ProcessGroupNCCL.cc 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
20
#include "paddle/fluid/platform/place.h"
L
LiYuRio 已提交
21
#include "paddle/phi/api/lib/utils/allocator.h"
B
Baibaifan 已提交
22
#include "paddle/phi/common/place.h"
23 24 25 26 27 28 29 30 31 32 33

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
L
Leo Chen 已提交
34 35
    std::vector<EventManager>& ncclEvents,                     // NOLINT
    std::vector<std::unique_ptr<phi::GPUContext>>& dev_ctx) {  // NOLINT
36
  for (size_t i = 0; i < places.size(); ++i) {
L
Leo Chen 已提交
37
    auto* default_ctx = static_cast<phi::GPUContext*>(
38
        platform::DeviceContextPool::Instance().Get(places[i]));
39 40
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
41 42 43 44
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
45 46 47
    std::vector<Place> places,
    int rank,
    CommType comm_type,
48
    const std::vector<phi::DenseTensor>& inputs) {
49 50
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
51 52
}

53
ProcessGroupNCCL::NCCLTask::NCCLTask(
54 55 56
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
57
    const std::vector<phi::DenseTensor>& inputs)
58 59 60 61 62 63 64 65
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
66 67
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
68 69 70 71
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
L
Leo Chen 已提交
72
    auto* default_ctx = static_cast<phi::GPUContext*>(
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

88
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
89
                                       std::vector<int64_t> tensor_shape) {
90
  int64_t len_size = (*split_sizes).size();
91 92 93 94 95 96
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
97 98 99 100
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
101 102 103 104 105 106 107
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
108
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
109 110 111 112 113 114 115 116
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

117 118 119 120 121 122 123 124 125
// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
126 127 128 129 130

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
S
ShenLiang 已提交
131
#ifdef PADDLE_WITH_CUDA
B
Baibaifan 已提交
132
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
S
ShenLiang 已提交
133 134 135
#else
      PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
B
Baibaifan 已提交
136 137
    }
  }
138 139 140 141 142 143
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

144
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
145 146 147 148
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
149 150 151
    : ProcessGroup(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}
152 153 154

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
155 156
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
157 158
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
159 160 161 162 163 164 165
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
166 167
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
168 169 170
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
171 172 173 174 175 176
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
177 178
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
179 180 181 182 183 184 185 186 187 188 189 190
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
191 192 193 194
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

195 196 197 198 199
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

200 201
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
202 203
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
204
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
205 206 207 208 209 210 211
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
L
Leo Chen 已提交
212
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
228
    std::vector<phi::DenseTensor>& inputs,
229 230 231
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
251 252
  {
    platform::NCCLGroupGuard nccl_guard;
253 254
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
255 256
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
257 258 259
    }
  }

S
ShenLiang 已提交
260
  if (FLAGS_use_stream_safe_cuda_allocator) {
261 262
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
263 264
      memory::RecordStream(inputs[i].Holder(),
                           places_to_ctx_[key][i]->stream());
265 266 267 268 269 270 271 272 273 274
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

275 276
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
277 278
                                  phi::DenseTensor* out,
                                  Fn fn,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
313 314
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
315 316 317
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
318
    CommType op_type) {
B
Baibaifan 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
341
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

362
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
363
    std::vector<phi::DenseTensor>& in_tensors,
364 365
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
366
  PADDLE_ENFORCE_EQ(
367 368
      CheckTensorsInCudaPlace(in_tensors),
      true,
369
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
370
  return Collective(
371 372 373 374 375 376
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
377
        return platform::dynload::ncclAllReduce(
378 379 380
            input.data(),
            output.data(),
            input.numel(),
381
            platform::ToNCCLDataType(input.type()),
382 383 384
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
385 386
      },
      CommType::ALLREDUCE);
387 388 389
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
390
    std::vector<phi::DenseTensor>& in_tensors,
391 392
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
393
  PADDLE_ENFORCE_EQ(
394 395
      CheckTensorsInCudaPlace(in_tensors),
      true,
396 397
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

398
  return Collective(
399 400 401 402 403
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
404 405 406 407
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
408 409 410 411 412 413 414
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
415 416
      },
      CommType::BROADCAST);
417 418
}

B
Baibaifan 已提交
419 420
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
421 422
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
423

424
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
425 426 427 428 429
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
L
LiYuRio 已提交
430 431 432 433
    phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim({1}));
    auto allocator = std::unique_ptr<phi::Allocator>(
        new paddle::experimental::DefaultAllocator(place));
    barrierTensors.emplace_back(allocator.get(), meta);
B
Baibaifan 已提交
434
  }
435
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors);
B
Baibaifan 已提交
436 437 438 439 440
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

441 442
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
443
  PADDLE_ENFORCE_EQ(
444 445
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
446 447
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
448 449
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
450 451 452 453 454 455
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
456 457
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
458 459 460
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

