense_gpu_tensor
->
dtype
(),
dense_gpu_tensor
->
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor
->
ResizeAndAllocate
(
dense_gpu_tensor
->
dims
());
cpu_tensors
[
i
]
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor
);
framework
::
TensorCopySync
(
*
dense_gpu_tensor
,
platform
::
CPUPlace
(),
dense_cpu_tensor
.
get
());
std
::
vector
<
phi
::
DenseTensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
in_tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
in_tensors
[
i
];
auto
cpu_tensor
=
cpu_tensors
[
i
];
cpu_tensor
.
Resize
(
gpu_tensor
.
dims
());
framework
::
TensorCopySync
(
gpu_tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
}
// Step3: do inter cluster allreduce
if
(
with_switch_
)
{
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
0
].
impl
());
auto
dense_cpu_tensor
=
cpu_tensors
[
0
];
std
::
vector
<
int
>
send_size
;
send_size
.
push_back
(
dense_cpu_tensor
->
numel
());
send_size
.
push_back
(
dense_cpu_tensor
.
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
dense_cpu_tensor
->
name
()},
send_size
,
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
gid_
,
{
dense_cpu_tensor
.
name
()},
send_size
,
dense_cpu_tensor
.
data
(),
dense_cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
dense_cpu_tensor
->
dtype
(),
dense_cpu_tensor
->
dims
());
dense_cpu_tensor
.
dtype
(),
dense_cpu_tensor
.
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor2
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor2
->
ResizeAndAllocate
(
dense_cpu_tensor
->
dims
());
Tensor
cpu_tensor_temp
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor2
);
dense_cpu_tensor2
->
ResizeAndAllocate
(
dense_cpu_tensor
.
dims
());
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
->
name
()},
dense_cpu_tensor2
->
data
(),
gid_
,
{
dense_cpu_tensor
.
name
()},
dense_cpu_tensor2
->
data
(),
dense_cpu_tensor2
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor2
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Recv from the switch module error."
));
switch
(
dense_cpu_tensor
->
dtype
())
{
switch
(
dense_cpu_tensor
.
dtype
())
{
case
DataType
::
FLOAT32
:
_do_add
<
float
>
(
reinterpret_cast
<
float
*>
(
dense_cpu_tensor
->
data
()),
_do_add
<
float
>
(
reinterpret_cast
<
float
*>
(
dense_cpu_tensor
.
data
()),
reinterpret_cast
<
float
*>
(
dense_cpu_tensor2
->
data
()),
dense_cpu_tensor
->
numel
());
dense_cpu_tensor
.
numel
());
break
;
case
DataType
::
FLOAT64
:
_do_add
<
double
>
(
reinterpret_cast
<
double
*>
(
dense_cpu_tensor
->
data
()),
reinterpret_cast
<
double
*>
(
dense_cpu_tensor
.
data
()),
reinterpret_cast
<
double
*>
(
dense_cpu_tensor2
->
data
()),
dense_cpu_tensor
->
numel
());
dense_cpu_tensor
.
numel
());
break
;
case
DataType
::
INT32
:
_do_add
<
int
>
(
reinterpret_cast
<
int
*>
(
dense_cpu_tensor
->
data
()),
_do_add
<
int
>
(
reinterpret_cast
<
int
*>
(
dense_cpu_tensor
.
data
()),
reinterpret_cast
<
int
*>
(
dense_cpu_tensor2
->
data
()),
dense_cpu_tensor
->
numel
());
dense_cpu_tensor
.
numel
());
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Unsupported data type (%s) to do add."
,
framework
::
DataType2String
(
dense_cpu_tensor
->
dtype
())));
framework
::
DataType2String
(
dense_cpu_tensor
.
dtype
())));
}
}
}
else
{
auto
gloo_task
=
inter_pg_
->
AllReduce
(
cpu_tensors
,
opts
);
auto
gloo_task
=
inter_pg_
->
AllReduce
(
cpu_tensors
,
cpu_tensors
,
opts
);
gloo_task
->
Wait
();
}
// Step4: copy cpu tensors to gpu
// copy cpu tensors to gpu
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
auto
dense_gpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
i
].
impl
());
framework
::
TensorCopySync
(
*
dense_cpu_tensor
,
dense_cpu_tensor
->
place
(),
dense_gpu_tensor
.
