ProcessGroupNCCL.cc 34.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
20
#include "paddle/fluid/platform/place.h"
L
LiYuRio 已提交
21
#include "paddle/phi/api/lib/utils/allocator.h"
B
Baibaifan 已提交
22
#include "paddle/phi/common/place.h"
L
LiYuRio 已提交
23
#include "paddle/phi/core/device_context.h"
24 25 26 27 28 29 30 31 32 33 34

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
L
Leo Chen 已提交
35 36
    std::vector<EventManager>& ncclEvents,                     // NOLINT
    std::vector<std::unique_ptr<phi::GPUContext>>& dev_ctx) {  // NOLINT
37
  for (size_t i = 0; i < places.size(); ++i) {
L
Leo Chen 已提交
38
    auto* default_ctx = static_cast<phi::GPUContext*>(
39
        platform::DeviceContextPool::Instance().Get(places[i]));
40 41
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
42 43 44 45
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
46 47 48
    std::vector<Place> places,
    int rank,
    CommType comm_type,
49
    const std::vector<phi::DenseTensor>& inputs) {
50 51
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
52 53
}

54
ProcessGroupNCCL::NCCLTask::NCCLTask(
55 56 57
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
58
    const std::vector<phi::DenseTensor>& inputs)
59 60 61 62 63 64 65 66 67 68 69 70 71 72
    : TaskStream(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      places_(places) {
73 74 75 76 77 78 79
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
80 81
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
82 83 84 85
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
L
Leo Chen 已提交
86
    auto* default_ctx = static_cast<phi::GPUContext*>(
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

102
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
103
                                       std::vector<int64_t> tensor_shape) {
104
  int64_t len_size = (*split_sizes).size();
105 106 107 108 109 110
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
111 112 113 114
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
115 116 117 118 119 120 121
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
122
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
123 124 125 126 127 128 129 130
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

131 132
// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
133 134 135 136 137 138 139
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

140 141 142 143 144 145 146
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
147 148 149 150 151

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
S
ShenLiang 已提交
152
#ifdef PADDLE_WITH_CUDA
B
Baibaifan 已提交
153
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
S
ShenLiang 已提交
154 155 156
#else
      PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
B
Baibaifan 已提交
157 158
    }
  }
159 160 161 162 163 164
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

165
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
166 167 168 169
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
170
    : ProcessGroupStream(rank, size, place, gid), store_(store) {
171 172
  platform::SetDeviceId(place_.device);
}
173 174 175

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
176 177
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
178 179
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
180 181 182 183 184 185 186
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
187 188
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
189 190 191
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
192 193 194 195 196 197
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
198 199
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
200 201 202 203 204 205 206 207 208 209 210 211
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
212 213 214 215
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

216 217 218 219 220
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

221 222
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
223 224
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
225
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
226 227 228 229 230 231 232
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
L
Leo Chen 已提交
233
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
234 235 236 237 238 239 240 241 242 243 244 245 246
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank_, comm_type, inputs, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      task->control_events_[i].Record(*places_to_ctx_[key][i]);
    }
  }

  return task;
}

322 323
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
324
    std::vector<phi::DenseTensor>& inputs,
325 326 327
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
347 348
  {
    platform::NCCLGroupGuard nccl_guard;
349 350
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
351 352
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
353 354 355
    }
  }

S
ShenLiang 已提交
356
  if (FLAGS_use_stream_safe_cuda_allocator) {
357 358
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
359 360
      memory::RecordStream(inputs[i].Holder(),
                           places_to_ctx_[key][i]->stream());
361 362 363 364 365 366 367 368 369 370
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

371 372
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
373 374
                                  phi::DenseTensor* out,
                                  Fn fn,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
409 410
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
411 412 413
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
414
    CommType op_type) {
B
Baibaifan 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
437
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

458
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
459
    std::vector<phi::DenseTensor>& in_tensors,
460 461
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
462
  PADDLE_ENFORCE_EQ(
463 464
      CheckTensorsInCudaPlace(in_tensors),
      true,
465
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
466
  return Collective(
467 468 469 470 471 472
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
473
        return platform::dynload::ncclAllReduce(
474 475 476
            input.data(),
            output.data(),
            input.numel(),
477
            platform::ToNCCLDataType(input.type()),
478 479 480
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
481 482
      },
      CommType::ALLREDUCE);
483 484
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

516
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
517
    std::vector<phi::DenseTensor>& in_tensors,
518 519
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
520
  PADDLE_ENFORCE_EQ(
521 522
      CheckTensorsInCudaPlace(in_tensors),
      true,
523 524
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

525
  return Collective(
526 527 528 529 530
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
531 532 533 534
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
535 536 537 538 539 540 541
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
542 543
      },
      CommType::BROADCAST);
544 545
}

B
Baibaifan 已提交
546 547
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
548 549
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
550

551
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
552 553 554 555 556
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
L
LiYuRio 已提交
557 558 559 560
    phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim({1}));
    auto allocator = std::unique_ptr<phi::Allocator>(
        new paddle::experimental::DefaultAllocator(place));
    barrierTensors.emplace_back(allocator.get(), meta);
B
Baibaifan 已提交
561
  }
562 563
  auto task = ProcessGroupNCCL::AllReduce(
      barrierTensors, barrierTensors, AllreduceOptions());
B
Baibaifan 已提交
564 565 566 567 568
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

569 570
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
571
  PADDLE_ENFORCE_EQ(
572 573
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
574 575
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
576 577
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
578 579 580 581 582 583
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
584 585
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
586 587 588
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