461
    const auto inserted = used_devices.insert(t.place()).second;
462 463
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
464 465 466 467 468 469
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
470
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
471 472
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

473 474
  auto task = PointToPoint(
      tensors,
475 476 477
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
478 479
          int dst_rank) {
        return platform::dynload::ncclSend(
480 481 482 483 484 485
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
486
      },
487 488
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
489 490 491 492
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
493
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
494 495
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

496 497
  auto task = PointToPoint(
      tensors,
498 499 500
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
501 502
          int src_rank) {
        return platform::dynload::ncclRecv(
503 504 505 506 507 508
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
509
      },
510 511
      src_rank,
      CommType::RECV);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors, int dst_rank, int offset, int length) {
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

527 528
  auto task = PointToPoint(
      shared_tensors,
529 530 531
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
532 533
          int dst_rank) {
        return platform::dynload::ncclSend(
534 535 536 537 538 539
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
540
      },
541 542
      dst_rank,
      CommType::SEND);
543 544 545 546 547 548 549 550 551 552 553 554 555 556
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors, int src_rank, int offset, int length) {
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});
  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

557 558
  auto task = PointToPoint(
      shared_tensors,
559 560 561
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
562 563
          int src_rank) {
        return platform::dynload::ncclRecv(
564 565 566 567 568 569
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
570
      },
571 572
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
573 574 575
  return task;
}

576
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
577 578
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
579
  PADDLE_ENFORCE_EQ(
580 581
      CheckTensorsInCudaPlace(in_tensors),
      true,
582 583
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
584 585
      CheckTensorsInCudaPlace(out_tensors),
      true,
586
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
587
  return Collective(
588 589 590 591 592 593
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
594
        return platform::dynload::ncclAllGather(
595 596 597 598 599 600
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
601 602
      },
      CommType::ALLGATHER);
603 604
}

605 606
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
627
  return nullptr;
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    int offset,
    int length) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

661
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
662 663
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
664
  PADDLE_ENFORCE_EQ(
665 666
      CheckTensorsInCudaPlace(in_tensors),
      true,
667 668
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
669 670
      CheckTensorsInCudaPlace(out_tensors),
      true,
671 672
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
673 674 675 676 677
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
678 679 680 681 682
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
683
              GetPointerByOffset(input.data(), offset, input.dtype()),
684 685 686 687 688
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
689
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
690
              GetPointerByOffset(output.data(), offset, input.dtype()),
691 692 693 694 695
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
696
          offset += input.numel() / size_;
697 698 699
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
      CommType::ALLTOALL);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
730 731
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
763 764 765
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
766
    std::vector<phi::DenseTensor>& in_tensors,
767 768
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
769
  PADDLE_ENFORCE_EQ(
770 771
      CheckTensorsInCudaPlace(in_tensors),
      true,
772 773
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
774 775 776 777 778 779
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
780
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
781 782 783
            input.data(),
            output.data(),
            input.numel(),
784
            platform::ToNCCLDataType(input.dtype()),
785 786 787 788
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
789 790 791 792 793
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
794
    std::vector<phi::DenseTensor>& in_tensors,
795 796
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
797
  PADDLE_ENFORCE_EQ(
798 799
      CheckTensorsInCudaPlace(in_tensors),
      true,
800 801
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
802 803
      CheckTensorsInCudaPlace(out_tensors),
      true,
804 805
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
806 807 808 809 810
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
811 812 813 814 815 816
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
817
                GetPointerByOffset(input.data(), offset, input.dtype()),
818 819 820 821 822
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
823
            offset += input.numel() / size_;
824 825
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
826 827 828 829 830
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
831 832 833 834
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
835 836 837 838 839
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
840 841 842 843 844 845
              stream));
        }
      },
      CommType::SCATTER);
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
    phi::DenseTensor& out_tensor,
    phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts) {
  // auto tensor = out_tensors.back();
  PADDLE_ENFORCE_EQ(
      out_tensor.dtype(),
      in_tensor.dtype(),
      platform::errors::InvalidArgument(
          "Input tensor and output tensor should be same dtype."));

  PADDLE_ENFORCE_EQ(
      out_tensor.numel() * size_,
      in_tensor.numel(),
      platform::errors::InvalidArgument("input tensor must be the same size as "
                                        "output tensor size times world_size"));

  auto inputs = std::vector<phi::DenseTensor>{in_tensor};
  auto outputs = std::vector<phi::DenseTensor>{out_tensor};

  return Collective(
      inputs,
      outputs,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

L
LiYuRio 已提交
898 899 900 901 902 903 904 905 906 907
ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  std::vector<Place> places = {place};
  const auto& iter = places_to_ncclcomm_.find(GetKeyFromPlaces(places));
  PADDLE_ENFORCE_NE(iter,
                    places_to_ncclcomm_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find nccl comm in process group."));
  return iter->second[0]->GetNcclComm();
}

908 909
}  //  namespace distributed
}  //  namespace paddle