get
());
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
out_tensors
[
i
];
auto
cpu_tensor
=
cpu_tensors
[
i
];
framework
::
TensorCopySync
(
cpu_tensor
,
cpu_tensor
.
place
(),
&
gpu_tensor
);
}
}
// Step5: broadcast among inner cluster
auto
b_opts
=
BroadcastOptions
();
b_opts
.
source_r
oot
=
0
;
auto
broadcast_task
=
inner_pg_
->
Broadcast
(
tensors
,
b_opts
);
b_opts
.
source_r
ank
=
0
;
auto
broadcast_task
=
inner_pg_
->
Broadcast
(
out_tensors
,
out_
tensors
,
b_opts
);
broadcast_task
->
Wait
();
return
CreateTask
(
rank_
,
CommType
::
ALLREDUCE
,
tensors
);
return
CreateTask
(
rank_
,
CommType
::
ALLREDUCE
,
in_
tensors
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
const
BroadcastOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
BroadcastOptions
&
opts
)
{
#if defined(PADDLE_WITH_NCCL)
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
tensors
),
true
,
CheckTensorsInCudaPlace
(
in_
tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All outputs should be in CudaPlace."
));
#endif
// Step1: do broadcast in inner cluster
auto
b_opts
=
BroadcastOptions
();
b_opts
.
source_r
oot
=
0
;
inner_pg_
->
Broadcast
(
tensors
,
b_opts
);
b_opts
.
source_r
ank
=
0
;
inner_pg_
->
Broadcast
(
in_tensors
,
out_
tensors
,
b_opts
);
if
(
local_rank_
==
0
)
{
std
::
vector
<
Tensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
auto
dense_gpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
dense_gpu_tensor
->
dtype
(),
dense_gpu_tensor
->
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor
->
ResizeAndAllocate
(
dense_gpu_tensor
->
dims
());
cpu_tensors
[
i
]
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor
);
framework
::
TensorCopySync
(
*
dense_gpu_tensor
,
platform
::
CPUPlace
(),
dense_cpu_tensor
.
get
());
std
::
vector
<
phi
::
DenseTensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
in_tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
in_tensors
[
i
];
auto
cpu_tensor
=
cpu_tensors
[
i
];
cpu_tensor
.
Resize
(
gpu_tensor
.
dims
());
framework
::
TensorCopySync
(
gpu_tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
}
if
(
with_switch_
)
{
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
0
].
impl
());
auto
dense_cpu_tensor
=
cpu_tensors
[
0
];
if
(
gloo_rank_
==
0
)
{
std
::
vector
<
int
>
send_size
;
send_size
.
push_back
(
dense_cpu_tensor
->
numel
());
send_size
.
push_back
(
dense_cpu_tensor
.
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
dense_cpu_tensor
->
name
()},
send_size
,
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
gid_
,
{
dense_cpu_tensor
.
name
()},
send_size
,
dense_cpu_tensor
.
data
(),
dense_cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
}
else
{
int
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
->
name
()},
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
gid_
,
{
dense_cpu_tensor
.
name
()},
dense_cpu_tensor
.
data
(),
dense_cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Receive from the switch module error."
));
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
->
name
()},
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
gid_
,
{
dense_cpu_tensor
.
name
()},
dense_cpu_tensor
.
data
(),
dense_cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Receive from the switch module error."
));
}
}
}
else
{
auto
gloo_task
=
inter_pg_
->
Broadcast
(
cpu_tensors
,
opts
);
auto
gloo_task
=
inter_pg_
->
Broadcast
(
cpu_tensors
,
cpu_tensors
,
opts
);
gloo_task
->
Wait
();
}
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
auto
dense_gpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
i
].
impl
());
framework
::
TensorCopySync
(
*
dense_cpu_tensor
,
dense_cpu_tensor
->
place
(),
dense_gpu_tensor
.
get
());
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
out_tensors
[
i
];
auto
cpu_tensor
=
cpu_tensors
[
i
];
framework
::
TensorCopySync
(
cpu_tensor
,
gpu_tensor
.