589
    const auto inserted = used_devices.insert(t.place()).second;
590 591
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
592 593 594 595 596 597
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
598
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
599 600
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

601 602
  auto task = PointToPoint(
      tensors,
603 604 605
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
606 607
          int dst_rank) {
        return platform::dynload::ncclSend(
608 609 610 611 612 613
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
614
      },
615 616
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
617 618 619 620
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
621
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
622 623
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

624 625
  auto task = PointToPoint(
      tensors,
626 627 628
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
629 630
          int src_rank) {
        return platform::dynload::ncclRecv(
631 632 633 634 635 636
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
637
      },
638 639
      src_rank,
      CommType::RECV);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors, int dst_rank, int offset, int length) {
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

655 656
  auto task = PointToPoint(
      shared_tensors,
657 658 659
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
660 661
          int dst_rank) {
        return platform::dynload::ncclSend(
662 663 664 665 666 667
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
668
      },
669 670
      dst_rank,
      CommType::SEND);
671 672 673 674 675 676 677 678 679 680 681 682 683 684
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors, int src_rank, int offset, int length) {
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});
  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

685 686
  auto task = PointToPoint(
      shared_tensors,
687 688 689
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
690 691
          int src_rank) {
        return platform::dynload::ncclRecv(
692 693 694 695 696 697
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
698
      },
699 700
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
701 702 703
  return task;
}

704
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
705 706
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
707
  PADDLE_ENFORCE_EQ(
708 709
      CheckTensorsInCudaPlace(in_tensors),
      true,
710 711
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
712 713
      CheckTensorsInCudaPlace(out_tensors),
      true,
714
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
715
  return Collective(
716 717 718 719 720 721
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
722
        return platform::dynload::ncclAllGather(
723 724 725 726 727 728
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
729 730
      },
      CommType::ALLGATHER);
731 732
}

733 734
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
735 736 737 738 739 740 741
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
742 743 744
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
745 746 747 748 749 750
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
751 752 753 754 755 756 757 758
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
759 760 761 762 763
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
764
  return nullptr;
765 766
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    int offset,
    int length) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

798
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
799 800
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
801
  PADDLE_ENFORCE_EQ(
802 803
      CheckTensorsInCudaPlace(in_tensors),
      true,
804 805
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
806 807
      CheckTensorsInCudaPlace(out_tensors),
      true,
808 809
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
810 811 812 813 814
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
815 816 817 818 819
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
820
              GetPointerByOffset(input.data(), offset, input.dtype()),
821 822 823 824 825
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
826
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
827
              GetPointerByOffset(output.data(), offset, input.dtype()),
828 829 830 831 832
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
833
          offset += input.numel() / size_;
834 835 836
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
      CommType::ALLTOALL);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
867 868
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
900 901 902
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
903
    std::vector<phi::DenseTensor>& in_tensors,
904 905
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
906
  PADDLE_ENFORCE_EQ(
907 908
      CheckTensorsInCudaPlace(in_tensors),
      true,
909 910
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
911 912 913 914 915 916
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
917
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
918 919 920
            input.data(),
            output.data(),
            input.numel(),
921
            platform::ToNCCLDataType(input.dtype()),
922 923 924 925
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
926 927 928 929 930
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
931
    std::vector<phi::DenseTensor>& in_tensors,
932 933
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
934
  PADDLE_ENFORCE_EQ(
935 936
      CheckTensorsInCudaPlace(in_tensors),
      true,
937 938
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
939 940
      CheckTensorsInCudaPlace(out_tensors),
      true,
941 942
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
943 944 945 946 947
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
948 949 950 951 952 953
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
954
                GetPointerByOffset(input.data(), offset, input.dtype()),
955 956 957 958 959
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
960
            offset += input.numel() / size_;
961 962
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
963 964 965 966 967
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
968 969 970 971
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
972 973 974 975 976
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
977 978 979 980 981 982
              stream));
        }
      },
      CommType::SCATTER);
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
    phi::DenseTensor& out_tensor,
    phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts) {
  // auto tensor = out_tensors.back();
  PADDLE_ENFORCE_EQ(
      out_tensor.dtype(),
      in_tensor.dtype(),
      platform::errors::InvalidArgument(
          "Input tensor and output tensor should be same dtype."));

  PADDLE_ENFORCE_EQ(
      out_tensor.numel() * size_,
      in_tensor.numel(),
      platform::errors::InvalidArgument("input tensor must be the same size as "
                                        "output tensor size times world_size"));

  auto inputs = std::vector<phi::DenseTensor>{in_tensor};
  auto outputs = std::vector<phi::DenseTensor>{out_tensor};

  return Collective(
      inputs,
      outputs,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

L
LiYuRio 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  std::vector<Place> places = {place};
  const auto& iter = places_to_ncclcomm_.find(GetKeyFromPlaces(places));
  PADDLE_ENFORCE_NE(iter,
                    places_to_ncclcomm_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find nccl comm in process group."));
  return iter->second[0]->GetNcclComm();
}

L
LiYuRio 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
phi::DeviceContext* ProcessGroupNCCL::GetDeviceContext(
    const Place& place) const {
  std::vector<Place> places = {place};
  const auto& iter = places_to_ctx_.find(GetKeyFromPlaces(places));
  PADDLE_ENFORCE_NE(iter,
                    places_to_ctx_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find device context in process group."));
  return iter->second[0].get();
}

1056 1057
}  //  namespace distributed
}  //  namespace paddle