place
(),
&
gpu_tensor
);
}
}
auto
broadcast_task
=
inner_pg_
->
Broadcast
(
tensors
,
b_opts
);
auto
broadcast_task
=
inner_pg_
->
Broadcast
(
out_tensors
,
out_
tensors
,
b_opts
);
broadcast_task
->
Wait
();
return
CreateTask
(
rank_
,
CommType
::
BROADCAST
,
tensors
);
}
void
ProcessGroupHeter
::
Broadcast
(
const
phi
::
DenseTensor
*
in
,
phi
::
DenseTensor
*
out
)
{
// Step1: do broadcast in inner cluster
inner_pg_
->
Broadcast
(
in
,
out
);
if
(
local_rank_
==
0
)
{
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
in
->
dtype
(),
in
->
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor
->
ResizeAndAllocate
(
in
->
dims
());
Tensor
cpu_tensor
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor
);
framework
::
TensorCopySync
(
*
in
,
platform
::
CPUPlace
(),
dense_cpu_tensor
.
get
());
if
(
with_switch_
)
{
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
if
(
gloo_rank_
==
0
)
{
std
::
vector
<
int
>
send_size
;
send_size
.
push_back
(
in
->
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
in
->
name
()},
send_size
,
dense_cpu_tensor
->
data
(),
in
->
numel
()
*
framework
::
DataTypeSize
(
in
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
}
else
{
int
ret
=
client_
->
Recv
(
gid_
,
{
in
->
name
()},
dense_cpu_tensor
->
data
(),
in
->
numel
()
*
framework
::
DataTypeSize
(
in
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Receive from the switch module error."
));
}
}
}
else
{
std
::
vector
<
Tensor
>
cpu_tensors
=
{
cpu_tensor
};
auto
gloo_task
=
inter_pg_
->
Broadcast
(
cpu_tensors
);
gloo_task
->
Wait
();
}
framework
::
TensorCopySync
(
*
dense_cpu_tensor
,
out
->
place
(),
out
);
}
inner_pg_
->
Broadcast
(
out
,
out
);
return
CreateTask
(
rank_
,
CommType
::
BROADCAST
,
in_tensors
);
}
}
//
namespace distributed
}
//
namespace paddle
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupHeter.h
浏览文件 @
1e56ca8a
...
...
@@ -66,7 +66,8 @@ class ProcessGroupHeter : public ProcessGroup {
class
HeterTask
:
public
ProcessGroup
::
Task
,
public
std
::
enable_shared_from_this
<
HeterTask
>
{
public:
HeterTask
(
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
);
HeterTask
(
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
);
bool
IsCompleted
();
...
...
@@ -89,18 +90,16 @@ class ProcessGroupHeter : public ProcessGroup {
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
,
std
::
vector
<
phi
::
DenseTensor
>&
,
const
AllreduceOptions
&
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
,
std
::
vector
<
phi
::
DenseTensor
>&
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
void
Broadcast
(
const
phi
::
DenseTensor
*
in
,
phi
::
DenseTensor
*
out
)
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupHeter
::
HeterTask
>
CreateTask
(
int
rank
,
CommType
opType
,
const
std
::
vector
<
Tensor
>&
inputs
);
int
rank
,
CommType
opType
,
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
);
private:
std
::
shared_ptr
<
Store
>
store_
;
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
1e56ca8a
...
...
@@ -41,14 +41,14 @@ void SyncDefaultStream(
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
ProcessGroupNCCL
::
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
Tensor
>&
inputs
)
{
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
)
{
return
std
::
make_shared
<
ProcessGroupNCCL
::
NCCLTask
>
(
places
,
rank
,
comm_type
,
inputs
);
}
ProcessGroupNCCL
::
NCCLTask
::
NCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
)
ProcessGroupNCCL
::
NCCLTask
::
NCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
)
:
Task
(
rank
,
inputs
,
CommType
),
places_
(
places
)
{
control_events_
.
resize
(
places
.
size
());
ncclComms_
.
resize
(
places
.
size
());
...
...
@@ -57,8 +57,8 @@ ProcessGroupNCCL::NCCLTask::NCCLTask(const std::vector<Place>& places, int rank,
ProcessGroupNCCL
::
NCCLTask
::~
NCCLTask
()
{}
void
ProcessGroupNCCL
::
NCCLTask
::
SetOutputs
(
std
::
vector
<
Tensor
>&
outputs
)
{
// NOLINT
outputs_
=
std
::
make_shared
<
std
::
vector
<
Tensor
>>
(
outputs
);
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
)
{
// NOLINT
outputs_
=
std
::
make_shared
<
std
::
vector
<
phi
::
Dense
Tensor
>>
(
outputs
);
}
void
ProcessGroupNCCL
::
NCCLTask
::
SynchronizeStreams
()
{
...
...
@@ -180,8 +180,8 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Collective
(
std
::
vector
<
Tensor
>&
inputs
,
std
::
vector
<
Tensor
>&
outputs
,
Fn
fn
,
CommType
op_type
)
{
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
Fn
fn
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
inputs
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
...
...
@@ -205,9 +205,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
inputs
[
i
].
impl
());
memory
::
RecordStream
(
dense_tensor
->
Holder
(),
memory
::
RecordStream
(
inputs
[
i
].
Holder
(),
places_to_ctx_
[
key
][
i
]
->
stream
());
}
}
...
...
@@ -267,7 +265,8 @@ void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
Fn
fn
,
int
dst_rank
,
CommType
op_type
)
{
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
Fn
fn
,
int
dst_rank
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
tensors
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
...
...
@@ -290,9 +289,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
memory
::
RecordStream
(
dense_tensor
->
Holder
(),
memory
::
RecordStream
(
tensors
[
i
].
Holder
(),
places_to_ctx_
[
key
][
i
]
->
stream
());
}
}
...
...
@@ -314,46 +311,40 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
AllreduceOptions
&
opts
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
tensors
),
true
,
CheckTensorsInCudaPlace
(
in_
tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
return
Collective
(
tensors
,
tensors
,
[
&
](
const
Tensor
&
input
,
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
ncclAllReduce
(
input_tensor
->
data
(),
output_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
ToNCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
);
},
CommType
::
ALLREDUCE
);
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
const
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
platform
::
dynload
::
ncclAllReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
ToNCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
);
},
CommType
::
ALLREDUCE
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
const
BroadcastOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
BroadcastOptions
&
opts
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
tensors
),
true
,
CheckTensorsInCudaPlace
(
in_
tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
return
Collective
(
tensors
,
tensors
,
[
&
](
Tensor
&
input
,
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
const
auto
root
=
opts
.
source_rank
*
tensors
.
size
()
+
opts
.
source_root
;
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
ncclBcast
(
input_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
root
,
comm
,
stream
);
},
CommType
::
BROADCAST
);
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
const
auto
root
=
opts
.
source_rank
*
in_tensors
.
size
()
+
opts
.
source_root
;
return
platform
::
dynload
::
ncclBroadcast
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
root
,
comm
,
stream
);
},
CommType
::
BROADCAST
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Barrier
(
...
...
@@ -374,23 +365,24 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
places
.
emplace_back
(
place_id
);
}
std
::
vector
<
Tensor
>
barrierTensors
;
std
::
vector
<
phi
::
Dense
Tensor
>
barrierTensors
;
barrierTensors
.
reserve
(
places
.
size
());
platform
::
CUDADeviceGuard
gpuGuard
;
for
(
auto
&
place
:
places
)
{
gpuGuard
.
SetDeviceIndex
(
place
.
GetDeviceId
());
auto
dt
=
full
({
1
},
0
,
phi
::
DataType
::
FLOAT32
,
phi
::
GPUPlace
());
barrierTensors
.
push_back
(
dt
);
barrierTensors
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
dt
.
impl
()));
}
auto
task
=
ProcessGroupNCCL
::
AllReduce
(
barrierTensors
);
auto
task
=
ProcessGroupNCCL
::
AllReduce
(
barrierTensors
,
barrierTensors
);
auto
nccl_task
=
dynamic_cast
<
ProcessGroupNCCL
::
NCCLTask
*>
(
task
.
get
());
nccl_task
->
barrierTensors_
=
std
::
move
(
barrierTensors
);
return
task
;
}
void
CheckTensorsInDifferentDevices
(
const
std
::
vector
<
Tensor
>&
tensors
,
const
size_t
num_devices
)
{
void
CheckTensorsInDifferentDevices
(
const
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
const
size_t
num_devices
)
{
PADDLE_ENFORCE_EQ
(
tensors
.
size
()
==
0
,
false
,
platform
::
errors
::
InvalidArgument
(
"Tensor list must be nonempty."
));
...
...
@@ -402,11 +394,11 @@ void CheckTensorsInDifferentDevices(const std::vector<Tensor>& tensors,
std
::
set
<
Place
>
used_devices
;
for
(
const
auto
&
t
:
tensors
)
{
PADDLE_ENFORCE_EQ
(
t
.
is_gpu
()
&&
t
.
is_dense_tensor
(
),
true
,
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
t
.
place
()
),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensors must be CUDA and dense tensor."
));
const
auto
inserted
=
used_devices
.
insert
(
t
.
inner_
place
()).
second
;
const
auto
inserted
=
used_devices
.
insert
(
t
.
place
()).
second
;
PADDLE_ENFORCE_EQ
(
inserted
,
true
,
platform
::
errors
::
InvalidArgument
(
"Tensors must be on distinct GPU devices."
));
...
...
@@ -414,62 +406,55 @@ void CheckTensorsInDifferentDevices(const std::vector<Tensor>& tensors,
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Send
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst_rank
)
{
std
::
vector
<
phi
::
Dense
Tensor
>&
tensors
,
int
dst_rank
)
{
CheckTensorsInDifferentDevices
(
tensors
,
static_cast
<
size_t
>
(
GetSize
()));
auto
task
=
PointToPoint
(
tensors
,
[
&
](
Tensor
&
input
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
dst_rank
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
return
platform
::
dynload
::
ncclSend
(
input_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
dst_rank
,
comm
,
stream
);
},
dst_rank
,
CommType
::
SEND
);
auto
task
=
PointToPoint
(
tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
dst_rank
)
{
return
platform
::
dynload
::
ncclSend
(
input
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
dst_rank
,
comm
,
stream
);
},
dst_rank
,
CommType
::
SEND
);
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Recv
(
std
::
vector
<
Tensor
>&
tensors
,
int
src_rank
)
{
std
::
vector
<
phi
::
Dense
Tensor
>&
tensors
,
int
src_rank
)
{
CheckTensorsInDifferentDevices
(
tensors
,
static_cast
<
size_t
>
(
GetSize
()));
auto
task
=
PointToPoint
(
tensors
,
[
&
](
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
src_rank
)
{
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
ncclRecv
(
output_tensor
->
data
(),
output_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
output
.
type
()),
src_rank
,
comm
,
stream
);
},
src_rank
,
CommType
::
RECV
);
auto
task
=
PointToPoint
(
tensors
,
[
&
](
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
src_rank
)
{
return
platform
::
dynload
::
ncclRecv
(
output
.
data
(),
output
.
numel
(),
platform
::
ToNCCLDataType
(
output
.
dtype
()),
src_rank
,
comm
,
stream
);
},
src_rank
,
CommType
::
RECV
);
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All outputs should be in CudaPlace."
));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
const
Tensor
&
input
,
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
ncclAllGather
(
input_tensor
->
data
(),
output_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
comm
,
stream
);
},
CommType
::
ALLGATHER
);
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
const
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
platform
::
dynload
::
ncclAllGather
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
comm
,
stream
);
},
CommType
::
ALLGATHER
);
}
void
*
GetPointerByOffset
(
void
*
raw_pointer
,
size_t
offset
,
...
...
@@ -493,10 +478,12 @@ void* GetPointerByOffset(void* raw_pointer, size_t offset,
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"This datatype in nccl is not supported."
));
}
return
nullptr
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllToAll
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
...
...
@@ -505,24 +492,20 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
const
Tensor
&
input
,
Tensor
&
output
,
ncclComm_t
comm
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
Dense
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
size_t
offset
=
0
;
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
());
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
_tensor
->
data
(),
offset
,
input
.
type
()),
input
_tensor
->
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
type
()),
i
,
comm
,
stream
));
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
d
type
()),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
GetPointerByOffset
(
output
_tensor
->
data
(),
offset
,
input
.
type
()),
input
_tensor
->
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
type
()),
i
,
comm
,
stream
));
offset
+=
input
_tensor
->
numel
()
/
size_
;
GetPointerByOffset
(
output
.
data
(),
offset
,
input
.
d
type
()),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
offset
+=
input
.
numel
()
/
size_
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
());
},
...
...
@@ -530,29 +513,26 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ReduceOptions
&
opts
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
tensors
),
true
,
CheckTensorsInCudaPlace
(
in_
tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
return
Collective
(
tensors
,
tensors
,
[
&
](
const
Tensor
&
input
,
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
in_tensors
,
out_tensors
,
[
&
](
const
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclReduce
(
input
_tensor
->
data
(),
output_tensor
->
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
d
type
()),
ToNCCLRedType
(
opts
.
reduce_op
),
opts
.
root_rank
,
comm
,
stream
));
},
CommType
::
REDUCE
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out
_tensors
,
const
ScatterOptions
&
opts
)
{
std
::
vector
<
phi
::
DenseTensor
>&
in
_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ScatterOptions
&
opts
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
...
...
@@ -561,31 +541,27 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
const
Tensor
&
input
,
Tensor
&
output
,
ncclComm_t
comm
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
Dense
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
size_t
offset
=
0
;
if
(
rank_
==
opts
.
root_rank
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
());
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
_tensor
->
data
(),
offset
,
input
.
type
()),
input
_tensor
->
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
type
()),
i
,
comm
,
stream
));
offset
+=
input
_tensor
->
numel
()
/
size_
;
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
d
type
()),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
())
,
i
,
comm
,
stream
));
offset
+=
input
.
numel
()
/
size_
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
output
_tensor
->
data
(),
input_tensor
->
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
type
()),
opts
.
root_rank
,
comm
,
output
.
data
(),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
d
type
()),
opts
.
root_rank
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
());
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
output
_tensor
->
data
(),
input_tensor
->
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
type
()),
opts
.
root_rank
,
comm
,
output
.
data
(),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
d
type
()),
opts
.
root_rank
,
comm
,
stream
));
}
},
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
1e56ca8a
...
...
@@ -51,7 +51,7 @@ class ProcessGroupNCCL : public ProcessGroup {
public
std
::
enable_shared_from_this
<
NCCLTask
>
{
public:
NCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
);
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
);
bool
IsCompleted
();
...
...
@@ -61,17 +61,17 @@ class ProcessGroupNCCL : public ProcessGroup {
void
Synchronize
();
void
SetOutputs
(
std
::
vector
<
Tensor
>&
outputs
);
// NOLINT
void
SetOutputs
(
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
);
// NOLINT
virtual
~
NCCLTask
();
std
::
vector
<
EventManager
>
control_events_
;
std
::
vector
<
Tensor
>
barrierTensors_
;
std
::
vector
<
phi
::
Dense
Tensor
>
barrierTensors_
;
protected:
std
::
vector
<
Place
>
places_
;
std
::
vector
<
std
::
shared_ptr
<
NCCLCommManager
>>
ncclComms_
;
std
::
shared_ptr
<
std
::
vector
<
Tensor
>>
outputs_
;
std
::
shared_ptr
<
std
::
vector
<
phi
::
Dense
Tensor
>>
outputs_
;
private:
};
...
...
@@ -84,40 +84,46 @@ class ProcessGroupNCCL : public ProcessGroup {
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
AllreduceOptions
&
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
int
dst_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
Tensor
>&
tensors
,
int
src_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
int
src_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
override
;
std
::
vector
<
phi
::
Dense
Tensor
>&
in_tensors
,
std
::
vector
<
phi
::
Dense
Tensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
std
::
vector
<
Tensor
>&
in
,
std
::
vector
<
Tensor
>&
out
)
override
;
std
::
vector
<
phi
::
DenseTensor
>&
in
,
std
::
vector
<
phi
::
DenseTensor
>&
out
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
,
const
ScatterOptions
&
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ScatterOptions
&
)
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
opType
,
const
std
::
vector
<
Tensor
>&
inputs
);
const
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
);
protected:
std
::
shared_ptr
<
Store
>
store_
;
...
...
@@ -142,8 +148,8 @@ class ProcessGroupNCCL : public ProcessGroup {
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Collective
(
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
...
...
@@ -152,7 +158,7 @@ class ProcessGroupNCCL : public ProcessGroup {
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
std
::
vector
<
phi
::
Dense
Tensor
>&
tensors
,
// NOLINT
Fn
fn
,
int
dst_rank
,
CommType
op_type
);
void
CreateNCCLManagerCache
(
const
std
::
string
&
places_key
,
...
...
paddle/fluid/distributed/collective/reducer.cc
浏览文件 @
1e56ca8a
...
...
@@ -734,7 +734,11 @@ void EagerReducer::ProcessUnusedDenseVars() {
distributed
::
AllreduceOptions
opts
;
opts
.
reduce_op
=
ReduceOp
::
SUM
;
std
::
vector
<
Tensor
>
reduce_tensors
=
{
global_used_vars_
};
process_group_
->
AllReduce
(
reduce_tensors
,
opts
)
->
Synchronize
();
std
::
vector
<
phi
::
DenseTensor
>
in_out
;
for
(
auto
&
t
:
reduce_tensors
)
{
in_out
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
t
.
impl
()));
}
process_group_
->
AllReduce
(
in_out
,
in_out
,
opts
)
->
Synchronize
();
framework
::
TensorToVector
<
int
>
(
*
global_used_tensor
,
*
dev_ctx
,
&
local_used_vars_
);
...
...
@@ -820,7 +824,11 @@ void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
// all_reduce
std
::
vector
<
Tensor
>
reduce_tensors
=
{
group
->
dense_contents_
};
group
->
task
=
process_group_
->
AllReduce
(
reduce_tensors
,
opts
);
std
::
vector
<
phi
::
DenseTensor
>
in_out
;
for
(
auto
&
t
:
reduce_tensors
)
{
in_out
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
t
.
impl
()));
}
group
->
task
=
process_group_
->
AllReduce
(
in_out
,
in_out
,
opts
);
// split in FinalizeBackward()
}
...
...
@@ -871,7 +879,11 @@ void EagerReducer::AllReduceSparse(EagerGroup *group,
distributed
::
AllreduceOptions
opts
;
opts
.
reduce_op
=
ReduceOp
::
SUM
;
std
::
vector
<
Tensor
>
reduce_tensors
=
{
rows_num_tensor
};
process_group_
->
AllReduce
(
reduce_tensors
,
opts
)
->
Synchronize
();
std
::
vector
<
phi
::
DenseTensor
>
in_out
;
for
(
auto
&
t
:
reduce_tensors
)
{
in_out
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
t
.
impl
()));
}
process_group_
->
AllReduce
(
in_out
,
in_out
,
opts
)
->
Synchronize
();
framework
::
TensorToVector
<
int64_t
>
(
*
rows_num_dense_tensor
,
*
dev_ctx
,
&
rows_num_vector
);
...
...
@@ -908,8 +920,15 @@ void EagerReducer::AllReduceSparse(EagerGroup *group,
std
::
vector
<
Tensor
>
src_rows_tensors
=
{
src_rows_tensor
};
std
::
vector
<
Tensor
>
dst_rows_tensors
=
{
dst_rows_tensor
};
process_group_
->
AllGather
(
src_rows_tensors
,
dst_rows_tensors
)
->
Synchronize
();
std
::
vector
<
phi
::
DenseTensor
>
in
;
std
::
vector
<
phi
::
DenseTensor
>
out
;
for
(
auto
&
t
:
src_rows_tensors
)
{
in
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
t
.
impl
()));
}
for
(
auto
&
t
:
dst_rows_tensors
)
{
out
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
t
.
impl
()));
}
process_group_
->
AllGather
(
in
,
out
)
->
Synchronize
();
framework
::
Vector
<
int64_t
>
dst_rows_vector
(
rows_num
,
0
);
auto
*
dst_rows_dense_tensor
=
...
...
@@ -934,8 +953,17 @@ void EagerReducer::AllReduceSparse(EagerGroup *group,
std
::
vector
<
Tensor
>
src_value_tensors
=
{
src_value_tensor
};
std
::
vector
<
Tensor
>
dst_value_tensors
=
{
dst_value_tensor
};
process_group_
->
AllGather
(
src_value_tensors
,
dst_value_tensors
)
->
Synchronize
();
std
::
vector
<
phi
::
DenseTensor
>
src_dense
;
std
::
vector
<
phi
::
DenseTensor
>
dst_dense
;
for
(
auto
&
t
:
src_value_tensors
)
{
src_dense
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
t
.
impl
()));
}
for
(
auto
&
t
:
dst_value_tensors
)
{
dst_dense
.
push_back
(
*
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
t
.
impl
()));
}
process_group_
->
AllGather
(
src_dense
,
dst_dense
)
->
Synchronize
();
src
->
set_rows
(
dst_rows_vector
);
*
(
src
->
mutable_value
())
=
...
...
paddle/fluid/operators/collective/c_allgather_op.cu.cc
浏览文件 @
1e56ca8a
...
...
@@ -18,7 +18,9 @@ limitations under the License. */
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/phi/api/include/tensor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -35,6 +37,18 @@ class CAllGatherOpCUDAKernel : public framework::OpKernel<T> {
int
nranks
=
ctx
.
Attr
<
int
>
(
"nranks"
);
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensor
;
std
::
vector
<
phi
::
DenseTensor
>
out_tensor
;
in_tensor
.
push_back
(
*
in
);
out_tensor
.
push_back
(
*
out
);
auto
task
=
pg
->
AllGather
(
in_tensor
,
out_tensor
);
task
->
Wait
();
return
;
}
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
PADDLE_ENFORCE_EQ
(
...
...
paddle/fluid/operators/collective/c_broadcast_op.cu.cc
浏览文件 @
1e56ca8a
...
...
@@ -41,7 +41,12 @@ class CBroadcastOpCUDAKernel : public framework::OpKernel<T> {
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
pg
->
Broadcast
(
x
,
out
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensor
;
std
::
vector
<
phi
::
DenseTensor
>
out_tensor
;
in_tensor
.
push_back
(
*
x
);
out_tensor
.
push_back
(
*
out
);
auto
task
=
pg
->
Broadcast
(
in_tensor
,
out_tensor
);
task
->
Wait
();
return
;
}
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
1e56ca8a
...
...
@@ -115,8 +115,10 @@ void BindDistributed(py::module *m) {
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
distributed
::
AllreduceOptions
opts
;
opts
.
reduce_op
=
op
;
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
return
self
.
AllReduce
(
tensors
,
opts
);
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
AllReduce
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
...
...
@@ -127,8 +129,10 @@ void BindDistributed(py::module *m) {
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
distributed
::
BroadcastOptions
opts
;
opts
.
source_rank
=
source_rank
;
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
return
self
.
Broadcast
(
tensors
,
opts
);
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Broadcast
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
...
...
@@ -146,7 +150,9 @@ void BindDistributed(py::module *m) {
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
dst
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Send
(
tensors
,
dst
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
...
...
@@ -156,7 +162,9 @@ void BindDistributed(py::module *m) {
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
src
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Recv
(
tensors
,
src
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
...
...
@@ -167,8 +175,12 @@ void BindDistributed(py::module *m) {
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
in_tensors
=
{
in_tensor
};
std
::
vector
<
Tensor
>
out_tensors
=
{
out_tensor
};
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllGather
(
in_tensors
,
out_tensors
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
...
...
@@ -179,8 +191,12 @@ void BindDistributed(py::module *m) {
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
in_tensors
=
{
in_tensor
};
std
::
vector
<
Tensor
>
out_tensors
=
{
out_tensor
};
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllToAll
(
in_tensors
,
out_tensors
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
...
...
@@ -193,8 +209,10 @@ void BindDistributed(py::module *m) {
distributed
::
ReduceOptions
opts
;
opts
.
reduce_op
=
op
;
opts
.
root_rank
=
dst
;
std
::
vector
<
Tensor
>
tensors
=
{
in_tensor
};
return
self
.
Reduce
(
tensors
,
opts
);
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Reduce
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
...
...
@@ -207,8 +225,12 @@ void BindDistributed(py::module *m) {
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
distributed
::
ScatterOptions
opts
;
opts
.
root_rank
=
src
;
std
::
vector
<
Tensor
>
in_tensors
=
{
in_tensor
};
std
::
vector
<
Tensor
>
out_tensors
=
{
out_tensor
};
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
Scatter
(
in_tensors
,
out_tensors
,
opts
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"src"
),
...
...
python/paddle/fluid/tests/unittests/init_process_group.py
浏览文件 @
1e56ca8a
...
...
@@ -46,6 +46,11 @@ class TestProcessGroupFp32(unittest.TestCase):
group
=
paddle
.
distributed
.
collective
.
Group
(
-
1
,
2
,
0
,
[
-
1
,
-
2
])
ret
=
paddle
.
distributed
.
barrier
(
group
)
assert
ret
==
None
paddle
.
enable_static
()
in_tensor
=
paddle
.
empty
((
1
,
2
))
in_tensor2
=
paddle
.
empty
((
1
,
2
))
paddle
.
distributed
.
broadcast
(
in_tensor
,
src
=
0
)
paddle
.
distributed
.
all_gather
([
in_tensor
,
in_tensor2
],
in_tensor
)
print
(
"test ok
\n
"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录